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Abstract

The formulation of a phase-field continuum theory for brittle fracture in elastic-plastic solids
and its computational implementation are presented in this contribution. The theory is based on
a virtual-power formulation in which two additional and independent kinematical descriptors are
introduced, namely the phase-field and the accumulated plastic strain. Further, it incorporates irre-
versibility of both phase-field and plastic strain evolutions by introducing suitable constraints and
by carefully heeding the influence of those constraints on the kinetics underlying microstructural
changes associated with plasticity and fracture.

The numerical implementation employs the finite-element method for spatial discretization
and a splitting scheme with sub-stepping for the time integration. To illustrate its potential utility,
we apply the model to a number of well known linear, as well as non-linear, fracture mechanics
problems.

The described phase-field model, coupled with plasticity, provides a feasible technique to ana-
lyzing crack initiation and the subsequent crack growth resistance only if the length scale parame-
ter included in the phase-field model is finite and treated as a material parameter which should be
properly characterized.

Keywords: fracture; elastoplasticity; phase-field; gradient damage mechanics.

1. INTRODUCTION

In classical fracture mechanics, fracture process can occur only at the crack tips. Under this
premise, crack growth is driven by the near tip J-integral (c.f. Rice [1]; Gurtin and Podio-Guidugli
[2]; Tillberg et al. [3]), a quantity that coincides with the energy release rate in the case of elastic
materials. In situations involving elastic-plastic solids, it may happen that the calculated near tip
J-integral vanishes (Rice [4], Simha et al. [5], Brocks et al. [6]), which implies that there is no
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driving force for crack growth. Hence, according to classical approach, fracture can not occur for
such situations. The physical explanation for this paradox is that, contrary to the predicated by
the classical approach, fracture events take place ahead the crack tip, in a finite region called the
fracture process zone. Therefore, fracture mechanics models for crack problems in elastic-plastic
solids must reflect the presence of a finite size fracture process zone.

Process zone description requires the modeling of material softening induced by the nucleation,
growth and coalescence of microdefects – microcracks or microvoids depending on whether the
underlying fracture mechanism is brittle or ductile–, which brings to the scene the issue of material
length scales. Be that as it may, two families of fracture mechanics models stand out, cohesive
zone models and continuum damage models (c.f. Brocks et al. [6]). A different strategy was given
by Stumpf et al. [7], who used the notion of configurational forces to describe the evolution of
a fracture process zone in ductile materials. In cohesive models, fracture events are assumed to
take place in a surface and are described by cohesive laws. Within this category, we include the
methodologies using strong discontinuity kinematics as an artifact to represent cracks such as it
was shown in Simo et al. [8], Belytschko and Gracie [9], etc., and particularly, the continuum
strong discontinuity approach by Oliver and coworkers (Oliver et al. [10]), Huespe et al. [11] ,
Huespe et al. [12]. On the other hand, continuum damage models consider the process zone as a
region in which damage, described trough a continuum variable, accumulates. A material length
scale parameter is innate to cohesive zone models, but, it is absent in conventional continuum
damage formulations. This has led to the development of enhanced damage theories, including
nonlocal and gradient theories for damage (c.f. Pijaudier-Cabot and Bazant [13], Frémond and
Nedjar [14] and the references therein).

Continuum damage theories give rise to a definition of cracks as small zones of high gradients
of rigidity and strength. In those zones, all fields remain continuous when critical conditions of
damage are reached (e.g. Lemaitre [15]). This is exactly the view adopted in the phase-field
approach to fracture, in which case damage is measured by a scalar field, the phase-field, as first
proposed by Aranson et al. [16]. The phase-field approach to fracture, which may be regarded
as a legitimate continuum gradient damage theory, has been extensively used to describe crack
propagation in elastic solids (Spatschek et al. [17]). In this case, it can be viewed either as a
regularization or as an extension of the classical theory of brittle fracture. In fact, it can be shown
that the length parameter carried by the theory may be viewed as a regularizing parameter in the
sense that when it goes to zero, either the classical approach (Silva Jr. et al. [18], Hakim and
Karma [19]) or the variational approach (Francfort and Marigo [20]) to fracture in elastic solids
is recovered. On the other hand, a finite value of this length parameter allows the description of
effects that are not accounted for by the classical theory of brittle fracture, such as branching and
oscillatory instabilities (c.f. Karma and Lobkovsky [21], Henry and Levine [22]).

In this paper, we develop the formulation and the numerical implementation of a small-strain
continuum theory for brittle fracture in elastic-plastic solids. Typically, this failure mechanism can
be observed in metal fracture below the transition temperature displaying transgranular cleavage.
In this case, contained plastic deformation can take place close to notch roots. Failure criteria
based on a critical stress have been proposed in the past to analyze this kind of fracture (Ritchie
et al. [23]).

The formulation is carried out within the framework of continua with microstructure (e.g.
Capriz [24]). Accordingly, fracture and plasticity are accounted for by two additional kinemat-
ical descriptors, the phase-field and, the accumulated plastic strain, along with the corresponding
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microforce systems. After invoking the principle of virtual power, we arrive at the basic balances of
the theory, namely the standard force and moment balances, and two microforce balances. Follow-
ing Fried and Gurtin [25], we introduce an energy imbalance representing a mechanical version of
the second law of thermodynamics, which is used as a guide for developing a thermodynamically
compatible constitutive relations. On combining these relations with the balances, we arrive at a
system of coupled equations governing the evolution of displacement, phase-field and accumulated
plastic strain. A special version of the theory is presented with a view towards the description of
rate-independent brittle fracture in conventional elastic-plastic solids. Its numerical implementa-
tion is based on the finite element method for spatial discretization, where the displacement and
phase-field are interpolated, and a staggered scheme, similar to that proposed by Bourdin et al.
[26] and Miehe et al. [27], for time integration of the resulting semi-discrete evolution equations.
Similar works linking gradient damage with plasticity (c.f. Nedjar [28]), as well assuming large
deformation (c.f. Aslan et al. [29], Saanouni and Hamed [30], and references cited therein), have
been previously published in the literature.

The numerical assessment of the model is presented in two main parts. In the first part, we show
that the methodology provides a correct asymptotic solution to the sharp-crack elastic problem as
long as the regularization parameter of the phase-field model goes to zero. Similar analysis have
been previously presented in the literature. However, as a contribution of this paper, in sub-section
4.1.2 and 4.1.3 we emphasize the issues related to the numerical analysis of the dissipated energy
of crack propagation processes. Particularly, we study the sensitivity of the model parameters
for capturing the correct dissipated energy according with adopted material fracture energy. Two
standard specimens are loaded until reaching the complete loss of the structural load capacity and,
after very careful numerical analysis, we draw some conclusions about these issues.

A more significant contribution of the paper is presented in the second part of Section 4, where
the problem of crack propagation in mode I under small-scale yielding condition is analyzed.
The phase-field model interacting with a plastic deformation process is assessed, and solutions
furnished by this model with those obtained using a cohesive model are compared. Also, the
conditions to be satisfied by the length parameter of the phase field model in order to extract valid
results are evaluated. The analysis shows that the advance of the pre-existent crack involves, in
some cases, the following steps: 1) formation of a new crack ahead the original crack tip; 2)
propagation of the new crack towards, and also away, the tip of the original crack; 3) extension
of original crack when its tip is reached by the new crack. This implies the crack extension can
occur in a discontinuous manner. This mechanism has been invoked for explaining brittle fracture
in elastic-plastic solids (Tetelman and McEvily [31]; Kfouri [32]; Kfouri and Miller [33], Ritchie
et al. [23]). Discontinuous crack growth can also occur within the context of ductile fracture. See,
for instance, the studies carried out by Levitas [34] and Idesman et al. [35].

2. Elastoplasticity and fracture
We now formulate a phase-field/gradient damage theory for fracture in elastic-plastic solids under
small-strains and isothermal conditions. The theory is based on a virtual-power formulation in
which two additional and independent kinematical descriptors are introduced, namely the phase-
field and the accumulated plastic strain. Attention is confined to isotropic behavior and conven-
tional plasticity. The treatment of plasticity adopted here is akin to the streamlined version of
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the virtual-power principle based on codirectionality presented in Gurtin et al. [36] where the ac-
cumulated plastic strain is an independent kinematical descriptor. Following Silva Jr. et al. [18],
the theory developed here incorporates irreversibility of both: phase-field and accumulated plastic
strain evolutions. This is achieved by introducing suitable constraints and by carefully heeding the
influence of those constraints on the kinetics underlying microstructural changes associated with
plasticity and fracture.

2.1. Preliminaries
Let B be a body identified with the region it occupies in a fixed reference configuration. Let u
denote the displacement field,∇u and∇u> the displacement gradient and its transpose, and E the
infinitesimal strain tensor, which is defined by:

E =
∇u +∇u>

2
. (1)

To account for the fact that the total deformation is the outcome of elastic and plastic contributions,
the additive decomposition of the strain E into its elastic Ee and plastic Ep parts is introduced:

E = Ee + Ep (2)

The plastic strain Ep is traceless, that is, trEp = 0, and satisfies the equation

Ėp = ėN, (3)

with
ė = |Ėp|, |N| = 1, tr(N) = 0. (4)

Henceforth, e is the accumulated plastic strain and N is the plastic orientation tensor.
Remarks:

• The assumptions represented by equations (2), (3), and (4) could be introduced later, in the
section devoted to the constitutive theory. However, they were introduced at this stage for
the sake of convenience only.

To describe fracture, we introduce the phase-field ϕ which takes values on the interval [0, 1].
If ϕ = 0 at a point, then that point is unfractured. If ϕ = 1 at some other point, then that point
is fractured. Values of ϕ between zero and one correspond to partially fractured material. Ideally,
such values should be confined to transition zones that represent cracks.

In this paper we treat the accumulated plastic strain e and the phase-field ϕ as extra kinematical
descriptors, whereas the plastic orientation tensor N is assumed to be constitutively prescribed.
Thus, the kinematics of B is defined by the fields u, e, and ϕ. The corresponding realizable
velocities are denoted by u̇, ė and ϕ̇, whereas the virtual velocities are denoted by ũ, ẽ and ϕ̃. The
three force balances, one for each kinematical descriptor are deduced next.
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2.2. Force balances
We assume that the dynamics of B is specified in terms of a pair of linear, bounded, and continuous
functionals, referred to as the internal and external virtual power expenditures. These are defined
for any part P , with boundary ∂P , of B and a given collection (ũ, ẽ, ϕ̃) ∈ V , where V is the vector
space of virtual velocities and, for a given time instant, it is assumed that the list (u̇, ė, ϕ̇) ∈ V . For
any part P ⊂ B, the internal virtual power is defined by

W int(P ; ũ, ẽ, ϕ̃) :=

∫
P

(S · ∇ũ + ξ · ∇ϕ̃+ γẽ+ πϕ̃) dv, (5)

where the macrostress tensor S and the microstress ξ represent interactions of first order, whereas
the internal microforces densities γ and π represent interactions of zeroth order. Note that since
we are interested in conventional plasticity only, which by its turn is a local theory, we do not
consider first order interaction for ∇ẽ. Otherwise, accounting for this interaction would provide
a foundation upon which to build gradient plasticity theories. Further, for any part P ⊂ B, the
external virtual power is defined by

Wext(P ; ũ, ẽ, ϕ̃) :=

∫
∂P

(s · ũ + ξ∂P ϕ̃) da+

∫
P

(b · ũ + γextẽ+ πextϕ̃) dv, (6)

where s and ξ∂P represent contact interactions and b, γext and πext interactions at a distance. The
standard body force b is presumed to include inertia, that is,

b = b0 − ρü (7)

in an inertial frame. Here, b0 is the non-inertial contribution to b and ρ is the mass density.
The principle of virtual power, which is assumed to hold at each fixed time, states that, for any

given part P ⊂ B:

1. The internal and external virtual powers are balanced, that is,

W int(P ; ũ, ẽ, ϕ̃) =Wext(P ; ũ, ẽ, ϕ̃) (8)

for each admissible virtual velocity (ũ, ẽ, ϕ̃).
2. The internal virtual power is frame-indifferent, that is,

W int(P ; ũ, ẽ, ϕ̃) =W int(P ; ũ∗, ẽ∗, ϕ̃∗) (9)

where
u∗ = u + a + Wr, ẽ∗ = ẽ, ϕ̃∗ = ϕ̃. (10)

Here, a and W are arbitrary spatially constant vector and skew tensor fields, respectively,
and r = x− o is the position vector at a point x in P , with o being the point at the origin.

This principle implies the force balances:

• Standard force balance

div S + b = 0 on P and Sn = s on ∂P , (11)

where S is symmetric thanks to the frame-indifference of the internal power;
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• Phase-field microforce balance

div ξ − π + πext = 0 on P and ξ · n = ξ∂P on ∂P ; (12)

• Plastic-strain microforce balance

−γ + γext = 0 on P ; (13)

where n is the exterior unit vector normal to ∂P . Notice that (11)1 represents the local form of
the standard force balance, whereas (11)2 the standard traction condition, with S and b repre-
senting the standard stress and body force, respectively. Likewise, (12)1 gives the local form of
the microforce balance equation associated to the phase-field and (12)2 the corresponding traction
condition, with ξ, π, and πext representing the microstress, internal microforce, and external mi-
croforce, which are associated to processes leading to fracture as described by the phase-field ϕ.
Since a zeroth-order description has been adopted for plasticity, there is no traction condition in
(13).

2.3. Energy imbalance
In addition to the force balances introduced before, we impose the first and second laws of ther-
modynamics via an energy imbalance. This imbalance requires that the rate of change of the free
energy of any P does not exceed the inflow of energy to P due to the power expended on P by
external agencies. Specifically, introducing the free-energy density ψ per unit volume, the law of
energy imbalance for P reads

d
dt

∫
P

ψ dv ≤ Wext(P , u̇, ė, ϕ̇). (14)

Bearing in mind that P is arbitrary, making use of the power balance (8), and recalling that S is
symmetric, we find the integral statement (14) of energy imbalance has the equivalent point-wise
version

ψ̇ − S · Ė− ξ · ∇ϕ̇− γė− πϕ̇ ≤ 0. (15)

In view of (2), (3), and (4)3, this implies that

ψ̇ − S · Ėe − ξ · ∇ϕ̇− γ̄ė− πϕ̇ ≤ 0, (16)

where
γ̄ = γ + τ, τ = S0 ·N, (17)

where τ is the resolved stress obtained by projecting S0, the deviatoric part of S, along the plastic
flow direction.
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2.4. Constitutive theory
The structure of the inequality (16) dictates certain natural choices for dependent and independent
constitutive variables. Before taking this point, it is crucial to decide if it is possible or not to choose
arbitrarily Ėe, ė, ϕ̇, and ∇ϕ̇. When this choice is limited, B is subjected to internal constraints
(Capriz [24]). If this is the case, the standard practice of dealing with internal constraints dictates
that S, ξ, π and γ̄ are sums of two components, one called active and the other called reactive, that
is,

S = Sa + Sr, ξ = ξa + ξr, π = πa + πr, γ̄ = γ̄a + γ̄r, (18)

where constitutive relations can be assigned only for the active components. Further, the reactive
contributions expend no power, that is,

Sr · Ėe + ξr · ∇ϕ̇+ πrϕ̇+ γ̄rė = 0, (19)

for all admissible Ėe, ė, ϕ̇, and ∇ϕ̇.
In this work, we assume that Ėe and ∇ϕ̇ are unconstrained, whereas ė and ϕ̇ are such that:

ė ≥ 0, ϕ̇ ≥ 0. (20)

These constraints represent the often invoked assumption that microstructural changes leading to
plasticity and fracture are irreversible. With these assumptions, it follows from (19) that

Sr = 0, ξr = 0, (21)

γ̄r =

{
undetermined, if ė = 0,

0, if ė > 0,
(22)

and that

πr =

{
undetermined, if ϕ̇ = 0,

0, if ϕ̇ > 0.
(23)

Therefore, whereas S and ξ are constitutively assigned , γ̄ and π are constitutively assigned only
for ė > 0 and ϕ̇ > 0, respectively.

2.4.1. Constitutive response functions

Suppose that ė > 0 and ϕ̇ > 0. Guided by the structure of the inequality (16), we allow for possible
constitutive dependencies of ψ, S, γ̄, π, and ξ on Ee, e, ϕ, ∇ϕ, ė, and ϕ̇. Granted the availability
of external forces needed to ensure the satisfaction of the local balances (11)1, (12)1 and (13), a
straightforward application of an argument first employed by Coleman and Noll [37] shows that ψ
must be independent of ϕ̇,

ψ = ψ̂(Ee, e, ϕ,∇ϕ), (24)

that S and ξ must be given by equations of state

S =
∂ψ̂(Ee, e, ϕ,∇ϕ)

∂Ee

,

ξ =
∂ψ̂(Ee, e, ϕ,∇ϕ)

∂∇ϕ
,

 (25)
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that γ̄ and π must be a sum of the form

γ̄ =
∂ψ̂(Ee, e, ϕ,∇ϕ)

∂e
+ γ̂dis(Ee, e, ϕ,∇ϕ, ė, ϕ̇), (26)

and

π =
∂ψ̂(Ee, e, ϕ,∇ϕ)

∂ϕ
+ π̂dis(Ee, e, ϕ,∇ϕ, ė, ϕ̇), (27)

and that γ̂dis and π̂dis must obey the residual dissipation inequality

δ = γ̂dis(Ee, e, ϕ,∇ϕ, ė, ϕ̇)ė+ π̂dis(Ee, e, ϕ,∇ϕ, ė, ϕ̇)ϕ̇ ≥ 0, (28)

where δ denotes the dissipation density.
Instead of determining the most general constitutive response functions γ̂dis and π̂dis of (28), we

suppose that γ̂dis is independent of ϕ̇ and π̂dis independent of ė. Thus, we restrict attention to solu-
tions for which the dissipative mechanisms associated with plasticity and fracture are decoupled,
in which case (28) implies the inequalities

γ̂dis(Ee, e, ϕ,∇ϕ, ė)ė ≥ 0 (29)

and
π̂dis(Ee, e, ϕ,∇ϕ, ϕ̇)ϕ̇ ≥ 0, (30)

hold separately. Henceforth, we assume that γ̂dis and π̂dis are given by

γ̂dis(Ee, e, ϕ,∇ϕ, ė) = â(Ee, e, ϕ,∇ϕ) + b̂(Ee, e, ϕ,∇ϕ)ė (31)

and
π̂dis(Ee, e, ϕ,∇ϕ, ϕ̇) = α̂(Ee, e, ϕ,∇ϕ) + β̂(Ee, e, ϕ,∇ϕ)ϕ̇, (32)

where, to ensure satisfaction of (30) and (29) , the response functions â, b̂, α̂ and β̂ are chosen to be
non-negative valued functions. The condition b̂ = 0 in (31) corresponds to rate-independent plastic
response, whereas the condition β̂ = 0 in (32) corresponds to rate-independent damage response.

Now, we prescribe the constitutive equations for γ̄a, the active part of γ̄, when ė = 0, and
πa, the active part of π, when ϕ̇ = 0. In both cases, we assume that the constitutive equations
for ψ, S and ξ are given by (24) and (25). Since ė = 0, thermodynamic compatibility places
no restriction on constitutive responses for γ̄a. In this sense, constitutive equations for γ̄a may be
freely prescribed. Hereafter, we stipulate that, if ė = 0,

γ̄a =
∂ψ̂(Ee, e, ϕ,∇ϕ)

∂e
+ â(Ee, e, ϕ,∇ϕ). (33)

By a similar reasoning, constitutive equations for πa may be freely prescribed. Hereafter, we
stipulate that, if ϕ̇ = 0,

πa =
∂ψ̂(Ee, e, ϕ,∇ϕ)

∂ϕ
+ α̂(Ee, e, ϕ,∇ϕ). (34)

As will become evident, the choices (33)–(34) for γ̄a and πa are very convenient. In particular,
it can be shown that these choices imply that γ̄r and πr change continuously in a process during
which ė and ϕ̇ change continuously from ė = 0 and ϕ̇ = 0 to ė > 0 and ϕ̇ > 0.
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2.4.2. Yield criterion and the plastic orientation tensor

We now specify the yield criterion, that is, the condition under which plasticity occurs, and the
plastic orientation tensor N. The yield criterion adopted here is motivated by the microforce bal-
ance (13).

On assuming that γext = 0, the use of the relations (17), (26), (31), and (33) in the microforce
balance (13) yields that

τ − y =

{
ηė, ė > 0,

γ̄r, ė = 0,
(35)

where, for sake of notation, we have introduced the quantities

η := b̂(Ee, e, ϕ,∇ϕ), y :=
∂ψ̂(Ee, e, ϕ,∇ϕ)

∂e
+ â(Ee, e, ϕ,∇ϕ). (36)

In the sequel, it is important to keep in mind the distinction between the two alternatives in (35):
the first alternative is a restriction on the manner that microstructural changes leading to plasticity
occur; the second alternative is an identity that determines γ̄r when such changes are arrested –in
which case, the microforce balance is automatically satisfied.

We now turn to the specification of the yield criterion. First, we consider that η > 0, that is, a
rate-dependent plasticity response. In this case, (35)1 implies that ė > 0 only if

τ > y. (37)

Here, we stipulate that condition (37) is also sufficient for ė > 0, which means that the yield
condition is given by (37). Notice that, equivalently, ė = 0 if and only if

τ ≤ y. (38)

For a rate-independent plastic response, (35)1 indicates that ė > 0 only if τ = y. In this case, we
stipulate that (38) always must be obeyed, but now with the provision that the strict inequality is
sufficient but not necessary for ė = 0. Under these conditions, it can be shown that ė > 0 if and
only if

τ = y and τ̇ = ẏ. (39)

It is easy to see that in both rate-dependent and rate-independent case, the reactive microforce γ̄r
obeys the inequality

γ̄r ≤ 0. (40)

Notice that the rate-independent case can be obtained from the rate-dependent one in the limit as
η goes to zero (c.f. Simo and Hughes [38]).

To prescribe the plastic orientation tensor N, we begin by observing that after taking (17)2,
(29), (31), (36), (35)1 into account, it follows that the plastic dissipation density is given by(

S0 ·N−
∂ψ̂(Ee, e, ϕ,∇ϕ)

∂e

)
ė ≥ 0. (41)
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Notice that (25)1 implies that S0, the deviatoric part of S, is a function of the list (Ee, e, ϕ,∇ϕ).
Therefore, for a given (Ee, e, ϕ,∇ϕ), the plastic dissipation is a function of N, whose maximum
is attained at

N =
S0

|S0|
, (42)

and hence
τ = |S0|. (43)

Thus, if the principle of maximum dissipation is invoked, the equations above must hold. See
Gurtin et al. [36] for a detailed discussion of this issue. See also Aifantis [39].

2.4.3. Damage criterion

Now, we turn to the issue of the damage criterion. The damage criterion adopted here is moti-
vated by the microforce balance (12). The development follows along the same lines adopted for
plasticity.

After assuming that πext = 0 and using the relations (12)1, (25)2, (27) and (32), it follows from
the microforce balance (12) that

ζ − α =

{
βϕ̇, ϕ̇ > 0,

πr, ϕ̇ = 0,
(44)

where, to simplify the notation,

β := β̂(Ee, e, ϕ,∇ϕ), α := α̂(Ee, e, ϕ,∇ϕ) (45)

and

ζ := div

(
∂ψ̂(Ee, e, ϕ,∇ϕ)

∂∇ϕ

)
− ∂ψ̂(Ee, e, ϕ,∇ϕ)

∂ϕ
. (46)

Notice that −ζ is the variational derivative of ψ̂ with respect to ϕ. Again, it is important to keep
in mind the distinction between the two alternatives in (44): the first alternative is a restriction on
the manner microstructural changes leading to damage occur; the second alternative is an iden-
tity that determines πr when such changes are arrested –in which case, the microforce balance is
automatically satisfied.

When β > 0, that is, for a rate-dependent damage response, (44)1 implies that

ζ > α (47)

is a necessary condition for ϕ̇ > 0. Here, we stipulate that condition is also sufficient for ϕ̇ > 0,
which means that damage occurs if and only (47) holds. Equivalently, no damage occurs whenever

ζ ≤ α (48)

is satisfied. For a rate-independent damage response, i.e., for β = 0, (44)1 indicates that ζ = α is
a necessary condition for ϕ̇ > 0. In this case, we stipulate that (48) always holds, but now with the
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provision that the strict inequality is sufficient but not necessary for ϕ̇ = 0. Under these conditions,
it can be shown that ϕ̇ > 0 if and only if

ζ = α and ζ̇ = α̇. (49)

It is easy to see that in both rate-dependent and rate-independent case, the reactive microforce
πr obeys the inequality

πr ≤ 0. (50)

2.5. Governing equations
Now, we collect the results obtained so far to write the set of governing equations for the basic
fields of the theory, namely u, e, ϕ, γ̄r and πr. This set of equations is obtained by combining the
force balances and constitutive theory, including the yield and damage criteria.

We begin by considering the governing equations for ė and γ̄r. For the sake of convenience, let
us introduce the function f defined by

f := |S0| − y, (51)

with y given by (36)2. In the rate-independent case, it is easy to see that the governing equations
for ė and γ̄r are given by

ė ≥ 0, f ≤ 0, ėf = 0, γ̄r = f, (52)

whereas in the rate-dependent case they are given by

ηė = 〈f〉, γ̄r = −〈−f〉, (53)

with η given by (36)1. Henceforth 〈h〉 denotes the Macaulay bracket of a scalar-valued quantity h,
that is,

〈h〉 =

{
0, h ≤ 0,

h, h > 0.
(54)

After introducing the function
F = ζ − α, (55)

with ζ and α given by (46) and (45)2, it can be shown that the governing equations for ϕ̇ and πr
reduce to

ϕ̇ ≥ 0, F ≤ 0, ϕ̇F = 0, πr = F (56)

in the rate-independent case, and to:

βϕ̇ = 〈F 〉, πr = −〈−F 〉 (57)

otherwise, where β is defined in (45)1.
The remaining governing equations are given by the (1), (2), (3) with N = S0/|S0|, and the

standard force balance (11) with S given by (25)1.
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2.6. Specialization
We now specialize the constitutive response functions introduced before with a view towards the
development of a simple rate-independent continuum model for fracture in elastic-plastic materials.
As described below, we assume that the free energy is given as the sum of elastic, fracture and
plastic contributions. Further, we consider that damage results from microcracking and manifests
itself only through a reduction in the elastic energy storage capacity of the material.

Our choice for the free energy response ψ̂ is

ψ̂(Ee, e, ϕ,∇ϕ) = ψ̂e(Ee, ϕ) + ψ̂p(e) + ψ̂f (ϕ,∇ϕ), (58)

with

ψ̂e(Ee, ϕ) =
(
(1− ϕ)2 + kc

)
ψ̂+
e (Ee) + ψ̂−e (Ee);

ψ̂+
e (Ee) =

1

2

(
λ 〈 trEe〉2 + 2µE+

e : E+
e

)
;

ψ̂−e (Ee) =
1

2

(
λ 〈− trEe〉2 + 2µE−e : E−e

)
;

E+
e = 〈(Ee)i〉 ei ⊗ ei ; E−e = −〈−(Ee)i〉 ei ⊗ ei;

(59)

ψ̂p(e) =
σ2
y

E(n+ 1)

(
1 +

√
2

3

Ee

σy

)n+1

−
√

2

3
σye, (60)

and

ψ̂f (ϕ,∇ϕ) = gf

(
ϕ2

2l
+
l

2
|∇ϕ|2

)
. (61)

Here, λ and µ are the Lamé parameters, E is the Young’s modulus, (Ee)i and ei are the i-th
principal strain and eigenvector of Ee, respectively. In expressions (59)2−3, and according with
(59)4, E+

e and E−e are the spectral decomposition of the positive and negative elastic strain. The
constant parameter kc is greater than zero (kc > 0), and is introduced to prevent a possible ill-
conditioning of the model when ϕ = 1. But otherwise, it should be as small as possible to avoid an
overestimation of the bulk energy. The strain hardening exponent of the plastic model is denoted
n, the yield stress at e = 0 is σy, the fracture energy is gf , and l is a parameter with dimension of
length.

Notice that ψ̂e , the elastic contribution to the free energy, contains an interaction term between
unilateral damage, which accounts for microcrack closure/opening effect, and elastic strain, and
that this term is a decreasing function of the degree of degradation as described by the phase
field. Thus, ψ̂e is decomposed additively in two terms associated with the positive and negative
elastic strains. Only the first component of ψ̂e couples ϕ with elastic strains. As can be seen in
the following development, the coupling of ϕ with ψ̂+

e means that the evolution of ϕ is driven by
ψ̂+
e . Therefore, changes of ϕ are only attached to changes of E+

e , but not to changes of E−e . The
partition ψ̂e defined in equation (59), has been taken from Miehe et al. [27].

The fracture energy ψ̂f is given by the sum of two contributions, a homogeneous one and a
gradient one. Whereas the former favors the local state ϕ = 0, the later penalizes rapid spatial
variation and smears out the transition zone in which ϕ varies between 0 and 1. Aside from the
effects of unilateral damage and plasticity, this choice for the free-energy density appears in the
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context of the variational approximation of brittle fracture (c.f. Bourdin et al. [40]), which by its
turn was based on the phase-field approximation of the Mumford-Shah potential introduced by
Ambrosio and Tortorelli [41].

Since we are concerned with a rate-independent theory, we assume that the response functions
β̂ and b̂ are identically equal to zero. Further, we assume:

â(Ee, e, ϕ,∇ϕ) =

√
2

3
σy, (62)

α̂(Ee, e, ϕ,∇ϕ) = 0, (63)

The aforementioned constitutive specialization results in the following expressions for S, f and
F :

S =
(
(1− ϕ)2 + kc

)
(λ 〈 trEe〉 I + 2µE+

e ) + (−λ 〈− trEe〉 I + 2µE−e ); (64)

F = 2(1− ϕ)ψ̂+
e (Ee)−

gf
l

(ϕ− l24ϕ); (65)

f = |S0| −
√

2

3
σy

(
1 +

√
2

3

Ee

σy

)n

. (66)

Alternative handling of the phase-field equations

The numerical treatment of the phase-field equations (56) is admittedly difficult. In the past,
and within the context of gradient damage models, algorithms have been proposed to solve similar
problems. Typically, we mention the algorithm proposed by Liebe et al. [42] which has been
borrowed from nonlinear programming methods. This technique primarily consists of an iterative
method which sequentially searches for the active sets, i.e the regions where ϕ̇ < 0, and a posterior
returning to the feasible domain defined by ϕ̇ ≥ 0.

Alternatively to that kind of procedures, the solution proposed by Miehe et al. [27] is here
adopted. It is next described.

Let us consider the compact history field functionH(t) defined as follows:

H(t) = max
s
h(s), s ∈ [0, t] (67)

where
h(t) := ψ̂+

e (Ee, t) (68)

Then , instead of solving ϕ(t) using the phase-field equations (56), with F defined by (65), it is
solved the equation:

2(1− ϕ(t))H(t)− gf
l

(ϕ(t)− l24ϕ(t)) = 0, (69)

In Appendix I, and after introducing simplifying assumption, we sketch the equivalence be-
tween the phase-field equations (56) and (69).

Summary of governing equations: Table 1 summarizes the governing equations of the coupled
rate-independent elasto-plastic phase-field model.
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Balance equations:

div S + b = 0; on B and Sn = s on ∂BS; (TI-1)

2(1− ϕ)H− gf
l

(ϕ− l24ϕ) = 0; on B and ∇ϕ · n = 0 on ∂Bϕ; (TI-2)

with:
S =

(
(1− ϕ)2 + kc

)
(λ 〈 trEe〉 I + 2µE+

e ) + (−λ 〈− trEe〉 I + 2µE−e ); (TI-3)

H(t) = maxh(s) = max ψ̂+
e (Ee(s)), s ∈ [0, t]; (TI-4)

ė ≥ 0, f ≤ 0, ėf = 0, γr = f ; on B; (TI-5)

f = |S0| −
√

2

3
σy

(
1 +

√
2

3

Ee

σy

)n

. (TI-6)

Table 1: Summary of the governing equations of the coupled elasto-plastic-phase field problem.

3. Numerical model of the boundary value problem (BVP)
In order to numerically solve the BVP defined in the previous section, the variational format pre-
sented in the principle of the virtual power (8) is reconsidered. Then, after defining admissible
variations of the kinematical descriptors (ũ and ϕ̃), the corresponding variational equations are
derived. In this format, the problem is amenable to be approached by means of a finite element
technique. In the following, we consider a rate-independent constitutive model of fracture and
plasticity.

Let us consider the body B. Essential boundary conditions in displacements are prescribed on
∂Bu, that is, u = ū on ∂Bu. Whereas tractions are prescribed on the boundaries ∂BS and ∂Bξ.
That is, Sn = s on ∂BS , and ∇ϕ · n = 0 on ∂Bξ. Initial condition are defined for ϕ. A possible
choice is: ϕ = 0 on B.

Let us consider the following functional spaces defined on B:

Vu = {u ∈ H1 | u = ū on ∂Bu};
Vϕ = {ϕ ∈ H1};

(70)

with H1 being a space of smooth enough functions. Vu is the space of admissible displacement
and Vϕ the space of admissible phase-fields. Corresponding admissible spaces of variations are:

Vu0 = {u ∈ H1 | u = 0 on ∂Bu};
Vϕ0 = Vϕ;

(71)

Then, the variational problem consists of finding the functions u ∈ Vu and ϕ ∈ Vϕ fulfilling
the two following equations:
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∫
B
S(u, e, ϕ) · Ẽ dv −

∫
B
b · ũ dv −

∫
∂BS

s · ũ da = 0; ∀ ũ ∈ Vu0 (72)∫
B
lgf (∇ϕ · ∇ϕ̃) dv +

∫
B

(
− 2(1− ϕ)H(u, e) +

gf
l
ϕ
)
ϕ̃ dv = 0; ∀ ϕ̃ ∈ Vϕ0 (73)

jointly with the kinematics equations: (2)–(3), constitutive equations: (TI-3), (TI-4), (TI-5) and
(TI-6).

3.1. Finite element implementation
A mixed finite element with equal order of interpolation for displacements u and phase-field ϕ is
proposed.

Let us consider the spatial discretization for each of these fields as follows:

u(x) =

nnode∑
i=1

Ni(x)ui (74)

ϕ(x) =

nnode∑
i=1

Ni(x)ϕi (75)

where nnode stands for the number of nodes in the finite element mesh. The standard shape func-
tions related to node i is denoted Ni(x). At the same node, displacement and phase-field interpo-
lation parameters are denoted ui and ϕi, respectively.

The corresponding spatial discretization of the virtual fields reads:

ũ(x) =

nnode∑
i=1

Ni(x)ũi (76)

ϕ̃(x) =

nnode∑
i=1

Ni(x)ϕ̃i (77)

where ũi and ϕ̃i are virtual variations of node i.
In a generic finite element e, the strain E and the admissible variation of strain Ẽ are given as

follows:

E(x) = Be(x)ue Ẽ(x) = Be(x)ũe (78)

where ue is the nodal displacement vector of the element e. The strain-displacement matrix Be is
defined according with the B-Bar technique (c.f. Simo and Hughes [38]), i.e. quadrilateral finite
elements with bilinear interpolation. Within a two-dimensional setting, the matrix Be is:

Be =
[
Be

1 Be
2 . . . , Be

ne
node

]
;

Be
i =

 2
3
(N e

i ),x −1
3
(N e

i ),y
−1

3
(N e

i ),x
2
3
(N e

i ),y
(N e

i ),y (N e
i ),x

+
1

3

 Bhei
Bhei

0

 ; Bhei =
1

|Be|

∫
Be

[
(N e

i ),x (N e
i ),y

]
dv

(79)
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The gradient of the phase-field and the gradient of the admissible virtual variations are:

∇ϕ(x) =

nnode∑
i=1

[∇Ni](x)ϕi; ∇ϕ̃(x) =

nnode∑
i=1

[∇Ni](x)ϕ̃i; [∇Ni] =

[
(Ni),x
(Ni),y

]
(80)

3.1.1. Interpolation order selection of the fields in the mixed finite element

.
In the context of mixed finite element approaches (interpolation of u and ϕ), and according to

the analysis presented by Bourdin et al. [26], selection of low orders of interpolation for both fields
is advantageous. However, it is known that equations coupling two fields may induce numerical
locking. And locking effect tends to decrease with the use of high-order finite elements.

In fact, Verhoosel and de Borst [43] (c.f. also Simone [44]) claimed that numerical locking
arises when the phase-field problem is solved with equal low order of interpolation (linear or
bilinear) for u and ϕ. In this case, numerical locking induces stress field oscillations, which can be
relieved with a displacement interpolation of third, or higher, order.

We have also observed stress oscillation in numerical solutions obtained with low order of
interpolations. However, displacement and phase-field solutions are not affected. While, the stress
oscillation can be alleviated through a standard smoothing technique without appealing to higher-
order of interpolations.

Furthermore, our experience indicates that only a marginal increase of the error convergence
rate, with respect to the finite element mesh size, is observed when increasing the interpolation
order of the displacement field. Note that, in the case of elastic materials, convergence to sharp
crack solutions requires both conditions: mesh size, as well as phase-field regularization parameter
l, going to zero. Thus, only increasing the interpolation order does not necessarily implies increase
of convergence rate. This observation agrees with that expressed by Bourdin et al. [26].

3.1.2. Discrete equations of the quasi-static problem

Substituting equations (74) – (80) into the variational problem (72) and (73), yields:

• Force balance:

nelem

Λ
e=1

∫
Be

(Be)TS(u, e, ϕ) dv − Fext
u = 0; (81)

where Λ is the finite element assembling operator, nelem is the number of finite elements
in the mesh and S is the stress term defined by the constitutive model. The vector Fext

u is
derived from the second and third terms in (72) and represents the conventional external
forces. In expression (81), the variables u and ϕ are the vector of nodal displacements and
phase-field respectively, while e is the vector collecting the accumulated plastic strains of all
Gauss points.

• Damage equation:
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[Kϕ + Mϕ] [ϕ]− Fext
ϕ = 0; (82)

where:

Kϕ =
nelem

Λ
e=1

Ke
ϕ; [Ke

ϕ]i,j =

∫
Be

lgf
(
(∇N e

i )
T · ∇N e

j

)
dv; [∇N e

i ] =

[
N e
i,x

N e
i,y

]
;

Mϕ =
nelem

Λ
e=1

Me
ϕ; [Me

ϕ]i,j =

∫
Be

(2H(u, e) +
gf
l

)
(
(N e

i )
T ·N e

j

)
dv;

Fext
ϕ =

nelem

Λ
e=1

(Fe
ϕ)ext; [(Fe

ϕ)ext]i =

∫
Be

Ni(2H(u, e)) dv

(83)

3.1.3. Time integration scheme

Let us denote RS(u, e, ϕ) and Rϕ(u, e, ϕ) the residues of equations (81) and (82), respectively.
Then, these equations can be rewritten in short as follows:

RS(u, e, ϕ) = 0;

Rϕ(u, e, ϕ) = 0;
(84)

where the implicit dependence of the fields with the pseudo-time t is understood.
Equations (84) can be integrated by appealing to the staggered schema shown in Table 2. It

consists of solving successively equations (84)1 and (84)2. First, equation (84)1 is solved to obtain
u1
n+1 and e1n+1 with ϕn fixed. Subindices and supraindices denoting the integration time step and

subiteration, respectively. In a second step, equation (84)2 is solved to obtain ϕ1
n+1 with u1

n+1 and
e1n+1 fixed. Finally, a sub-iteration (mentioned as point 3 in Table 2) can be carried out, which
consists of a sequential repetition of the first and second steps, in order to reach a converged
solution.

By solving the equation (TII-1), in the first step of this staggered scheme, the incremental
inequality ∆e ≥ 0 is pointwise guaranteed by means of a conventional return mapping algorithm.

Also, by solving the equation (TII-2) in the second step of the staggered scheme, the inequality
∆ϕ(x) = ϕn+1(x) − ϕn(x) ≥ 0 in B is satisfied (c.f. Miehe et al. [27], see also Appendix I) by
defining the compact history fieldH(Ee, tn+1) as follows:

H(x, tn+1) = ψ̂+
e (Ee(x, tn+1)) if ψ̂+

e (Ee(x, tn+1)) > ψ̂+
e (Ee(x, tn))

H(x, tn+1) = H(x, tn) if ψ̂+
e (Ee(x, tn+1)) ≤ ψ̂+

e (Ee(x, tn))
(85)

Thus, the functionH satisfies:

H(x, tn+1) ≥ H(x, tn) (86)

for every time in B.
As can be seen in the next Section, we show that using this technique, the inequality ∆ϕ(x) ≥ 0

is satisfied in the analyzed points.
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LOOP over time steps: (n+ 1)

Given un, en, ϕn and ( Fext
u )n+1 , (Fextϕ )n+1 ;

Find: un+1 , en+1 and ϕn+1 as follows:

iter = 1 ; u0
n+1 = un; e0n+1 = en;

1) Using a Newton-Raphson iteration, find uitern+1 and eitern+1 by solving:

RS(uitern+1, e
iter
n+1, ϕn) = 0; (TII-1)

2) Find ϕitern+1, with uitern+1 fixed, by solving the system of linear equations:

Rϕ(uitern+1, e
iter
n+1, ϕ

iter
n+1) = 0; (TII-2)

3) if ‖ ϕitern+1 − ϕn ‖> 0.1, then:

DO WHILE ‖ uitern+1 − uiter−1n+1 ‖ / ‖ uitern+1 ‖> tol & iter ≤MAXiter
iter = iter + 1;
Use a fixed-point iteration to find uitern+1, eitern+1 and ϕitern+1 by iteratively

solving the sequence of steps 1) and 2) (equations (TII-1) and (TII-2));
In equations (TII-1), ϕn should be replaced by ϕiter−1n+1

END DO
Assign: un+1 = uitern+1 ; en+1 = eitern+1 ; ϕn+1 = ϕitern+1;

END LOOP over time steps

Table 2: Staggered time integration scheme for solving the coupled elasto-plastic-phase field problem.
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4. Numerical model assessment
The numerical assessment of the model is carried out by simulating two kinds of tests. First, in
sub-Section 4.1, a series of standard linear elastic fracture mechanic problems (LEFM) are solved.
An accurate estimation of the expended external energy to achieve complete structural failure is
evaluated. As a consequence of considering linear elastic response, the accuracy of the numerical
solutions can be easily sized up by comparing the expended external energies with the analytical
dissipated energies governed by the parameter gf . Also, an identical comparison evidences the low
sensitivity of the expended external energy with the length parameter l.

In the second part, sub-Section 4.2, the phase-field approach is studied in combination with
an elasto-plastic model. The propagation of a pre-existent crack in Mode I under the small scale-
yielding assumption is simulated. A detailed analysis is accomplished about the sensitivity of the
material parameters; specifically the relationship between the parameters of the plastic and phase-
field models. A discussion of results is presented. With the present approach, it is concluded that
the regularization parameter of the phase-field model, l, should be reinterpreted in order to capture
the interaction effects between both mechanisms: plasticity and damage. This parameter must not
go to zero. Instead, it has to be considered as a material characteristic length, of finite size, which
should be characterized jointly with the fracture energy.

All solutions in this Section have been obtained assuming plane strain hypothesis.

4.1. Linear elastic fracture problems
The following numerical assessments of the phase-field approach are carried out by using a set of
linear elastic fracture mechanic (LEFM) problems:

i) in Sub-Section 4.1.1-case 1, the phase-field model is validated by comparing results available
in the literature;

ii) in Sub-Section 4.1.1-case 2, the convergence properties of the staggered time-integration
algorithm, proposed in Table 2, is studied.

In both cases (1 and 2) of Sub-Section 4.1.1, several Single Edged Notched Tension (SENT)
tests, undergoing uniform stresses at both edges, are simulated.

iii) in Sub-Sections 4.1.2 and 4.1.3, two specimens are simulated till reaching the complete
loss of the structural loading carrying capacity. In both cases, the dissipated energies are
evaluated and compared with the exact ones obtained in closed form.

These findings provide a better understanding of the results evaluated in the second part (Sub-
Section 4.2) of this Section.

4.1.1. SENT test

Single Edged Notched Tension (SENT) tests under uniform tractions at the upper and lower edges,
as shown in Figure 1-a, are numerically solved using a phase-field approach with the assumption
of linear elastic response in the bulk material. Classical analytical solutions for this problem are
widely reported in standard books of fracture mechanics.
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Case 1: Load estimation at the crack propagation onset

Figure 1 shows the geometry of the specimen and the finite element model that is used to esti-
mate the external load which initiates the crack propagation process. Due to symmetry conditions,
only one half of the specimen (the upper part) is modeled. A finite element mesh with bilinear
quadrilateral elements is used. Note that close to the crack propagation zone, a structured mesh is
adopted with elements of size: (he × he) being he = 0.3125[mm].

b=50.[mm]

a=b/2

L
=

4
b

hehe

x

y

S
Point A

yy

Syy

(a) (b)

FE mesh:
1644 B-BAR elements
1711 nodes

Figure 1: SENT test: geometrical data and mechanical model.

The stress intensity factor at the crack propagation onset for the SENT test, as a function of
the fracture energy, is reported in the book of Gross and Seelig, 2006. From this reference work, it
can be determined the corresponding critical uniform stress (Scrityy ) acting on the upper and lower
specimen edges which initiates the crack propagation process. In the present numerical solutions,
we adopt the crack propagation onset as the time instant when the bottom node in the notch root
reaches a damage value: ϕ > 0.97.

For the geometry depicted in Figure1-a, the critical stress is given by:

Scrityy =
1

B

√
E

1− ν2
gf
2b

; B =
1.762 + 0.37(1− sin (π

4
))3

cos (π
4
)

(87)

Figure 2-a plots the function: Scrityy (gf ) after considering a Young’s modulus: E = 5.5[GPa] and
a Poisson ratios: ν = 0.25. In the same Figure, the finite element numerical solutions are depicted
for three fracture energies: g1f = 1[N/mm], g2f = 5[N/mm] and g3f = 10[N/mm], respectively.
The length parameter l of the phase-field model is defined as: l = 1.2[mm] (≈ 4he), and kc = 10−8.

As can be observed in this Figure, very accurate numerical solutions for estimating the critical
stresses are obtained. A similar conclusion has been reported by Kuhn and Müller [45].
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Figure 2-b plots the loads (per unit of thickness) versus the vertical displacement of the point
A (depicted in Figure 1-b). The critical loads, at the crack propagation onset, are lower than the
structural limit loads. Also, the structural response displays a slight non-linearity before reaching
the limit load. Both effects suggest an inaccurate response obtained for this kind of problem,
confirming that bilinear finite elements have deficiencies to resolve the sharp-crack linear elastic
problem.

(a) (b)
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Figure 2: SENT tests undergoing uniform tractions on the top and bottom edges of the specimen (fracture energies:
g1f = 1.[N/mm]; g2f = 5.[N/mm]; g3f = 10.[N/mm]). a) Critical average stresses (Scrit

yy ) vs. gf , comparison
between analytical and numerical results. b) Total load (per unit of thickness) vs. vertical displacement of Point A.

Case 2: analysis of the integration scheme

The item (3) in Table 2 describes a sub-iteration procedure which increases the time integration
accuracy. The effects on including such sub-iteration procedure in the integration scheme is next
evaluated. The analysis consist of comparing the computational cost versus the solution accuracy
obtained in different instances: using, or not, the sub-iteration procedure.

The simulated SENT specimen is depicted in Figure 3-a. The elastic material is character-
ized with a Young’s modulus E = 50.5[GPa], Poisson ratio ν = 0.40, fracture energy gf =
0.5939[N/m] and length parameter of phase-field model l = 0.05[mm]. One half of the specimen
is modeled with 6679 bilinear quadrilateral finite elements. A structured mesh is used in the region
close to the crack tip, with the finite element size: he = 0.01[mm].

In Figure 3-b, the total load (F) per unit of thickness vs. the vertical displacement of point A
is plotted. This point is located at 2.5[mm] of the upper left corner of the specimen. When this
displacement is considered, the equilibrium path displays a very marked snap-back behavior. Thus,
in order to trace this response, the vertical displacement of the point B (depicted in Figure 3-a and
close to the notch tip) is controlled through the parameter s. Figure 3-c displays the deformed
specimen when the control parameter s has reached the value s = 0.1[mm].

Figure 3-d plots three curves representing numerical errors versus the CPU time required to
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find the solution. Curves in Figure 3-d correspond to MAXiter = 1, 2 and 3, respectively. The
parameter MAXiter defines the number of sub-iterations performed during the time integration
step, see Table 2. The integration scheme does not use sub-iterations when MAXiter = 1. Each
point of the curves is obtained by modifying the value of the control parameter ∆s. Note that,
the smaller is ∆s, the lower is the integration error and the larger is the computational time. All
structural solutions have finished once the control parameter reached the value s =

∑
∆s =

0.1[mm].
The vertical axis of the plots in Figure 3-d corresponds to the logarithmic errors:

log(error) = log

(
W ext −W ext

E

W ext
E

)
which is evaluated as the difference between the total external work (per unit of thickness):

W ext =

∫ (∫ ∆s=0.0001

∆s=0

Syy du(s, x)

)
dx (88)

and the exact external work of comparison,W ext
E . In expression (88), Syy and du(x) are the uniform

stretching stresses and incremental displacements (which increase with the control parameter s)
in the upper edge of the specimen. The x-integration is performed along this edge. While, the
exact external work of comparison W ext

E is evaluated using a numerical solution obtained with an
extremely small increment of the control parameter: ds = 10−5[mm] and MAXiter = 3. In this
case, the total CPU time is 108000.[sec].

From the plots in Figure 3-d, it can be concluded that the better performance of the integration
scheme for identical CPU times is obtained with two sub-iterations per step: MAXiter = 3.

4.1.2. DENT panel test under uniform displacement

In this sub-Section, the numerical solution accuracy for capturing the structural dissipated energy
during a crack propagation problem is studied. A Double-edged notched test (DENT) is solved
assuming linear elastic response. The geometry of the specimen is depicted in Figure 4. Uniform
vertical displacements in the top and bottom edges of the specimen are prescribed.

A symmetric solution of the problem is simulated. Therefore, only one fourth of the specimen
is modeled. A region in the specimen middle, of height equal to 3.[mm], is modeled with a
structured and uniform finite element mesh (see Figure 4-b), with element sizes 1.67he × he. Two
meshes are designed with this criteria: the Mesh 1 has a finite element size: he = 0.1[mm], and the
Mesh 2 has a size he = 0.3[mm]. The material parameters are: Young’s modulus E = 2.5[GPa],
Poisson ratio ν = 0.25, fracture energy gf = 5[N/mm] and kc = 10−9. In general, structural
dissipated energies are influenced by kc when kc > 10−7.

Figure 5-a depicts three plots that show total loads (per unit of thickness) vs. upper edge
vertical displacements. Two of these curves have been obtained with Mesh 1 (l = 1.2[mm] and
l = 2.4[mm]) and the third one with Mesh 2 (l = 1.2[mm]).

A load control scheme has been adopted to obtain these equilibrium curves consisting of the
following procedure. Initially, the list of nodes located just above the crack path is collected (the
direction of the crack path has been estimated beforehand and is the horizontal line coinciding
with the bottom edge of the finite element model. Then, in every time step and from that list, it is
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Figure 4: DENT panel test undergoing uniform displacements in the top and bottom edges. a) Geometrical data. b)
Mechanical model and finite element mesh in the crack propagation region.

selected the node that has shown the maximum incremental vertical displacement. In the following
time step, a displacement increment ∆s is prescribed in that node.

This test provides a clue about the capability of the numerical methodology to capture the
total energy dissipated during the structural failure process. Due to the elastic bulk response, and
considering a unit specimen thickness, the exact total dissipated energy for the symmetric solution
is gf (b − 2a) = 125[Nmm]. With the present numerical model, only the half of this energy
(62.5[Nmm]) is estimated because the upper part of the specimen is simulated.

The areas enclosed by the plots in Figure 5 represent half of the external work expended to
produce the complete structural failure. Due to the elastic response of the material, these quantities
are equivalent to the energy D dissipated by the fracture propagation process across the specimen.
Table 3 shows the expended external work obtained with both meshes (Mesh 1 and Mesh 2) and
three different length parameters (l = 1.2[mm], l = 1.8[mm] and l = 2.4[mm]). The figures in
parenthesis give the overestimation (in percent) of the numerically evaluated external work respect
to the exact value that is expected from the crack propagation process (62.5[Nmm]). Observe the
slow convergence rate obtained with mesh refinement. Once again, this poor response evidences
the difficulty that bilinear finite elements have in order to resolve the sharp-crack limit solution.

Additional discussion of these results are presented in the next sub-Section.

l = 1.2[mm] l = 1.8[mm] l = 2.4[mm]
Mesh 1 72.5 [Nmm] 72.7 [Nmm] 73.0 [Nmm]

he = 0.1[mm] (16%) (16%) (16%)
Mesh 2 83.0 [Nmm] 78.6 [Nmm] 77.3 [Nmm]

he = 0.3[mm] (32%) (25%) (23%)

Table 3: DENT panel test under uniform displacement. External expended work to produce the complete structural
failure.

Figure 6 displays the damage distribution along the vertical line, close to the initial crack tip,
which is denoted y-y’ (see the insert in Figure 6). The results corresponds to Mesh 1, l = 2.4[mm].
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Several plots displaying the evolution of damage are depicted in this Figure. Each plot corresponds
to a different load stage which are marked with points in the structural response plot inserted in
Figure 6-a.

In the plots of Figure 6-a, it can be observed that, as the structural loading proceeds, the damage
evolution displays a monotonous increase: ∆ϕ(x) ≥ 0, satisfying the phase-field model constraint:
ϕ̇ ≈ ∆ϕ(x) ≥ 0. This property is observed for every point x along the line y-y’ and for every
time.

Figure 6-b shows additionally a very important feature which is characteristic of the phase-
field model. The damage distributions along the vertical line y-y’ in stages F and G are plotted in
Figure 6-b. Both results have been taken from a completely degraded specimen while the crack is
opening. The plots are almost indistinguishable. Therefore, although the crack opens continuously
and strains tend to infinity in the localization zone, damage stops to progress in its vicinity. This
conclusion, jointly with the response observed in the deformed specimens of Figures 3-c, 7-b and
9-a, allow us to conclude that the phase-field model correctly represents strain localization bands
leading to strong discontinuity solutions.

This feature, which is additionally discussed in the following Sections, is not shared by some
damage gradient models such as that presented in Peerlings et al. [46] (see additional details in
Appendix II).

(a) (b)

Figure 7: DENT panel test under uniform displacement. (a) Damage distribution (Mesh 1, l = 2.4[mm]. (b) Deformed
meshes. (Figures are depicted from top to bottom for the following vertical displacement at the upper edge: 0.20[mm],
0.44[mm], 0.50[mm] and 0.82[mm], respectively.

Figure 7-a shows a series of pictures displaying the distribution of damage at different loading
stages. Also, Figure 7-b shows the deformed meshes at the same stages. Again, the last picture in
Figure 7-b reflects the capability of the model to capture a strong discontinuity solution.
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4.1.3. Single-Edge Notched Bending (SENB) test

The SENB test displayed in Figure 8 is simulated and the total structural dissipated energy is
analyzed.

Identical material parameters described in the previous Sub-Section 4.1.2 are adopted: Young’s
modulus E = 2.5[GPa], Poisson ratio ν = 0.25 and fracture energy gf = 5.[N/mm]. Due to the
problem symmetry, one half of the beam is modeled. The specimen geometry is depicted in Figure
8. The beam sizes are such that the analyzed domain is identical to that defined for the SENT test
in the previous Sub-Section 4.1.2. Then, absolute finite element sizes and phase-field characteristic
lengths are comparable in both tests (SENT and SENB). Similar to previous cases, the size of the
notch is given by he.
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Figure 8: SENB test. (a) Geometry. (b) Load. vs. displacement curve.

The results have been obtained with three meshes. They have been designed with the same
mesh refinement criteria as that adopted in Sub-Section 4.1.2. Mesh 1 and Mesh 2 coincide with
the previous ones defined there (finite element sizes he = 0.1[mm] and he = 0.3[mm], respectively,
in the region close to the crack tip), and Mesh A has finite element sizes he = 0.05[mm] in the
same region.

Figure 8-b shows half of the load vs. vertical displacement of the load application point. The
crack opening is controlled during the loading process imposing a similar strategy to that defined
for the previous SENT test.

Figure 9-a depicts the deformed mesh and Figure 9-b the distribution of damage. Both results
have been obtained at the end of analysis. Again in this case and once the material completely
loses the loading carrying capacity, the deformed mesh shows a solution being compatible with a
strong discontinuity kinematics.

Figure 10 depicts the distribution of damage. Only values having ϕ ≤ 0.01 are shown. Figure
10-a corresponds to the SENB test with l = 2.4[mm], at the initial stage of analysis, while Figure
10-b displays the solution at the end of analysis. Figure 10-c plots the ϕ−distribution, at the initial
stage, when the Poisson’s ratio ν = 0. Comparing Figures 10-a and c in the zone we have denoted
with A, we find that using ν = 0. a uniaxial negative strain in the horizontal direction (uniaxial
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compressive stress) is obtained. Alternatively, with ν = 0.25, a biaxial strain is computed in that
zone, being the larger principal strain in the horizontal direction negative, but a small positive
strain (with vertical component (Ee)yy) is also computed. The positive component (Ee)yy is the
responsible for producing an increase (even small) of ϕ. With this analysis, we remark that the
strain triaxiality effects are included in the evolution of the damage model. This issue is relevant
because it plays an important role when crack propagation problems are evaluated in ductile metals.

Table 4 shows the overestimation, in percent, of the total expended work to achieve the com-
plete structural failure. In this case, the theoretical expended work is 62.5[N/mm].

l = 0.9[mm] l = 1.2[mm] l = 1.8[mm] l = 2.4[mm]
Mesh A

he = 0.05[mm] 8.6% 7.8% 7.2% 6.8%
Mesh 1

he = 0.1[mm] 11.8% 9.5% 7.8% 7.3%
Mesh 2

he = 0.3[mm] — 25.1% 17.6% 14.3%

Table 4: SENB test. Percentage of overestimation of the simulated external work to produce complete structural failure
respect to the exact value.

After evaluating the total dissipated energy in both tests, DENT and SENB, the following
conclusions can be pointed out:

i) The overestimation of the dissipated energy is notably high, even when fine meshes and
controlled loading increment techniques are used. Thus, bilinear quadrilateral finite elements
show a very slow convergence rate with mesh refinement;

ii) From the authors’ experience, acceptable results can be obtained with meshes having finite
element sizes he smaller than 0.2l, even better if he ≤ 0.1l. From this conclusion, the result
corresponding to Mesh 2, l = 1.2[mm] could be considered as not reliable;

iii) It has not been possible to evaluate, with acceptable confidence, the dissipated energy sensi-
tivity with respect to the parameter l.

4.2. Mode I crack growth analysis under small-scale yielding conditions
The numerical model developed previously to study the growth of a preexisting crack in an elastic-
plastic body under plane strain mode I loading is here applied. Our purpose is twofold:

• To investigate the effect of the material parameters, namely the elastic-plastic parameters E,
ν, σy and n, and the phase-field parameters gf and l, on the fracture toughness.

• To study the nature of crack extension.

Towards this end, a circular region of the body containing the crack (a modified boundary layer) is
considered, as illustrated in Figure 11-a. The boundary conditions are inferred from the solution
of linear fracture mechanics. To guarantee the validity of this boundary condition, which involves
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Figure 10: SENB test and sensitivity of strain triaxiality. Damage distribution. Values with ϕ > 0.01 have been
removed from the pictures. (a) At the initial stage, before reaching the structural limit point (ν = 0.25). (b) At the end
of analysis (ν = 0.25). (c) At the initial stage, before reaching the structural limit point (ν = 0.).

the stress intensity factor KI , the plastic and process zones developed around the crack tip remain
small relative to the size of the circular region.

As the outcome of careful numerical simulations, the present model predicts, inter alia, that:

• For given E, ν, σy, n and gf , fracture toughness, here denoted KSS and being the maximum
KI-value attained up to initiation of crack growth, increases as l decreases. In particular, the
simulation indicates that there is a critical value of l, say lc, such that KSS → ∞ as l → lc.
Thus, if l ≤ lc the theory predicts that crack expansion is impossible no matter the load level.
Therefore, to describe crack expansion, a finite value of l greater than lc must be taken. This
value of l can be estimated provided the experimental value for KSS is known.

• In some cases, the advance of the pre-existent crack involves the following steps: 1) forma-
tion of a new crack ahead the original crack tip; 2) propagation of the new crack towards,
and also away, the tip of the original crack; 3) extension of original crack when its tip is
reached by the new crack. This implies the crack extension can occur in a discontinuous
manner. This mechanism has been invoked for explaining brittle fracture in elastic-plastic
solids (c.f. Tetelman and McEvily [31]; Kfouri [32]; Kfouri and Miller [33]; Ritchie et al.
[23]). Interestingly, this effect is captured even using a small strain deformation theory.

4.2.1. Mechanical model

The geometrical description of the test and finite element model are displayed in Figure 11. Due
to the problem symmetry, only one half (the upper part) of the domain is modeled. A structured
mesh of BBAR finite elements of size (he × he) are used in the vicinity of the crack tip, see Figure
11-b. The structured mesh extends over a domain of size: 90he × 40he around the crack tip. The
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finite element size is: he = 40.[µm]. Note that the complete geometry of the problem, including
the notch size, is parametrized with he.

Displacements, defined by the K-field around a sharp crack loaded in mode I, are prescribed
on the far boundary A−B − C. They are given by:

ux =
2(1 + ν)KI

E

√
r

2π
cos(θ/2)

[
1− 2 ν + sin2(θ/2)

]
(89)

uy =
2(1 + ν)KI

E

√
r

2π
sin(θ/2)

[
2− 2 ν − cos2(θ/2)

]
(90)

with (r, θ) being the polar coordinates of the boundary points and KI is the stress intensity factor.
The coordinate system is centered in the crack tip. The displacements of boundary C − D are
prescribed to satisfy symmetry conditions.

The initial value and boundary conditions imposed on the phase field are: ϕ = 0 on the com-
plete domain,∇ϕ · n = 0 on the boundary D − A−B − C.
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Figure 11: Mode I crack growth. (a) Geometry data. (b) Finite element model.

In the following simulations, the far boundary conditions are prescribed by controlling the
crack mouth opening displacement through the parameter ∆s, as shown in Figure 13-a.

Material parameters: the yield stress is taken: σy = 10[MPa], the ratio between Young’s mod-
ulus and yield stress is E/σy = 333.3, Poisson’s ratio: ν = 0.3. The strain hardening exponent
n changes according to the analyzed cases. The material parameters of the phase-field model are
defined in the following.

4.2.2. Plasticity and phase-field models: analysis of the interaction effects

According to Tvergaard and Hutchinson [47], the two most important adimensional parameters
governing the interaction effects between the mechanisms of crack separation and plastic deforma-
tion, are:

i) the ratio σ̂/σy, where σ̂ is the critical traction of the crack separation mechanism, i.e.
the maximum traction of the traction-separation law describing the cohesive forces acting
through the crack surfaces; and σy is the yield stress of the plastic model;
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ii) the strain hardening exponent n of the plastic model.

The phase-field model has not an explicit parameter identifying the critical traction σ̂. However,
it can be estimated through the parameters gf and l as follows. First, a uniaxial (one-dimensional)
homogeneous elastic phase-field problem is analytically solved. The equations governing this
problem are the momentum balance equations (TI-1), the phase-field equation (TI-2) and the con-
stitutive equation (TI-3) (with Ee = E) described in Table 1. Due to the assumed homogeneity, all
gradients are zero (∇ϕ = ∆ϕ = 0). Then, the result of this problem, reported in Ciarbonetti et al.
[48] and Borden et al. [49], provides stress-strain responses like those plotted in Figure 12. They
are plotted for several fracture energies and length parameters. Finally, the maximum stress values
of those responses, and the corresponding strains, are given by the following equations:

σ̂ =
3
√

3

16

√
gfE

l
; ε̂ =

1√
3

√
gf
lE

(91)

Note that, due to the assumed spatial homogeneity of the 1-D problem, the response given by
equation (91) is highly idealized and artificial because strain localization is precluded, and thus, it
does not represent any possible physical solution of a crack problem. Therefore, the area enclosed
by the curves in Figure 12, a density of energy per unit of volume uniformly distributed in the 1D
domain, is not related with the parameter gf .

In any case, expression (91)-a allows to estimate σ̂ as a suitable, but crude, assessment of the
separation critical stress value provided by the phase-field model. Note the similarity between (91)
and the classical expression of the Irwin’s charactersitic lenght given in (92).

Characterization of interaction effects through the parameter gf

Similar to the analysis reported in Tvergaard and Hutchinson [47] using a cohesive model, the
crack growth resistance provided by the joint interacting models of plasticity and phase-field is
next analyzed. This study takes the parameters gf and n as two variables, while holding fixed l, E
and σy. Instead of considering l → 0, as would be required for recovering the sharp-crack limit
theory in elastic solids, we fix l with a not null value, being: l = 400[µm] = 10he. The reason of
adopting this decision are given in the present analysis, where we show that l must be reinterpreted
as a material parameter.

The fracture energy gf defines the critical stresses σ̂(gf ) through equation (91). Once σ̂(gf )
and n are given, the analysis of the fracture toughness of the propagating crack is evaluated. In the
following analysis, we have varied the parameter gf .

Note that, considering the plastic parameters for this case, the classical estimation of the refer-
ence plastic zone size (Irwin’s characteristic length) is:

R0 =
1

3π(1− ν2)
gfE

σ2
y

(92)

Considering fracture energies ranging from gf = [0.116, 1.024][N/mm], the corresponding range
of σ̂(gf )/σy and R0 are: σ̂(gf )/σy = [1, 3] and R0 = [450, 3970.][µm]. Then, from these figures,
the notch tip of the numerical model has an initial width, ranging from 2he = 0.18R0 (for the ratio
σ̂/σy = 1) to 2he = 0.02R0 (for the ratio σ̂/σy = 3). We can conclude that, for high fracture
energies, the numerical model satisfies the sharp crack assumption.
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Figure 12: Phase-field model critical stress value as a function of gf [N/mm] and l[mm], for a homogeneous one-
dimensional problem.

Finally, notice that the ratio σ̂/σy, governing the interaction effects between the phase-field
model and plasticity, is proportional to

√
R0/l. So, the following discussion given in terms of the

former could be rephrased in terms of the later.

Results obtained with the numerical model

Figure 13 displays results obtained with the parameters n = 0 (perfect plasticity) and gf =
0.328[N/mm] (σ̂(gf )/σy = 1.7).

Figure 13-b plots the vertical displacement uTy of point T (see Figure 13-a) vs. control param-
eter ∆s (i.e. the crack mouth opening displacement) normalized with he. In the inserts of the same
Figure (Figure 13-c:f) are displayed the evolution of damage ϕ, with ϕ > 0.97. Arbitrarily, we
consider that points with ϕ > 0.97 represents the crack. Every picture is in correspondence with a
point identified in the equilibrium curve: uTy vs. ∆s/he.

Figure 13-g plots the vertical tensile stress (Syy) normalized with the yield stress along the
horizontal symmetry x-axis. A sequence of plots are depicted while the maximum damage value
remains below to 0.97. The plot denoted D coincides with the instant of crack initiation. Note
that the position of the crack initiation point does not coincide with the maximum tensile stress
point along the x-axis. But, it is located in the elastic/plastic interface, as shown in Figure 13-c.
Also with low damage values (plot A), note that the point with maximum tensile stress is located
in the notch tip. But, with higher loads (plots B and C), the point with maximum tensile stress
changes toward the interior of the body. Similar responses have been reported in classical elasto
plastic solutions for crack propagation (c.f. McMeecking [50], Ritchie et al. [23]). Those studies
necessarily took into account geometry changes of the root notch. Here, we assume that the finite
width notch root geometry has not changed in the analysis.

After the crack initiates, the crack expands in both directions along the horizontal axis. Also, it
is noted that the crack initiates when the vertical displacement uTy has decreased from the maximum
value ((uTy )max) obtained in previous loading steps. Not in all cases the crack initiates in the interior
of the body. In a few cases, the crack starts to propagate from the notch root.
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The stress intensity factor KI is determined from (uTy ) and equation (90). Figure 14 displays
two curves of KI versus the crack mouth opening ∆s. They are defined for n = 0., σ̂/σy = 0.5
and n = 0.2, σ̂/σy = 3, respectively. In those plots, the stress intensity factor KI is normalized
with the fracture toughness in the absence of plasticity: K0 = (Egf )/(1− ν2). The horizontal
axis corresponds to the crack mouth opening displacement, ∆s, normalized with he. We recall that
the steady-state material toughness KSS is defined as: KSS = KI((u

T
y )max). In other words, KSS

is the maximum value of KI attained during crack propagation.
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Figure 14: Mode I crack growth. Normalized KI vs. crack opening displacements. a) n = 0.0, σ̂/σy = 0.5. b)
n = 0.2, σ̂/σy = 3.0.

Figure 15 displays the set of results obtained with different values of the ratio σ̂(gf )/σy and
taking n = 0 and n = 0.2, respectively. The vertical axis corresponds to the steady-state toughness
KSS normalized with K0. The abscissa represents the ratio σ̂(gf )/σy. Comparing the responses
displayed by both curves with the results presented in the paper of Tvergaard and Hutchinson, we
conclude that the phase field model interacts with the plastic model in a similar way as the cohesive
model does, under the condition that l stay fixed.

4.2.3. Discussion of results

The results obtained with perfect plasticity (n = 0) and σ̂/σy > 2 do not display crack propa-
gation even considering the effect introduced by the phase-field model. A vertical asymptote for
these responses is observed close to σ̂/σy = 2. In all cases satisfying σ̂/σy > 2, the maximum cal-
culated value for damage, in the complete problem domain, remains low (ϕ < 0.2). The classical
blunted notch response without crack surface separation is captured. In the work of Tvergaard and
Hutchinson, a similar asymptotic value is obtained for σ̂/σy = 3, which agrees with theoretical
predictions. The difference for capturing the asymptotic value between both models lies on the
fact that σ̂, in the phase-field model, represents a crude estimation of the separation critical stress.
A similar tendency to capture a blunted notch without crack formation is observed when the strain
hardening exponent is nonzero (n = 0.2) and gf →∞.

Alternatively, the elastic sharp crack limit response is reached when plasticity is not devel-
oped. This happens if the phase-field model limits the stresses to be lower than σy. According
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with equation (91), the maximum stress of the phase-field model can be estimated through σ̂.
Thus, if the parameter l is fixed and nonzero, the sharp-crack elastic limit solution is achieved
when gf → 0. As observed in Figure 15, this limit is reached when: σ̂/σy → 0. Note that the
limit value KSS/K0 = 1 is only approximately captured by the model. From the tests presented
in sub-Sections 4.1.2 and 4.1.3, we know that very refined finite element meshes are needed to
approximate accurately the dissipated energy in the sharp-crack elastic limit solution (and thus,
reaching the limit KSS/K0 = 1).

Consider now the case l → 0 while holding fixed the remaining parameters. As it is known,
by taking a purely elastic response without plasticity, the model asymptotically tends to the sharp
crack solution of the linear elastic fracture mechanics theory. However, when the phase-field is
coupled with a plastic model, with l → 0 and gf staying fixed, σ̂ → ∞, as shown by equation
(91). Thus, the criterion for crack activation is never achieved. And the blunted notch solution is
unavoidably captured. This happens even taking n > 0.

From this observation, it is concluded that the length l has to be taken as a material non-null
parameter which, together with gf and the plastic model parameters, must be properly character-
ized. The fact of considering two parameters defining the phase-field model is equivalent to what
happens with cohesive approaches, where two parameters must be empirically defined, such as the
critical stress separation and fracture energy.

5. Conclusions
In the first part of this paper, we formulated a phase-field theory of fracture in elastic-plastic solids
under small strains, where a scalar damage variable is introduced and treated as an independent
kinematical descriptor. The governing equations of the theory are obtained by combining the force
balances, introduced via the principle of virtual power, and a thermodynamically consistent consti-

36



tutive theory that allows for general coupling between elasticity, classical plasticity and damage. A
special version of the theory suitable to the description of rate-independent plasticity and damage
is presented. The phase-field model combined with plasticity is suitable to analyze the role played
by plastic deformations during the surface separation phenomena observed in crack propagation
problems.

In the second part of this work, the finite element formulation is presented and several numeri-
cal assessments are performed. From the studied tests, some conclusions can be drawn, which are
listed in the following items:

i) When phase-field models are coupled with plasticity, the length scale l has to be reinter-
preted. Thus, aside from the plastic parameters, the phase-field model has to be characterized
through two parameters: the fracture energy gf and the length scale parameter l. Alterna-
tively, and equivalently to cohesive models, instead of taking l, the critical stress σ̂ of the
crack separation phenomena can be adopted as the parameter to be characterized, while l is
estimated through equation (91)-a.

ii) Similar to cohesive approaches, the present phase-field model is able to capture solutions
displaying strain localization bands leading to strong discontinuity kinematics. This property
has been highlighted in the numerical solutions presented in Section 4. The reader is referred
to Appendix II for additional comments related to this topic.

iii) Different from cohesive approaches, the phase-field model takes into account the strain tri-
axiallity to determine the stresses across the surface where the crack is processing. As can
be seen from the phase-field equation (12), the evolution of the phase field variable depends
on the elastic energy, which in turn, depends on the strain triaxility. Instead, cohesive mod-
els lack of this dependence. This conclusion is an extremly important issue when ductile
fracture problems are simulated.

Finally, from a numerical point of view, an important issue related to finite element technolo-
gies has to be remarked. The crack path determined with a phase-field model is automatically
detected, once the variable ϕ has been evaluated. The path can arbitrarily intersect the finite ele-
ment mesh. A major deficiency is related to the computational cost, because the model provides
accurate solution only by taking very fine meshes. The finite elements have to be small enough, as
small as the order of the parameter l.
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Appendix I: Sketch to demonstrate the equivalence between phase-field equa-
tions (56) and (69)

We have not a formal proof of the equivalence between equations (56) and (69). However, under
mild assumptions, we can sketch partial proofs showing that solution of equation (69) satisfies
some basic requirements placed by the phase-field equations. Furthermore, numerical experiments
have shown results coherent with the statements below.

• Statement 1

Consider a body B undergoing a damage process driven by h := ψ̂+
e (Ee). Then, under

mild assumption, the phase-field equation satisfies:

a) ϕ(t) = ϕ(t0) for all t ∈ (t0, t1) provided that h(s) ≤ h(t0) for all s ∈ (t0, t).

b) h(t) > h(s) for all s ∈ (t0, t) implies that ϕ̇(t) 6= 0.

• Statement 2

(valid for an infinite domain with ϕ = 0 for x→∞ and assuming lH/gf � 1)

Given equation (69) and: Ḣ(x) > 0 ⇒ ϕ̇ ≥ 0 in all B.

Proof of Statement 1

From (56) and (TI-4), it follows that ϕ and πr obey

πr ≤ 0, πr = 2(1− ϕ)h− gf
l

(ϕ− l24ϕ). (AI-1)

We intend to discuss some features of the solutions of (AI-1) for a given driving force history h.
Before doing that, we make the following remark:

• Suppose that ((πr)1, ϕ1, h1) and ((πr)2, ϕ2, h2) satisfy (AI-1). Then, a single calculation
shows that the condition ϕ1 = ϕ2 in a vicinity of an arbitrary point of B implies that

h2 ≤ h1 −
(πr)1

2(1− ϕ1)
(AI-2)

in that vicinity. Equivalently, if the condition

h2 > h1 −
(πr)1

2(1− ϕ1)
(AI-3)

holds in a vicinity of an arbitrary point of B, then ϕ1 6= ϕ2 in that vicinity.
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We now return to discussion related to the evolution of ϕ in an vicinity of an arbitrary point of
B during a process starting at t = t0 and ending at t = t1. Suppose that ϕ, πr and h are known
at t0 , which are respectively given by ϕ(t0), πr(t0) ≡ 0 and h(t0), and that h is prescribed in the
interval (t0, t1). All the quantities are assumed to be smooth. Under these conditions, Statement
1 follows from remarks leading to (AI-2) and (AI-3). Statement 1, by its turn, suggests that (69)
holds in the interval (t0, t1).

Proof of Statement 2

Consider an infinite domain in R3 which is denoted B, and define the problem:

FH = 2(1− ϕH)H(x, t)− gf
l

(ϕH − l24ϕH) = 0; in B

H(x, t) = max
s

ψ̂+
e (x, s), s ∈ [0, t]

ϕH = 0 for x→∞;

(AI-4)

where H(x, t) satisfies: Ḣ(x, t) ≥ 0. After assuming that the parameter l is very small, and such
that:

lH
gf
� 1 (AI-5)

equation (AI-4) can be rewritten in rates as follows:

4 ˙̂ϕ− 1

l2
˙̂ϕ = −χ(x, t);

χ(x, t) = 2
(1− ϕ̂)

lgf
Ḣ ≥ 0

˙̂ϕ = 0 for x→∞;

(AI-6)

Equation (AI-6) is a linear differential equation (Screened Poisson Equation) which solution
can be found through the integral:

˙̂ϕ(x, t) =

∫
B
G(x− x0)χ(x0, t)dv (AI-7)

where G(x−x0) is the Green’s function of the problem (AI-6) with the right hand side term being
replaced by: χ(x, t) = δ(x0) (δ(x0) is the Dirac’s delta function). In R3:

G(x) =
1

4πx
e−x/l

2

; x = |x|; (AI-8)

Since: G ≥ 0 and χ(x0, t) ≥ 0 in all B and t ∈ [0, tf ], we conclude that:

˙̂ϕ ≥ 0; in B; t ∈ [0, tf ]; (AI-9)
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Appendix II: Comparative analysis for modeling strong discontinuities with
phase-field versus a specific class of gradient damage model

In this Appendix we elaborate a brief discussion excluding plasticity effects, comparing the present
phase-field model with the so-called implicit damage-gradient model reported by Peerlings et al.
[46]. This implicit damage-gradient model can be considered as a specific class of gradient damage
models.

The point here discussed raises important implications for the numerical modeling of fracture,
and is specifically addressed to compare the intrinsic capability for modeling Traction free Strong
Discontinuities within a continuum setting. Rigorous analysis is not pursued. But, the attention
is emphasized on a physical interpretation of the additional terms in the Screened Poisson-type
equation describing the damage distribution, as well as in the authors’ numerical experience using
them.
Similar to the phase-field model for fracture adopted in this contribution, the implicit damage-
gradient model of Peerlings et al. postulates that the mechanical problem can be stated in terms
of two independent variables {u, ε̃eq}, where u is the displacement vector field and ε̃eq is an
equivalent “non-local” strain measure. The variable ε̃eq is a function of the “local” equivalent
strain counterpart εeq(u) := 1/2

(
λ 〈 trE〉2 + 2µE : E

)
, defined through the following Screened

Poisson-type differential equation (which is written in rates):

l̂2

2
∆ ˙̃εeq − ˙̃εeq = −

Ḟ dg
driving≥0︷ ︸︸ ︷
ε̇eq(u) inB ; ∇ ˙̃εeq · n = 0 in ∂B; (AII-1)

where l̂ is a length scale parameter. In this gradient-based formulation the damage variable depends
on ε̃eq.

For comparison purposes, the Screened Poisson-type equation for the phase-field model is
additionally re-written (in rates) as follows:

l2 ∆ ϕ̇− ϕ̇ = −
(

2l

gf

˙
(1− ϕ)H(u)

)
inB ; ∇ϕ̇ · n = 0 in ∂B; (AII-2)

and therefore:

l2 ∆ ϕ̇−
(
1 +

2lH(u)

gf

)
ϕ̇ = −

Ḟ pf
driving≥0︷ ︸︸ ︷

2l

gf
(1− ϕ)

˙H(u) inB ; ∇ϕ̇ · n = 0 in ∂B; (AII-3)

The right-hand sides of (AII-1) and (AII-3), denoted as Ḟ dg
driving and Ḟ pf

driving, represent the rate
driving forces for the implicit-damage-gradient and the phase-field models, respectively. Note that
both approaches share similar mathematical structure incorporating a length scale parameter, l̂ and
l, respectively.

However, some important differences can be marked. Strong discontinuity kinematics is char-
acterized by a singular strain on the crack, here denoted S. Due to this singular kinematics, both
terms, εeq(u) andH(u) in the right-hand side of (AII-1) and (AII-3), tend to infinity on S. Notice
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however that since ϕ grows to 1 on S, the total rate driving force of the phase-field model, Ḟ pf
driving,

goes to zero as a direct consequence of the quadratic form, in the term (1−ϕ), assumed in the def-
inition of the elastic free energy density ψ̂e, see equation (59). On the crack, the variable ϕ reaches
the maximum value (ϕ = 1) and stop to grow, and Ḟ pf

driving = 0. Thus a real traction free bound-
ary is captured using the phase-field model in total correspondence with the strong discontinuity
model.

Alternatively, the rate driving force of the gradient-based formulation, Ḟ dg
driving, remains almost

singular, and therefore the non-local strain ε̃eq grows unbounded. The damage variable increase
until reaching the maximum value, 1, however due to the characteristic evolution of Ḟ dg

driving, dam-
age can be spuriously spread from the crack to the surrounding medium. The spurious transference
of damage introduces numerical difficulties for capturing a strong discontinuity kinematics. A fi-
nite zone around the crack, involving several finite elements in the discrete model, can reach total
degradation. Thus, strong discontinuity regimes can not be properly modeled in the implicit con-
tinuum damage-gradient environment. Solutions to this issue have been proposed in the literature
(c.f. Comi et al. [51]).

Using the present phase-field model, the authors have not detected this kind of numerical diffi-
culties. Particularly, see the results in Figure 6.
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