
PVMC: Programmable Vector Memory Controller

Tassadaq Hussain1,2, Oscar Palomar1,2, Osman Unsal1, Adrian Cristal1,2,3, Eduard Ayguadé1,2, Mateo Valero1,2
1 Computer Sciences, Barcelona Supercomputing Center, Barcelona, Spain

2 Departament d’Arquitectura de Computadors, Universitat Politècnica de Catalunya, Barcelona, Spain
3 Artificial Intelligence Research Institute (IIIA), Centro Superior de Investigaciones Cientı́ficas (CSIC), Barcelona, Spain

Email: {first}.{last}@bsc.es

Abstract—In this work, we propose a Programmable Vector
Memory Controller (PVMC), which boosts noncontiguous vector
data accesses by integrating descriptors of memory patterns, a
specialized local memory, a memory manager in hardware, and
multiple DRAM controllers. We implemented and validated the
proposed system on an Altera DE4 FPGA board. We compare
the performance of our proposal with a vector system without
PVMC as well as a scalar only system. When compared with a
baseline vector system, the results show that the PVMC system
transfers data sets up to 2.2x to 14.9x faster, achieves between
2.16x to 3.18x of speedup for 5 applications and consumes 2.56
to 4.04 times less energy.

I. INTRODUCTION

Data Level Parallel (DLP) accelerators such as GPUs [1]
and Vectors [2], [3], [4], are getting popular due to their high
performance per area. DLP accelerators are very efficient for
HPC scientific applications because they can simultaneously
process multiple data elements with a single instruction. Due to
the reduced number of instructions, the Single Instruction Mul-
tiple Data (SIMD) architectures decrease the fetch and decode
bandwidth and exploit DLP for data intensive applications i.e.
matrix & media oriented, etc. While hard-core architectures
offer excellent packaging and communication advantages, a
soft vector core on FPGA offers the advantage of flexibility
and lower part costs. A soft vector architecture is very efficient
for HPC applications, because it can be scaled depending
upon the required performance and available FPGA resources.
Therefore a number of FPGA based soft vector processors have
been proposed [5] [6]. A soft vector unit typically comprises a
parameterized number of vector lanes, a vector register file, a
vector memory unit and a crossbar network that shuffles vector
operands.

Typically, the vector processor is attached to a cache
memory that manages data access instructions. In addition,
the vector processors support a wide range of vector memory
instructions that can describe different memory access patterns.
To access strided and indexed memory patterns the vector
processor needs a memory controller that transfers data with
high bandwidth. The conventional vector memory unit incurs
in delays while transferring data to the vector processor from
local memory using a complex crossbar and bringing data
into the local memory by reading from DDR SDRAM. To
get maximum performance and to maintain the parallelism of
HPC applications [7] on vector processors, an efficient memory
controller is required that improves the on/off-chip bandwidth
and feeds complex data patterns to processing elements by
hiding the latency of DDR SDRAM.

In this paper we propose a programmable vector memory
controller (PVMC) that efficiently accesses complex memory

The research leading to these results has received funding from the European
Research Council under the European Unions 7th FP (FP/2007-2013) / ERC
GA n. 321253. It has been partially funded by the Spanish Government
(TIN2012-34557).

patterns using a variety of memory access instructions. The
PVMC manages memory access patterns in hardware thus
improves the system performance by prefetching complex
access patterns in parallel with computation and by transferring
them to the vector processor without using a complex crossbar
network. This allows a PVMC-based vector system to operate
at higher clock frequencies. The PVMC includes a special-
ized memory unit that holds complex patterns and efficiently
accesses, reuses, aligns and feeds data to a vector processor.
PVMC supports multiple data buses that increase the local
memory bandwidth and reduce on-chip bus switching. The
design uses a Multi DRAM Access Unit that manages memory
accesses of multiple SDRAM modules.

We integrate the proposed system with an open source soft
vector processor, VESPA [5] and used an Altera Stratix IV 230
FPGA device. We compare the performance of the system with
vector and scalar processors without PVMC. When compared
with the baseline vector system, the results show that the
PVMC system transfers data sets up to 2.2x to 14.9x faster,
achieves between 2.16x to 3.18x of speedup for 5 applications
and consumes 2.56 to 4.04 times less energy.

II. VECTOR PROCESSOR

A vector processor is also known as a “single instruction,
multiple data” (SIMD) CPU [8], that can operate on an array of
data in a pipelined fashion, one element at a time using a single
instruction. For higher performance multiple vector lanes (VL)
can be used to operate in lock-step on several elements of
the vector in parallel. The structure of a vector processor is
shown in Figure 1(a). The number of vector lanes determines
the number of ALUs and elements that can be processed
in parallel. The maximum vector length (MVL) determines
the capacity of the vector register files (RF). Increasing the
MVL allows a single vector instruction to encapsulate more
parallel operations, but also increases the vector register file
size. The vector processor uses a scalar core for all control
flow, branches, stack, heap, and input/output ports.

Modern vector memory units use local memories (cache
or scratchpad) and transfer data between the main memory
and the VLs. The vector system has memory instructions for
describing consecutive, strided, and indexed memory access
patterns. The index memory patterns can be used to perform
scatter/gather operations. A scalar core is used to initialize
the control registers that hold parameters of vector memory
instructions such as the base address or the stride. The memory
crossbar (MC) is used to route each byte of the cache line
(CL) accessed simultaneously to any lane. The vector memory
unit can take requests from each VL and transfers one CL
at a time. Several MCs can be used to process memory
requests concurrently. The memory unit of the vector system
first computes and loads the requested address in the Memory
Queue (MQ) for each lane and then transfers the data to the
lanes. If the number of switches in the MC is smaller than

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new 
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works



(a) (b)
Fig. 1. (a) Generic Vector Processor (b) PVMC: Vector System

the number of lanes, this process will take several cycles.
Vector chaining [9] sends the output of a vector instruction to a
dependent vector instruction, bypassing the vector register file,
thus avoiding serialization, thus allowing multiple dependent
vector instructions to execute simultaneously. Vector chaining
can be combined with increasing the number of VLs. It re-
quires available functional units; having a large MVL improves
the impact on performance of vector chaining. When a loop is
vectorized and the original loop count is larger than the MVL,
a technique called strip-mining is applied [10]. The body of
the strip-mined vectorized loop operates on blocks of MVL
elements.

III. PROGRAMMABLE VECTOR MEMORY CONTROLLER

The Programmable Vector Memory Controller (PVMC)
architecture is shown on Figure 1(b), including the intercon-
nection with the vector lanes and the main memory. PVMC
is divided into the Bus System, the Memory Hierarchy, the
Memory Manager and the Multi DRAM Access Unit. The
Bus System transfers control information, address and data
between processing and memory components. The Memory
Hierarchy includes the descriptor memory, the buffer mem-
ory, the specialized memory, and the main memory. The
descriptor memory is used to hold data transfer information
while the rest keep data. Depending upon the data transfer
the Address Manager takes single or multiple instructions
from the descriptor memory and transfers a complex data
set to/from the specialized memory and main memory. The
Data Manager performs on-chip data alignment and reuse. The
Multi DRAM Access Unit reads/writes data from/to multiple
SDRAM modules using several SDRAM controllers.

A. Bus System

As the number of processing cores and the capacity of
memory components increase the system requires a high speed
bus interconnection network that connects the processor cores
and memory modules [11]. The bus system includes the status
bus, the control bus, the address bus and the data bus.

The status bus holds signals of multiple sources that indi-
cate data transfer requests, acknowledgement, wait/ready and
error/ok messages. The control bus uses signals that control
the data movement and carries information of data transfers.
The bus is also used to move data between PVMC descriptors
and the vector unit’s control and scalar registers. The address
bus is used to identify the locations to read or write data from
memory components or processing cores.

RequiredBandwidth = V ectorclock × V ectorLanes × Lanewidth (1)

AvailableBandwidth = SDRAMnumber ×Controllerclock ×SDRAMbus width
(2)

The data bus is used to transmit data to/from SDRAM
modules. To minimize the data access latency the PVMC scales
data bus bandwidth by using multiple data buses, with respect
to the performance of the vector core and the capacity of
the memory module (SDRAMs). The required and available
bandwidths of the vector system are calculated by using the
formulas 1 and 2. Vectorclock, VectorLanes and Lanewidth de-
fine the vector system clock, the number of lanes and the width
of each lane respectively. SDRAMnumber, Controllerclock and
SDRAMbus width represent the number of separate SDRAM
modules, the clock speed of each SDRAM controller and the
data width of SDRAM controller respectively. To reduce the
impact of the memory wall, PVMC uses a separate data bus
for each SDRAM module and local memory (i.e. specialized
memory, see Section III-B3). To improve bus performance,
the bus clock can be increased up to a certain extent. The
address bus is shared between multiple SDRAM modules. A
chip select signal is used to enable a specific SDRAM module.
The control, status and address buses are shared between
PVMC and SDRAM modules.

B. Memory Hierarchy

The PVMC memory hierarchy consists of descriptor mem-
ory, specialized memory, register memory and main memory.

1) Descriptor Memory: The descriptor memory [12],[13] is
used to define data transfer patterns. Each descriptor transfers
a strided stream of data. More complex non-contiguous data
transfers can be defined by several descriptors. A single
descriptor is represented by parameters called main memory
address, local memory address, stream, stride and next. The
main memory and local memory address parameters specify
the memory locations to read and write data respectively.
Stream defines the number of data elements to be transferred.
Stride indicates the distance between two consecutive memory
addresses of a stream. The offset register field is used to point
to the next vector data access through the main address.

2) Buffer Memory: The buffer memory architecture imple-
ments the following features:

• Data realignment to match vector lanes. It aligns data
when input and output vector elements are not the
same.

• Load/reuse/update to avoid accessing the same data
multiple times (uses the realignment feature). It han-
dles the increment of the base address, thus reducing
loop overhead when applying strip-mining.

• In-order data delivery. In cooperation with the Mem-
ory Manager that prefetches data, it ensures that the
data of one pattern is sent in-order to the vector lanes.
This is used to implement vector chaining from/to
vector memory instructions.



The buffer memory holds three buffers which are the load
buffer, the update buffer and the reuse buffer. The buffer mem-
ory transfers data to the vector lanes using the update buffer.
The load and reuse buffers are used by the Memory Manager
that manages the Specialized Memory data (see III-B3). For
example, if a vector instruction requests data that has been
written recently then the buffer memory performs on-chip data
management and arrangement.

3) Specialized Memory: The specialized memory keeps
data close to the vector processor. It has been designed to
exploit 2D and 3D data locality. The specialized memory is
further divided into read and write specialized memories. Each
specialized memory provides a data link to the vector lanes.
Double-buffering can be used to overlap almost completely
computation and memory transfer for each read and write
specialized memory. In case of double-buffering, the PVMC
prefetches data from main memory into the specialized mem-
ory without interrupting the datapath of the vector lanes. In
the meantime vector lanes keep working on data from the
specialized memory that has already been accessed.

The specialized memory structure is divided into multiple
planes as shown in Figure 1(b), where each plane hold rows
and columns. The row defines the bit-width and the column
defines the density of the plane. In the current configuration,
the planes of the specialized memory have 8- to 32-bit wide
data ports and each data port is connected to a separate lane
using the update buffer.

The specialized memory has an address space separated
from main memory. PVMC uses special memory-memory
operations that transfer data between the specialized memory
and the main memory. The data of the read specialized memory
is sent directly to the vector lanes using the update buffer, and
the results are written back into the write specialized memory.
PVMC supports large vector, 2D and 3D tiled specialized
memory structures.

4) Main Memory: The main memory has the largest size
due to the use of external SDRAM memory modules but also
has the highest latency. The main memory works indepen-
dently and has multiple SDRAM modules. The SDRAM on
each memory module implements internally multiple indepen-
dent banks that can operate in parallel. Each bank represents
multiple arrays (rows and column) and it can be accessed in
parallel with other banks.

C. Memory Manager

The PVMC Memory Manager manages the transferring
of complex data patterns to/from the vector lanes. The data
transfer instructions are placed in the descriptor memory (see
Section IV-D). The Memory Manager uses the descriptor
memory to transfer the working set of vector data. The Memory
Manager is composed of two modules: the Address Manager
and the Data Manager.

Fig. 2. Data Memory Buffers: Load, Reuse & Update

1) Address Manager: The Address Manager takes a vector
transfer instruction and reads the appropriate descriptor mem-
ory. Depending on the access pattern the address manager uses
single or multiple descriptors, maps and rearranges addresses
in hardware. The Address Manager saves mapped addresses
into its address buffer for further reuse.

2) Data Manager: The data manager is used to rearrange
the output data of vector lanes for reuse or update. The data
memory uses the reuse, update and load buffers (shown in
Figure 2) to load, rearrange and write vector data. When input
and output vectors are not aligned the data manager shuffles
data between lanes. In case of strip mining the data manager
reduces the loop overhead by accessing the incremented data
and reuses previous data when possible. For example if the
increment is equal to 1 the data manager shifts one data
element and requests one element to load from the main
memory. The incremented address is managed by the address
and data managers that align vector data if required.

The Memory Manager takes memory address requests from
the control bus and the Address Manager reads the data transfer
information from the descriptor memory. The Data Manager
checks data requests from the specialized memory, if data is
available there then the data manager transfers it to the update
buffer. If the data requests are not available then the Memory
Manager transfers the data request information to the Multi
DRAM Access Unit (see III-D) which loads data to the load
buffer. The load buffer along with the reuse buffer perform
data alignment and reuse where required, and fill the update
buffer. The update buffer transfers data to the vector lanes.

D. Multi DRAM Access Unit

The Multi DRAM Access Unit (MDAU) accesses data from
the main memory. The main memory organization is classified
into data, address, control, and chip-select busses. The data
bus that transmits data to and from the main memory is 64
bits wide. A shared address bus carries row, column and bank
addresses to the main memory. There is a chip-select network
that connects the MDAU to each SDRAM module. Each bit of
chip select operates a separate SDRAM module.

MDAU can integrate multiple SDRAM Controllers using
separate data buses, which increases the memory bandwidth.
There is one SDRAM Controller per SDRAM module. Each
SDRAM Controller takes memory addresses from the Memory
Manager, performs address mapping from physical address
to DRAM address and reads/writes data from/to its SDRAM
module.

IV. PVMC FUNCTIONALITY

In this section we discuss the important challenges faced
by the memory unit of soft vector processors and explain our
solution.

A. Memory Hierarchy

A conventional soft vector system uses the cache hierarchy
to improve the data locality by providing and reusing the
required data set to functional units. With a high number of
vector lanes the vector memory unit does not satisfy the data
spatial locality. PVMC improves the data spatial locality by
accessing more data elements than MVL into its specialized
memory and transferring them using the buffer memory. Non-
unit stride accesses do not exploit spatial locality offered by
cache resulting in considerable waste of resources. PVMC
manages non-unit stride memory accesses similar to unit-
stride. Like a cache of soft vector processor, the PVMC



specialized memory temporarily holds data to speed up later
accesses. Unlike a cache, data is deliberately placed in the
specialized memory at a known location, rather than auto-
matically cached according to a fixed hardware policy. The
PVMC memory manager along with the buffer memory hold
information of unit and non-unit strided accesses, update and
reuse it for future accesses.

To load and store data in a conventional vector system,
the vector register file is connected to the data cache through
separate read and write crossbars. When the input to the
vector lanes is mismatched the vector processor needs an extra
instruction that aligns the vector data. The PVMC uses the
buffer memory to transfer data to the vector register file which
is simpler than using crossbar and data alignment. The buffer
memory aligns data when input and output vector elements are
not the same. It also reuses and updates existing vector data
and loads data which is not present in the specialized memory.

B. Address Registers

The vector processor uses address registers to access data
from main memory. The memory unit uses address registers to
compute the effective address of an operand in main memory.
A conventional vector processor supports unit-stride, strided,
and indexed accesses. In our current evaluation environment
the PVMC system uses a separate register file to program the
descriptor memory using data transfer instructions to comply
with the MIPS ISA. The PVMC descriptor memory can
perform accesses longer than the MVL without modifying the
instruction set architecture. PVMC uses a single or multiple
descriptors to transfer various complex non-stride accesses.

C. Main Memory Controller

The conventional Main Memory Controller (MMC) uses a
direct memory access (DMA) or Load/Store unit to transfer
data between main memory and cache memory. Thus the
vector memory unit uses a single DMA request to transfer
unit-stride access between main memory and a cache line.
But for complex or non-unit strided accesses the memory unit
uses multiple DMA or Load/Store requests which requires
extra time to initialize addresses, synchronise on-chip buses
and SDRAMs. The PVMC MDAU uses a single descriptor
for unit and non-unit stride accesses which improves the
memory bandwidth by transferring descriptors to the memory
controllers, rather than individual references and by accessing
data from multi-SDRAM devices.

D. Programming Vector Accesses

Figures 3 (a) and (b) show vector loops (with MVL of
64) for a conventional vector architecture and the PVMC,
including the PVMC memory transfer instructions respectively.
The VLD.S instruction transfers data with the specified stride
from main memory to vector registers using cache memory.
For long vector access and high number of vector lanes, the
memory unit generates delay when data transfers do not fit in a
cache line. This also requires complex crossbars and efficient
prefetching support. Delay and power increase for complex
non-stride accesses and crossbars. The PVMC_VLD instruction
uses a single or multiple descriptors to transfer data from the
main memory to the specialized memory. PVMC rearranges
and manages accessed data in the buffer memory and transfers
it to vector registers. In Figure 3(c), PVMC prefetches vectors
longer than MVL in the specialized memory. After completing
the first transfer of MVL the PVMC sends a signal to the
vector processor that acknowledges that the register is available
for processing. In this way PVMC pipelines the data transfers

(a)

(b)

(c)
Fig. 3. (a) Vector Loop (b) PVMC Vector Loop (c) PVMC Data
Transfer Example

Fig. 4. 3D Stencil Vector Access

and parallelizes computation, address management and data
transfers.

A common concern when using soft vector processors is
compiler support. A soft core vector processor typically re-
quires in-line assembly code that translates vector instructions
with a modified GNU assembler. In order to describe how
PVMC is used, the supported memory access patterns are
discussed in this section. We provide C macros which ease
the programming of common access patterns through a set
of function calls, integrated in an API. The memory access
information is included in the PVMC header file and provides
function calls (e.g. 3D STEN(), 3D TILE(), etc.) that require
basic information of the local memory and the data set. The
programmer has to annotate the code using PVMC function
calls. The function calls are used to transfer the complete data
set between main memory and specialized memory. PVMC
supports complex data access patterns such as strided vector
accesses and transfers complex data patterns in parallel with
vector execution.

For multiple or complex vector accesses, PVMC prefetches
data using vector access function calls (e.g. 3D-Stencil, etc.),
arranges them according to the predefined patterns and buffers
them in the specialized memory. The PVMC memory man-
ager efficiently transfers data with long strides, longer than



MVL size and feeds it to vector processor. For example, a
3D stencil access requires three descriptors. Each descriptor
accesses a separate (x, y and z) vector in a different dimension,
as shown in Figure 4. By combining these descriptors, the
PVMC exchanges 3D data between the main memory and the
specialized memory buffer. The value X, Y and Z define the
width (row size), height (column size) and length (plane size)
respectively of the 3D memory block. The 3D-Stencil has x,
z and y vectors having direction of row, column and plane
respectively. The vector x has unit stride, the vector z has stride
equal to row size and the vector y has stride equal to the size
of one plane, i.e. row size × column size.

V. EXPERIMENTAL FRAMEWORK

In this section, we describe the PVMC and VESPA vector
systems as well as the Nios scalar system. The Altera Quartus
II version 13.0 and the Nios II Integrated Development Envi-
ronment (IDE) are used to develop the systems. The systems
are tested on an Altera Stratix-IV FPGA based DE4 board. The
section is further divided into three subsections: the VESPA
system, the PVMC system and the Nios system.

A. The VESPA System

The FPGA based vector system is shown in Figure 5(a).
The system architecture is further divided into the Scalar core,
the Vector core and Memory System.

1) Scalar Core: A SPREE [14] scalar processor is used to
program the VESPA system and perform scalar operations. The
SPREE is a 3-stage MIPS pipeline with full forwarding core
and has a 4K-bit branch history table for branch prediction.
The SPREE core keeps working in parallel with the vector
processor with the exception of control instructions and scalar
load/store instructions between the two cores.

2) Vector Core: A soft vector processor called VESPA
(Vector Extended Soft Processor Architecture) [5] is used in
the design. VESPA is a parameterizable design enabling a large
design space of possible vector processor configurations. These

(a)

(b)
Fig. 5. (a) Baseline VESPA System (b) PVMC System

parameters can modify the VESPA compute architecture, in-
struction set architecture, and memory system. The vector core
uses a maximum vector length (MVL) of 128.

3) Memory System: The baseline VESPA vector memory
unit (shown in Figure 5(a)) includes a SDRAM controller,
cache and bus crossbar units. The SDRAM controller transfers
data from main memory (SDRAM modules) to the local cache
memory. The Vector core can access only one cache line at
a time which is determined by the requesting lane with the
lowest lane identification number. Each byte in the accessed
cache line can be simultaneously routed to any lane through
the bus crossbar. Two crossbars are used, one read crossbar
and one write crossbar.

B. The Proposed PVMC System

The PVMC based vector system is described in Sections II
and III and shown in Figure 5(b). The major difference be-
tween the PVMC and VESPA systems is the memory system.
The PVMC system manages on-chip data and off-chip data
movement using the buffer memory and the descriptor memory.
The memory crossbar is replaced with the buffer memory
which rearranges and transfers data to the vector lanes. The
specialized memory is used instead of a cache memory.

C. The Baseline Nios System

The Nios II processor scalar [15] is a 32-bit embedded-
processor architecture designed specifically for the Altera
family of FPGAs. The Nios II architecture is a RISC soft-
core architecture which is implemented entirely in the pro-
grammable logic and memory blocks of Altera FPGAs. Two
types of systems having different Nios cores are used; the Nios
II/e and the Nios II/f. The Nios II/e system is used to achieve
the smallest possible design consuming less FPGA logic and
memory resources. The core does not support caches and saves
logic by allowing only one instruction to be in-flight at any
given time which eliminates the need for data forwarding and
branch prediction logic. The Nios II/f system has a fast Nios
processor for high performance that implements a barrel shifter
with hardware multipliers, branch prediction and 32Kbyte Data
and Instruction caches. An Altera Scatter-Gather DMA (SD-
DMA) along with SDRAM controller is used that handles
multiple data transfers efficiently.

D. Applications

Table I shows the application kernels which are executed
on the vector systems along with their memory access pat-
terns. The set of applications cover a wide range of patterns
allowing us to measure the behaviour and performance of data
management and data transfer of the systems in a variety of
scenarios.

VI. RESULTS AND DISCUSSION

In this section, the resources used by the memory and bus
systems, the application performance, the dynamic power and
energy and the memory bandwidth of the PVMC vector system
are compared with the results of the non-PVMC vector system
and the baseline scalar systems.

TABLE I. BRIEF DESCRIPTION OF APPLICATION KERNELS

Application FIR 1D Tri- Matrix Gaussian Motion 3D-
Filter Diagonal Multiplication Estimation Stencil

Access Stream 1D Diagonal Row & 2D 2D 3D-
Pattern Block Column Block Block Tiling



(a) (b)
Fig. 6. (a) Speedup of: PVMC and VESPA over Nios II/f (b) Vector & Scalar Systems: Application Kernels Execution Clocks

A. Memory & Bus System

Multiple memory hierarchies and different bus system
configurations of PVMC & VESPA systems are compiled
using Quartus II to measure their resource usage, maximum
operating frequency and leakage power.

Table II (a) presents the maximum frequency of the
memory system for 1 to 64 vector lanes with 32kB of
cache/specialized memory. The VESPA system uses crossbars
to connect each byte of the cache line to the vector lanes.
Increasing the number of lanes requires more crossbars and
a larger multiplexer that routes data between vector lanes
and cache lines. This decreases the operating frequency of
the system. For the VESPA vector processor, results show
that by increasing the number of vector lanes from 1 to
64 requires larger crossbar multiplexer switches and operates
at lower frequency. The PVMC specialized memory uses
separate read and write specialized memories which reduces
the switching bottleneck. The vector lanes read data from read
specialized memory for processing and transfer it back to the
write specialized memory. The on-chip data alignment and
management is done by the Data Manager and the buffer
memory. This direct coupling of the specialized memory and
vector lanes using the update buffer is very efficient and allows
the system to operate at a higher clock frequency. Table II (b)
presents the maximum frequency for the data bus to operate
multiple memory controllers. The PVMC data bus supports
a dedicated bus for each SDRAM controller which increases
the bandwidth of the system. The data bus of VESPA system
supports only a single SDRAM controller.

Table III shows the resource utilization of the memory
hierarchy of the VESPA and PVMC systems. The memory
hierarchy is compiled for 64 lanes with 32KB of memory and
several line sizes. Column Line Size presents cache line and
update buffer size in bytes of the VESPA and PVMC systems
respectively. The VESPA system cache memory uses cache
lines to transfer each byte to the vector lanes. The PVMC
update buffer is managed by the data manager and is used
to transfer data to the vector lanes. Column Reg, LUT shows
the resources used by the cache controller and the memory
manager of the VESPA and PVMC systems respectively. Col-
umn Memory Bits presents the number of BRAM bits for the
local memory. The PVMC memory system uses separate read
and write specialized memories, therefore it occupies twice
the number of BRAM bits. The data manager of the PVMC

Vector Lanes 1 2 4 16 32 64
VESPA fmax 142 130 125 115 114 110
PVMC fmax 195 187 187 185 182 180

(a)

Sys Bus 1 Layer 2 Layer
VESPA 157 -
PVMC 292 282

(b)
TABLE II. (A) LOCAL BUS MAXIMUM FREQUENCY (MHZ) (B)

GLOBAL BUS MAXIMUM FREQUENCY (MHZ)

memory system occupies 3 to 5 times less resources than the
VESPA memory system. Column Main Memory presents the
resource utilization of the SDRAM controllers. The VESPA
system does not support dual SDRAM controllers. Column
Power shows leakage power in watts for the VESPA and
PVMC memory systems. The leakage current of the VESPA
system is higher than in PVMC, because it requires a complex
crossbar network to transfer data between the cache and the
vector lanes and requires more multiplexers.

B. Performance Comparison

For performance comparisons, we use the application
of Table I. We run the applications on the Nios II/e, Nios
II/f and VESPA systems and compare their performance with
the proposed PVMC vector system. Nios II/e, VESPA and
PVMC systems run at 100 MHZ. The VESPA and the PVMC
systems are compiled using 64 lanes with 32kB of cache and
specialized memory respectively. The Nios II/f system operates
at 200 Mhz using data and instruction caches of 32KB each.
All systems use a single SDRAM controller to access the main
memory.

Figure 6)(a) shows the speedups of VESPA and PVMC
systems over Nios II/f. Results show that vector execution with
the PVMC is 8.3x and 31.04x faster than the Nios II/f. Results
for Nios II/e are not shown in Figure 6)(a) due to lack of space.
When compared with the Nios II/e, the PVMC improves speed
between 90x and 313x which shows the potential of vector
accelerators for high performance.

In order to discard that the speed ups over the scalar
processor NIOS are caused by using SPREE as the scalar unit
of the vector processor, we execute FIR, Matrix Multiplication
and 3D-Stencil application kernels on a SPREE scalar proces-
sor, i.e. with the vector processor disabled. While comparing
performance of FIR, Matrix Multiplication and 3D-Stencil
kernels on SPREE, Nios II/e and Nios II/f scalar processors,
the results show that SPREE improves speed between 5.2x and
8.6x over Nios II/e, whereas against Nios II/f the SPREE is
not efficient. The Nios II/f achieves speedups between 1.27x
and 1.67x over SPREE scalar processor. The results show that
Nios II/f performs better than Nios II/e and SPREE scalar
processors.

By using the PVMC system, the results show (Figure 6(b))
that the FIR kernel achieves 2.37x of speedup over VESPA.

TABLE III. RESOURCE UTILIZATION OF THE MEMORY HIERARCHY

Local Memory 32KB Main Memory Leakage
Line Size Reg, LUT Memory Bits Controller Reg, LUTs Power

VESPA 128 1489, 3465 304400 1 2271, 1366 1.02
256 1499, 5529 305632 1 2271, 1366 1.15

PVMC 128 90, 1030 613134 1 1742, 1249 0.70
256 108, 1047 615228 2 3342, 2449 0.80



The application kernel has streaming data accesses and re-
quires a single descriptor to access a stream which reduces the
address generation/management time and on-chip request/grant
time. The 1D Filter accesses a 1D block of data and achieves
3.18x of speedup. The Tri-diagonal kernel processes the matrix
with sparse data placed in diagonal format. The application
kernel has a diagonal access pattern and attains 2.68x of
speedup. The Matrix Multiplication kernel accesses row and
column vectors. PVMC uses two descriptors to access the two
vectors. The row vector descriptor has unit stride whereas the
column vector has a stride equal to the size of a row. The
application yields 3.13x of speedup. The Motion Estimation
and Gaussian applications take 2D block of data and achieve
2.67x and 2.16x of speedup respectively. The PVMC system
manages addresses of row and column vectors in hardware.
The 3D-Stencil data uses row, column and plane vectors and
achieves 2.7x of speedup. The vectorized 3D-stencil code for
VESPA always uses the whole MVL and unit-stride accesses
and accesses vector data by using vector address registers and
vector load/store operations. The VESPA system multi-banking
methodology requires a larger crossbar that routes requests
from load/store units to cache banks and another one from
banks back to ports. This also increases the cache access time
but reduces the simultaneous read and write conflicts.

C. Dynamic Power & Energy

To measure voltage and current the DE4 board provides a
resistor to sense current/voltage and 8-channel differential 24-
bit analogue to digital convertors. Table IV presents dynamic
power and energy of different systems using a filter application
kernel with 2M Byte of input data set, 1D block (64 elements)
of data access and 127 arithmetic operations on each block of
data. Column System@MHz shows the operating frequency of
the Nios II/e and Nios II/f cores and the VESPA and PVMC
systems. The vector cores execute the application kernel using
different numbers of lanes while the clock frequency is fixed
to 100 MHz. To control the clock frequencies all systems use a
single phase-locked loop (PLL). Columns Reg, LUTs and Mem
Bits show the amount of logic and memory in bits respectively
utilized by each system. The Nios II/e does not have a cache
memory and only uses program memory. Column Dynamic
Power and Energy presents run time measured power of scalar
and vector systems while executing the filter application kernel
and calculated energy for power and execution time. Column
FPGA Core includes the power consumed by on-chip FPGA
resources and PLL power. Column SDRAM power presents
the power of the SDRAM memory device. The power of Nios
II/e and Nios II/f increases with frequency. Results show that
the PVMC draws 21.2% less power and 4.04x less energy
than the VESPA system, both using 64 lanes. For a single
lane configuration PVMC consumes 14.55% less power and
2.56x less energy. This shows that PVMC improves system
performance and handles data more efficiently results improve

System @MHz Lanes Reg, LUTs Dynamic Power and Energy
FPGA Core SDRAM Total Energy

Nios II/e @100 7034 , 7986 1.47 1.76 3.23 581.17
Nios II/e @200 8612 , 8076 1.65 2.26 3.91 342.46
Nios ll/f @100 9744 , 10126 2.086 1.686 3.760 82.56
Nios ll/f @200 12272 , 10256 3.109 2.513 5.822 48.379

VESPA @100 1 7227 , 7878 1.54 2.24 3.78 101.99
4 7867 , 12193 1.874 2.24 4.17 60.04
16 10090 , 31081 3.191 2.24 5.353 14.36
32 13273 , 57878 4.666 2.24 6.29 9.42
64 19641 , 103857 5.57 2.25 7.78 7.026

PVMC @100 1 5227 , 5587 1.1 2.11 3.23 39.85
4 5856 , 6193 1.30 2.11 3.51 20.08
16 8817 , 21261 1.91 2.11 4.32 4.16
32 10561 , 45658 2.86 2.11 4.97 2.54
64 15564 , 88,934 4.01 2.11 6.13 1.75

TABLE IV. SYSTEMS: RESOURCE, POWER AND ENERGY UTILIZATION

with a higher number of lanes. The PVMC using a single lane
and operating at 100 MHz draws 14%, 44% less power and
14.5x, 8.5x less energy than a Nios II/f core operating at 100
MHz and 200 MHz respectively. Whereas, when compared to
a Nios II/e core at 100 MHz and 200 MHz, the PVMC system
draws .03% and 17.3% less power respectively and consumes
and 2.07x, 1.21x times less energy.

D. Bandwidth

In this section, we measure the bandwidth of the PVMC,
VESPA and Nios ll/f systems by reading and writing complex
memory patterns. The PVMC with a single SDRAM controller
is also executed on a Xilinx Virtex-5 ML505 FPGA board and
results are very similar. The processing cores have 32 bit on-
chip data bus operating at 100 MHZ that provides a maximum
bandwidth of 400 MB. The PVMC can achieve maximum
bandwidth by using data transfer size equal to the data set.
In order to check the effects of memory, bus and address
management units over the system bandwidth, we transfer
data between processor and memory using different pattern
and transfer sizes. The X-axis presents random load/store,
streaming, a 2D and 3D tiled data sets of 2MB that are read and
written from/to the main memory. The load/store access pat-
terns read/write 4B from a random location. A single streaming
access pattern accesses 1KB of stream and a 2D access pattern
reads/writes a 2D block with row and column size of 1KB.
The 3D tiled benchmark reads a 3D tile of 128x128x128
bytes (rows, column and plane) and writes it back to the main
memory. The Y-axis shows the bandwidth in MB per second
for single and double SDRAM Controller(s). Figure 7 shows
a bar chart of different data transfers for the PVMC, VESPA
and Nios ll/f -based systems. While using single and double
SDRAM Controller(s), the results show that PVMC random
load/store data transfers are 2.2x, 3.4x and 3.5x, 2.3x times
faster than VESPA and Nios ll/f systems respectively. The
load/store data transfers require large control information (e.g.
bus and memory initialization, etc.) that limits the bandwidth.
The data transfer is further improved up to 4.9x, 9.95x and
4.5x, 4.8x times while transferring streaming data. While
transferring 2D tiled data, the PVMC archives 8.8x, 14.9x and
8.2x, 8.94x of speedup. For complex data transfers, PVMC
improves bandwidth 10.3, 9.8 and 16.4, 12 times. The VESPA
system uses a single data bus to transfer to/from main memory,
therefore it is unable to get the benefit from double SDRAM
Controllers. The Nios ll/f system uses a SG-DMA controller
that transfers data using unit-stride and forces to follow bus
protocol. The PVMC system has a dedicated data bus for each
SDRAM controller therefore, it efficiently accesses data from
single- or multi- main memories and manages multi-SDRAM
Controller(s) without support of a microprocessor. The PVMC
complex patterns use few descriptors that reduce run-time
address generation and address request/grant delay. For 3D

Fig. 7. Vector & Scalar Systems: Memory Bandwidth



tiled data transfer PVMC improves bandwidth by managing
addresses at compile-time and by accessing data from multi-
DRAM devices and multiple banks in parallel.

VII. RELATED WORK

Yu et al. propose VIPERS [16], a vector architecture that
consists of a scalar core to manage data transfers, a vector
core for processing data, an address generation logic, and a
memory crossbar to control data movement. Chou et al. present
the VEGAS [6] vector architecture with a scratchpad to read
and write data and a crossbar network to shuffle vector oper-
ations. VENICE [17] is an updated version of VEGAS, with
scratchpad and DMA that reduces data redundancy. VENICE
has limitations of rearranging complex data with scatter/gather
support. Yiannacouras et al. propose the VESPA [5] processor
that uses a configurable cache and hardware prefetching of a
constant number of cache lines to improve the memory system
performance. The VESPA system uses wide processor buses
that matches the system cache line sizes. VIPERS and VEGAS
require a scalar Nios processor that transfers data between the
scratchpad and the main memory. A crossbar network is used
to align and arrange on-chip data. The PVMC eliminates the
crossbar network and the limitation of using a scalar processor
for data transfer. PVMC manages addresses in hardware with
the pattern descriptors and accesses data from main memory
without support of a scalar processor core. The PVMC data
manager rearranges on-chip data using the buffer memory
without a complex crossbar network, that allows the vector
processor to operate at higher clock rates.

McKee et al. [18] introduce a Stream Memory Controller
(SMC) system that detects and combines streams together at
program-time and at run-time prefetches read-streams, buffers
write-streams, and reorders the accesses to use the maximum
available memory bandwidth. The SMC system describes the
policies that reorder streams with a fixed stride between con-
secutive elements. The PVMC system prefetches both regular
and irregular streams and also supports dynamic streams whose
addresses are dependent on run-time computation. McKee
et al. also proposed the Impulse memory controller [19]
[20], which supports application-specific optimizations through
configurable physical address remapping. By remapping the
physical addresses, applications can manage the data to be
accessed and cached. The Impulse controller works under
the command of the operating system and performs physical
address remapping in software, which may not always be suit-
able for HPC applications using hardware accelerators. PVMC
remaps and produces physical addresses in the hardware unit
without the overhead of operating system intervention. Based
on its C/C++ language support, PVMC can be used with any
operating system that supports the C/C++ stack.

A number of off-chip DMA Memory Controllers have been
suggested in the past. The Xilinx XPS Channelized DMA
Controller [21], Lattice Semiconductor’s Scatter-Gather Direct
Memory Access Controller IP [22] and Altera’s Scatter-Gather
DMA Controller [23] cores provide data transfers from non-
contiguous blocks of memory by means of a series of smaller
contiguous transfers. The data transfer of these controllers is
regular and is managed/controled by a microprocessor (Master
core) using a bus protocol. PVMC extends this model by
enabling the memory controller to access complex memory
patterns.

VIII. CONCLUSION

The memory unit can easily become the bottleneck for
vector accelerators. In this paper we have suggested a memory

controller for vector processor architectures that manages
memory accesses without the support of a scalar processor.
Furthermore, to improve the on-chip data access a specialized
memory and a data manager are integrated that efficiently
access, reuse, align and feed data to the vector processor. A
Multi DRAM Access Unit is used to improve the main memory
bandwidth which manages the memory accesses of multiple
SDRAMs. The experimental evaluation based on the VESPA
vector system demonstrates that the PVMC based approach
improves the utilization of hardware resources and efficiently
accesses main memory data. The benchmarking results show
that PVMC achieves between 2.16x to 3.18x of speedup for
5 applications, consumes 2.56 to 4.04 times less energy and
transfers different data set patterns up to 2.2x and 14.9x faster
than the baseline vector system. In the future, we plan to embed
run-time memory access aware descriptors inside PVMC for
vector-multicore architectures.

REFERENCES

[1] Visual computing technology from NVIDIA. http://www.nvidia.com/.
[2] Roger Espasa et al. Vector architectures: past, present and future. In

12th international conference on Supercomputing, 1998.
[3] C. Kozyrakis et al. Overcoming the limitations of conventional vector

processors. In ACM SIGARCH Computer Architecture News, 2003.
[4] Yunsup Lee et al. Exploring the tradeoffs between programmability and

efficiency in data-parallel accelerators. 2011.
[5] Peter Yiannacouras et al. VESPA: portable, scalable, and flexible

FPGA-based vector processors. In The CASES 08.
[6] Christopher H Chou et al. Vegas: soft vector processor with scratchpad

memory. In Proceedings of the international symposium on FPGA 2011.
[7] Tassadaq Hussain et al. Implementation of a reverse time migration

kernel using the hce high level synthesis tool. International Conference
on Field-Programmable Technology 2011.

[8] Richard M Russell. The cray-1 computer system. Communications of
the ACM 1978.

[9] Hui Cheng. Vector pipelining, chaining, and speed on the ibm 3090
and cray x-mp. IEEE, Computer 1999.

[10] Michael Weiss. Strip mining on simd architectures. In Proceedings of
the 5th international conference on Supercomputing. ACM, 1991.

[11] Tassadaq Hussain et al. Stand-alone memory controller for graphics sys-
tem. In The 10th International Symposium on Applied Reconfigurable
Computing (ARC 2014).

[12] Tassadaq Hussain et al. PPMC: A Programmable Pattern based Memory
Controller. In 8th International Symposium on ARC 2012.

[13] Tassadaq Hussain et al. Recongurable memory controller with pro-
grammable pattern support. 5th HiPEAC Workshop on Reconfigurable
Computing (WRC) 2007.

[14] Peter Yiannacouras et al. The microarchitecture of fpga-based soft
processors. In International conference on Compilers, architectures and
synthesis for embedded systems 2005.

[15] Nios ii: Processor reference handbook, 2009.
[16] Jason Yu et al. Vector processing as a soft processor accelerator. ACM

Transactions on Reconfigurable Technology and Systems, 2009.
[17] Aaron Severance et al. Venice: A compact vector processor for

fpga applications. In International Conference on Field-Programmable
Technology 2012.

[18] Sally A. McKee et al. Dynamic access ordering for streamed compu-
tations. IEEE Trans. Computer. November 2000.

[19] John Carter et al. Impulse: Building a Smarter Memory Controller. 5th
International Symposium on HPCA, January 1999.

[20] Lixin et al. Zhang. The impulse memory controller. Computers, IEEE
Transactions on, 2001.

[21] Xilinx. Channelized Direct Memory Access and Scatter Gather,
February 25, 2010.

[22] Lattice Semiconductor Corporation. Scatter-Gather Direct Memory
Access Controller IP Core Users Guide, October 2010.

[23] Altera Corporation. Scatter-Gather DMA Controller Core, Quartus II
9.1, November 2009.

http://www.nvidia.com/

	Introduction
	Vector Processor
	Programmable Vector Memory Controller
	Bus System
	Memory Hierarchy 
	Descriptor Memory
	Buffer Memory
	Specialized Memory
	Main Memory

	Memory Manager
	Address Manager
	Data Manager

	Multi DRAM Access Unit

	PVMC Functionality
	Memory Hierarchy
	Address Registers
	Main Memory Controller
	Programming Vector Accesses

	Experimental Framework
	The VESPA System
	Scalar Core
	Vector Core
	Memory System

	The Proposed PVMC System
	The Baseline Nios System
	Applications

	Results and Discussion
	Memory & Bus System
	Performance Comparison
	Dynamic Power & Energy
	Bandwidth

	Related Work
	Conclusion
	References

