
Power-Factor 
Compensation
of Electrical
Circuits

O
ptimizing energy transfer from an ac source to a
load is a classical problem in electrical engineering.
The design of power apparatus is such that the bulk
of the transfer occurs at the fundamental frequency
of the source. In practice, the efficiency of this trans-

fer is typically reduced due to the phase shift between voltage
and current at the fundamental frequency. The phase shift
arises largely due to energy flows characterizing electric
motors that dominate the aggregate load. The power factor,
defined as the ratio between the real or active power (average
of the instantaneous power) and the apparent power (the
product of rms values of the voltage and current), then cap-
tures the energy-transmission efficiency for a given load.

The standard approach to improving the power factor
is to place a compensator between the source and the load.
Conceptual design of the compensator typically assumes
that the equivalent source consists of an ideal generator
having zero Thevenin impedance and producing a fixed,
purely sinusoidal voltage [1]. If the load is linear time
invariant (LTI), the resulting steady-state current is a shift-
ed sinusoid, and the power factor is the cosine of the
phase-shift angle. Power-factor compensation is then
achieved by modifying the circuit to reduce the phase shift
between the source voltage and the current.
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A fundamental energy-equalization mechanism under-
lies the phase-shifting action of power-factor compensation.
Indeed, it can be shown that the power factor is improved
if and only if the difference between the average electric
and magnetic energies stored in the circuit is reduced. The
optimal power factor is achieved when electric and mag-
netic energies are equal, which occurs when the impedance
seen from the source behaves like a resistor for the source
frequency. Unfortunately, standard textbook presentations
[1]–[3] do not explain the power-factor compensation in
terms of energy equalization but rather rely on an axiomat-
ic definition of reactive power. In the LTI sinusoidal case,
reactive power turns out to be proportional to the energy
difference mentioned above, and thus reactive-power
reduction is tantamount to energy equalization.

POWER-FACTOR COMPENSATION 
WITH NONSINUSOIDAL SIGNALS
Due to economic and environmental considerations,
increasingly stringent efficiency requirements are being
placed on electric energy systems [4]. These requirements
have resulted, on the one hand, in more widespread use
of power semiconductor switching devices that are nearly
lossless and thus reduce power dissipation. On the other
hand, many electrical devices function over wide operat-
ing ranges, where nonlinear phenomena cannot be
neglected. These trends have resulted in the widespread
presence of nonsinusoidal signals in energy networks at
all power levels. An unfortunate consequence of the inclu-
sion of switching devices and the presence of nonlinear
loads is additional signal distortion, which has two unde-
sirable effects. First, the introduction of harmonics that are
not present in the original waveforms can excite unmod-
eled dynamics and result in degraded performance. Sec-
ond, the task of designing power-factor compensators—
which, as indicated above, is well understood for sinu-
soidal signals and relies on fundamental energy-equaliza-
tion principles—is far from clear in the face of distorted
signals. Available compensation technologies include
rotating machinery and mechanically or electronically
switched capacitors and inductors as well as power elec-
tronic converters, such as active filters and flexible ac
transmission systems. See [5] for a recent review and [6]
for an example of an innovative combination of the two
basic classes of compensators.

We can broadly distinguish two approaches to the
problem of power-factor compensation in the nonsinu-
soidal case. The current-tracking approach assumes that
we can inject any desired current into the load, which is a
reasonable assumption because of the recent availability of
polyphase active filters [7], which, through switching
action and energy storage, can generate almost arbitrary
current profiles. Then, a reference waveform for the source
current is defined—typically a scaled version of the source
voltage—and the control problem reduces to the selection

of the switching policy to track the reference signal. A vast
amount of literature in the power electronics community is
devoted to this approach, which is dominant in high-per-
formance applications [8]. We do not pursue the current-
tracking approach in this article, but rather refer the
interested reader to [9] for a review, from a control theory
perspective, of the main existing techniques and pointers
for the relevant literature. Typical control schemes for
power-factor compensation are linear (PI or predictive
controllers) with some excursions into nonlinear control
such as hysteresis-based and neuro/fuzzy compensators
[8]. In most of these applications, rigorous stability analy-
sis is absent, and discussions center on efficient ways to
estimate derivatives of noisy signals.

The second approach to power-factor compensation is
based on interconnecting subsystems with energy storage
elements. Using this framework, we can define an
attribute, namely, additive generalized reactive power, to
improve the power factor. Providing the correct defini-
tion of generalized reactive power is a longstanding ques-
tion, with research dating as far back as 1927, when
Budeanu suggested an extension to multifrequencies of
the classical definition of reactive power for a single har-
monic [10]. While deficiencies of this approach are widely
documented in the literature [11], [12], Budeanu’s
approach still dominates influential documents such as
IEEE standards. The limitations of Budeanu’s approach
are illustrated in this article. To the best of our knowl-
edge, all definitions of reactive power reported in the lit-
erature are based on orthogonal decompositions of the
terminal signals and give various interpretations to the
resulting terms. Among the vast literature, we cite here
only the comprehensive works [3], [11], which contain an
extensive list of references. The detailed discussions at
the end of [11] illustrate the degree of controversy and
even confusion that exists on this topic. See also [13] for a
more recent account of the field and [14] for a detailed
description of several common misconceptions.

CONTRIBUTIONS OF THE ARTICLE
The main contribution of this article is the identification of
the key role played by cyclodissipativity [15], [16] in
power-factor compensation. We prove that a necessary
and sufficient condition for a parallel (shunt) lossless com-
pensator to improve the power factor is that the overall
system satisfy a cyclodissipativity property. In the spirit of
standard passivation [17], this result leads naturally to a
formulation of the power-factor-compensation problem as
one of rendering the load cyclodissipative. Consequently,
we show that cyclodissipativity provides a rigorous math-
ematical framework for analyzing and designing power-
factor compensators for general nonlinear loads operating
in nonsinusoidal regimes.

As explained in [18], cyclodissipativity is understood
here in terms of the available generalized energy. The idea
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is borrowed from thermodynamics [19], where the notion
is formulated in a conceptually clearer (though perhaps
mathematically less rigorous) manner than in circuits and
systems theory. As pointed out in [20], this distinction may
be due to the fact that thermodynamics has never made
the study of linear systems a central concern, a notable
exception being [21]. In contrast, the circuits and systems
literature has a tendency to formulate general ideas in
terms of their particular manifestation in a linear context,
which is perhaps a reason why the generalization of reac-
tive power has proven so elusive.

POWER-FACTOR COMPENSATION
We consider the classical scenario of energy transfer from
an n-phase ac generator to a load as depicted in Figure 1.
Throughout this article, lower case boldface letters denote
column vectors, while upper case boldface letters denote
matrices. The voltage and current of the source are denot-
ed by the column vectors vs, is ∈ Rn , while the load is
described by a possibly nonlinear, time-varying n-port
system �. We formulate the power-factor-compensation
problem as follows:

C.1) vs ∈ Vs ⊆ Ln
2[0, T) := {x : [0, T) → Rn : ‖x‖2 :=

(1/T)
∫ T

0 |x(τ)|2 dτ < ∞} where ‖ · ‖ is the rms value
and | · | is the Euclidean norm. Depending on the con-
text, the set Vs may be equal to Ln

2[0, T) or it may consist

of a single periodic signal vs(t) = vs(t + T) or a set of
sinusoids with limited harmonic content, for example,
vs(t) =Vs sin ω0 t, where ω0 ∈ [ωm

0 , ωM
0 ] ⊂ [0,∞).

C.2) The power-factor-compensation configuration is
depicted in Figure 2, where Yc, Y� : Vs → Ln

2[0, T)

are the admittance operators of the compensator and
the load, respectively. That is, Yc : vs �→ ic and
Y� : vs �→ i� , where ic, i� ∈ Rn denote the compen-
sator and load currents, respectively. In the simplest
LTI case the operators Yc, Y� can be described by
their admittance transfer matrices, which we denote
by Ŷc(s), Ŷ�(s) ∈ Rn×n(s) , where s represents the
complex frequency variable s = jω.

C.3) The power-factor compensator is lossless, that is,

〈vs, Ycvs〉 = 0 for all vs ∈ Vs, (1)

where 〈x, y〉 := 1
T

∫ T
0 x
(t) y(t) dt is the inner prod-

uct in Ln
2[0, T).

We make the following fundamental assumption
throughout the work.

Assumption A.1
The source is ideal, in the sense that vs remains unchanged
for all loads �.

The standard definition of power factor [2] is given as
in Definition 1.

Definition 1
The power factor of the source is defined by

PF := 〈vs, is〉
‖vs‖‖is‖ , (2)

where P := 〈vs, is〉 is the active (real) power and the prod-
uct S := ‖vs‖‖is‖ is the apparent power.

From (2) and the Cauchy-Schwarz inequality, it follows
that P ≤ S. Hence PF ∈ [−1, 1] is a dimensionless measure
of the energy-transmission efficiency. Indeed, under
Assumption A.1, the apparent power S is the highest aver-
age power delivered to the load among all loads that have
the same rms current ‖is‖. The apparent power equals the
active power if and only if vs and is are collinear. If this is
not the case, P < S and compensation schemes are intro-
duced to maximize power factor.

Definition 2
Power-factor improvement is achieved with the compen-
sator Yc if and only if

PF > PFu := 〈vs, i�〉
‖vs‖‖i�‖ , (3)

where PFu denotes the uncompensated power factor, that
is, the value of PF with Yc = 0.
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FIGURE 1  Circuit schematic of a polyphase ac system that repre-
sents the classical scenario of energy transfer from an n-phase ac
generator to a load. The voltage and current of the source are rep-
resented by vectors vS, iS ∈ R

n, and the load is described by a pos-
sibly nonlinear, time-varying n-port system �.

is

vs Σ∼

FIGURE 2  Typical compensation configuration in which the com-
pensator, represented by its admittance Yc, is placed in shunt.
This configuration preserves the rated voltage at the load termi-
nals. The compensator is restricted to be lossless, that is,
〈vs, Ycvs〉 = 0, which means that no power dissipation occurs at
the compensator terminals.

vs Yc

is

ic il

Yl∼
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A consequence of our assumptions is that all signals in
the system are periodic, with fundamental period T and
belong to the space Ln

2[0, T). However, as becomes clear
below, all derivations remain valid if we replace Ln

2[0, T)

by the set of square-integrable functions Ln
2[0,∞). Hence,

periodicity is not essential for our developments. Restrict-
ing our analysis to Ln

2[0, T) captures the practically relevant
scenario in which, for most power-factor-compensation
problems of interest, the system operates in a periodic,
though not necessarily sinusoidal, steady state.

In the vast majority of applications, the power-factor
compensator is placed in shunt to simplify field installa-
tion and to simplify voltage regulation at the load termi-
nals. The compensator is also restricted to be lossless to
avoid additional power dissipation or the need to provide
an additional source.

Assumption A.1 is tantamount to saying that the
source has no impedance, which is justified by the fact
that most ac power devices are designed and operated in
this manner. For ease of presentation and without loss of
generality, we also assume that 〈vs, is〉 ≥ 0, which indi-
cates that real (active) power is always delivered from the
source to the load.

We bring to the reader’s attention the problem of
maximum energy transfer, which is related, but funda-
mentally different, from the power-factor-compensation
problem. In the former, the source is not assumed to be
ideal, but has an impedance Zs : Ln

2[0, T) → Ln
2[0, T), as

shown in Figure 3. The problem is thus to find the load
that maximizes the energy transfer for any arbitrary
given voltage waveform, as studied in [23]–[25]. Note
that the qualifier any is important since it distinguishes
this problem from the broadband matching problem [26],
where a set of voltages is given.

The role of power factor as an indicator of energy-trans-
mission efficiency is usually explained in textbooks as fol-
lows [2]. In view of periodicity we can express the qth
phase component of the terminal variables in terms of their
(exponential) Fourier series as

vsq(t) =
∞∑

k =−∞
V̂sq(k) exp( jk ω0 t),

where ω0 := 2π/T is the fundamental frequency and, for
integers k,

V̂sq(k) := 1
T

∫ T

0
vsq(t) exp(− jk ω0 t)dt

are the Fourier coefficients of the qth phase element of the
voltage, also called spectral lines or harmonics. For
details, see “Properties of Periodic Signals.” Similar
expressions are obtained for the qth phase components of
the current vector is. Because the product of sinusoidal
variables of different frequencies integrated over a com-

mon period is zero, only components of vs and is that are
of the same frequency contribute to the average power P.
However, if the current is distorted, the rms value of is

can exceed the rms value of the sum of the current com-
ponents in phase with the voltage. In this case, the source
may not deliver its rated power, although it may deliver
its rated rms current.

A CYCLODISSIPATIVITY CHARACTERIZATION
OF POWER-FACTOR COMPENSATION
In this section, we prove that power factor is improved if and
only if the compensated system satisfies a cyclodissipativity
property. A corollary of this result is an operator-theoretic
characterization of all of the compensators that improve
the power factor. Finally, we show that, as in the LTI sinu-
soidal case, a phase-shifting interpretation of power-
factor-compensation action is possible. To formulate our
results, we need the Definition 3.

Definition 3
The n-port system of Figure 2 is cyclodissipative with respect
to the supply rate w(vs, is), where w : Vs × Ln

2[0, T) → R, if
and only if 

∫ T

0
w(vs(t), is(t))dt > 0 (4)

for all (vs, is) ∈ Vs × Ln
2[0, T).

Proposition 1
Consider the system of Figure 2 with fixed Y�. The com-
pensator Yc improves the power factor if and only if the
system is cyclodissipative with respect to the supply rate

w(vs, is) := (Y�vs + is)
�(Y�vs − is). (5)

Proof
From Kirchhoff’s current law is = ic + i� , the relation
ic = Ycvs , and the lossless condition (1), it follows that
〈vs, is〉 = 〈vs, i�〉. Consequently, (2) becomes

APRIL 2007 « IEEE CONTROL SYSTEMS MAGAZINE 49

FIGURE 3  Circuit configuration considered for the maximum energy
transfer problem. The nonideal source �s has a series impedance
Zs. The problem here is to find the load � that maximizes the ener-
gy transfer for an arbitrary voltage waveform.

Zs

is

vs

∑s

∑

∼
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PF = 〈vs, i�〉
‖vs‖‖is‖ ,

and (3) holds if and only if

‖is‖2 < ‖Y�vs‖2, (6)

where we use i� = Y�vs. Finally, note that (4) with (5) is
equivalent to (6), which yields the desired result. 

Corollary 1
Consider the system of Figure 2. Then Yc improves the
power factor for a given Y� if and only if Yc satisfies

2〈Y�vs, Ycvs〉 + ‖Ycvs‖2 < 0 for all vs ∈ Vs. (7)

Dually, given Yc, the power factor is improved for all Y�

that satisfy (7).

Proof
Substituting is = (Y� + Yc)vs in (6) yields (7).

To provide a phase-shift interpretation of power-factor
compensation, Figure 4 depicts the vector signals vs, is, i� ,
and ic, where the angles θ and θu are understood in the
sense of the inner product, as defined below. Note that the
lossless condition (1) imposes 〈ic, vs〉 = 0. Replacing
i� = Y�vs and ic = Ycvs in the power-factor-improvement
condition (7) yields 

‖ic‖2 + 2〈ic, i�〉 < 0, (8)

which is equivalent to ‖ic‖ < 2�, where the distance � is
defined by

� := −〈i�, ic〉
‖ic‖ > 0.

On the other hand, it  is  clear from Figure 4 that
‖ic‖ < 2� if and only if θ < θu. The equivalence between
power-factor improvement and θ < θu follows directly
from the fact that

θ := cos−1 PF, θu := cos−1 PFu. (9)

Properties of Periodic Signals

We briefly review some basic properties of the inner product

of periodic signals [39].

DEFINITION S1 (INNER PRODUCT OF FUNCTIONS)

The inner product of two real periodic signals f (t) and g(t) with

period T is defined as

〈f, g 〉 := 1
T

∫ T

0
f (t)g(t)dt.

PROPERTY S1 (COMPLEX FOURIER SERIES)

The complex Fourier series representation of a periodic signal

f (t) with period T is given by

f (t) =
∞∑

n=−∞
F̂ (n) exp(jnω0t),

where ω0 := (2π/T ) and F̂ (n) are the complex Fourier coeffi-

cients given by

F̂ (n) := 1
T

∫ T

0
f (t) exp(−jnω0t)dt.

If f (t) is real, then its Fourier coefficients satisfy F̂ (−n) = F̂ ∗(n),

where F̂ ∗(n) denotes the conjugate of F̂ (n).

PROPERTY S2 (INNER PRODUCT OF PERIODIC FUNCTIONS

IN TERMS OF ITS COMPLEX FOURIER COEFFICIENTS)

Let f (t), g(t) be two real periodic functions with period T and com-

plex Fourier coefficients F̂ (n), Ĝ(n). Then, the inner product of f (t)

and g(t) is given by

〈f, g 〉 :=
∞∑

n=−∞
F̂ (n)Ĝ∗(n).

PROPERTY S3

Let f (t), g(t) be differentiable periodic functions with period T . Then

〈f, ġ 〉 = −〈 ˙f , g〉.

PROPERTY S4 (INNER PRODUCT

OF SIGNALS WITH DERIVATIVES) 

Let f (t), g(t) be real periodic and differentiable functions

with period T and complex Fourier coefficients F̂ (n), Ĝ(n).

Then,

〈f, ġ 〉 := 2ω0

∞∑
n=1

n Im{F̂ (n)Ĝ∗(n)},

where ω0 := (2π/T ).

PROPERTY S5 (NORM L2 OF THE TIME

DERIVATIVE OF PERIODIC FUNCTIONS IN

TERMS OF ITS COMPLEX FOURIER COEFFICIENTS)

Let f (t) be a real periodic function with period T and complex

Fourier coefficients F̂ (n). Then,

‖ ˙f‖2 = 〈 ˙f , ˙f 〉 := ω2
0

∞∑
n=−∞

n2|F̂ (n)|2,

where ω0 := (2π/T ).
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Notice that these functions are well defined and, further-
more, because of the unidirectional energy-transfer
assumption, it follows that θ ∈ [−(π/2), (π/2)] and
θu ∈ [−(π/2), (π/2)].

From (5), we see that the supply rate depends on the
load operator. Therefore, the associated cyclodissipativity
property (4) cannot be used as a definition of additive gen-
eralized reactive power required in a system-interconnec-
tion approach. That is, we cannot compensate for a lack of
cyclodissipativity in the load by an excess of cyclodissipa-
tivity in the compensator as occurs in the LTI case with
reactive power, where the compensator is an inductor or a
capacitor, depending on whether the reactive power is
negative or positive.

Readers familiar with the power-factor-compensation
problem may find the statements above to be self-evident.
Indeed, under Assumption A.1, power-factor improve-
ment is equivalent to reduction of the rms value of the
source current. Now, using is = ic + i� to compute the rms
value of is yields

‖is‖2 = ‖i�‖2 + ‖ic‖2 + 2〈ic, i�〉. (10)

It is clear from (10) that a necessary and sufficient condi-
tion for reducing ‖is‖ from its uncompensated rms value
‖i�‖ is precisely (8), which, as shown in Proposition 1 is
equivalent to power-factor improvement.

Definition 3 of cyclodissipativity is not standard but cap-
tures the essence of the property introduced in [16] and [18]
for systems with a state realization. In other words, a sys-
tem is cyclodissipative if it cannot create generalized ener-
gy over closed paths. In our case, these paths are defined
for port signals, while these paths are typically associated
with state trajectories. The system might, however, produce
energy along some initial portion of a closed path; if so, the
system would not be dissipative. Clearly, every dissipative
system is cyclodissipative, stemming from the fact that in
the latter case we restrict the set of inputs of interest to
those inputs that generate periodic trajectories, a feature
that is intrinsic in power-factor-compensation problems.

As in dissipative systems, storage functions and dissi-
pation inequalities can be used to characterize cyclodissi-
pativity provided we eliminate the restriction that the
storage functions be nonnegative. This statement corre-
sponds to the following result of [16], where to further
emphasize the distinction between storage functions that
are bounded and those that are not, the name virtual stor-
age function is used.

Theorem 1
Consider the system ẋ = f(x, u) , y = h(x, u) , where
x ∈ X ⊂ Rn and u, y ∈ Rm , and let X be the set of reachable
and controllable points. Then the system is cyclodissipa-
tive if and only if there exists a virtual storage function
V : X → R satisfying 

V(x(0)) +
∫ T

0
w(u(t), y(t))dt ≥V(x(T))

for all T ≥ 0 and for all u ∈ Lm
2 .

POWER-FACTOR COMPENSATION 
IN THE LTI SINUSOIDAL CASE
We now specialize the above derivations to the case in which
n = 1, vs(t) =Vs sin ω0 t, where ω0 ∈ [ωm

0 , ωM
0 ] ⊂ [0,∞) ,

and the scalar LTI stable operators Y�, Yc are described by
their admittance transfer functions Ŷ�( jω0) and Ŷc( jω0),
respectively. In this case, the steady-state source current is

is(t) = Is sin(ω0 t + θ),

where Is :=Vs|Ŷ�( jω0) + Ŷc( jω0)| and θ := �{Ŷ�( jω0)+
Ŷc( jω0)} . Simple calculations confirm that θ and the
uncompensated angle θu := �{Ŷ�( jω0)} coincide with (9).
We also have the following simple property.

Lemma 1
The scalar LTI operator Yc is lossless if and only if
Re{Ŷc( jω)} = 0 for all ω ∈ [0,∞).

Proof
From Parseval’s theorem, we have
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FIGURE 4  Phase-shift interpretation of power-factor compensation.
The power factor is improved if and only if θ < θu, which is equiva-
lent to ‖i c‖ < 2�.
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〈vs, Ycvs〉 = 1
2π

∫ ∞

−∞
V̂s(− jω)Ŷc( jω)V̂s( jω)dω

= 1
2π

∫ ∞

−∞
Re{Ŷc( jω)}|V̂s( jω)|2dω,

where, to obtain the second identity, we use the fact that
Im{Ŷc( jω)} is an odd function of ω.

Proposition 2
In the LTI scalar sinusoidal case, the power factor is
improved if and only if

Im{Ŷ�( jω0)}
Im{Ŷc( jω0)}

< −1
2

for all ω0 ∈
[
ωm

0 , ωM
0

]
. (11)

Proof
In this case, the signal space of Figure 4 can be replaced by
the complex plane with the admittances’ frequency
responses taking the place of the signals, as indicated in
Figure 5. Notice that because of Lemma 1, Ŷc( jω0) is purely
imaginary. From basic geometry, we see that θ < θu if and
only if (11) holds.

The equivalence between power-factor improvement
and θ < θu is a restatement of the fact that energy-trans-
mission efficiency is improved by reducing the phase shift
between the source voltage and current waveforms, a
statement that can be found in standard circuits textbooks.
However, the explicit characterization (11) does not seem
to be widely known.

The action of a power-factor compensator is explained
above without resorting to the axiomatic definition of com-
plex power used in textbooks to introduce the notion of
reactive power. In contrast with our geometric perspective
of power-factor compensation, this mathematical construc-
tion cannot easily be extended to the nonlinear nonsinu-

soidal case. Furthermore, the mathematical background
used in the above derivations is elementary.

For clarity, the above analysis is restricted to the scalar
case, that is, n = 1. Similar derivations can easily be carried
out for n-phase systems. For instance, if Ŷc(s) is diagonal,
power-factor improvement is equivalent to

[Im{Ŷc( jω0)}]−1Im{Ŷ�( jω0)}<−1
2

In for all ω0 ∈
[
ωm

0 , ωM
0

]
.

POWER-FACTOR COMPENSATION
WITH  LTI CAPACITORS AND INDUCTORS
Corollary 1 identifies all of the load admittances for
which the source power factor is improved with a given
compensator, namely, those load admittances that satisfy
inequality (7). In this section, we further explore this con-
dition for LTI capacitive and inductive compensation. For
simplicity, we assume throughout this section that the
system is single phase, that is, n = 1, but the load is possi-
bly nonlinear.

Proposition 3
Consider the system of Figure 2 with n = 1 and a fixed LTI
capacitor compensator with admittance Ŷc(s) = Ccs, where
Cc > 0. The following statements are equivalent:

i) There exists Cmax > 0 such that the load is cyclodis-
sipative with supply rate

wC(v̇s, i�) = −2i�v̇s − Cmaxv̇2
s . (12)

ii) For all Cc satisfying 0 < Cc < Cmax, the power factor
is improved.

Proof
Assume i) holds. Integrating wC(v̇s, i�) and using Defini-
tion 3 yields the cyclodissipation inequality

2〈i�, v̇s〉 + Cmax‖v̇s‖2 ≤ 0. (13)

Note that (13) implies that 2〈i�, Ccv̇s〉 + ‖Ccv̇s‖2 ≤ 0 for all
0 < Cc < Cmax. The latter is the condition for power-factor
improvement (7) for the case at hand. The converse proof
is established by reversing these arguments.

A similar proposition can be established for inductive
compensation. In contrast with the upper bound given for
Cc, a lower bound on the inductance Lc is imposed. Fur-
thermore, an assumption on vs is needed to ensure
absolute integrability of the supply rate.

Proposition 4
Consider the system of Figure 2 with n = 1 and a fixed LTI
inductor compensator with admittance Ŷc(s) = (1/Lcs),
where Lc > 0. Assume vs has no dc component. The fol-
lowing statements are equivalent:

i) The load is cyclodissipative with supply rate
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FIGURE 5  Power-factor compensation in the LTI case. Replacing the
signals of Figure 4 by their admittances’ frequency responses, it fol-
lows that θ < θu if and only if (11) holds.
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wL(z, i�) = −2 Lmin i�z − z2, (14)

for some constant Lmin > 0 and ż = vs.
ii) For all Lc > Lmin, the power factor is improved.
Proposition 3 (respectively, Proposition 4) states that

the power factor of a load can be improved with a capaci-
tor (respectively, inductor) if and only if the load is
cyclodissipative with supply rate (12) [respectively, (14)].
This result constitutes an extension to the nonlinear, nonsi-
nusoidal case of the definition of inductive (respectively,
capacitive) loads. Two questions arise immediately:

Q1 Which loads are cyclodissipative?
Q2 If power-factor improvement is possible for a

given signal vs, what is the optimal value of the
capacitance (respectively, inductance)?

An answer to the second question is straightforward
and known in the energy-processing community [13], [27].
For illustration, we consider the case of capacitive compen-
sation. In this case, ‖is‖2 takes the form

‖is‖2 = ‖i�‖2 − 2Cc

〈
d
dt

i�, vs

〉
+ C2

c‖v̇s‖2, (15)

where Property S3 of the sidebar “Properties of Periodic
Signals” is used to obtain the second right hand side term.
Equation (15), which is quadratic in the unknown Cc, has
the minimizer

C� =
〈

d
dt i�, vs

〉
‖v̇s‖2 . (16)

See also [13] for the polyphase case as well as illustrative
examples.

Similar optimization problems for alternative reactive
circuit topologies are studied in the circuits literature [3].
However, there seem to be many open problems. For
instance, in [27] and [28], it is shown that for RL loads the
optimal solution corresponds to a negative inductance,
and thus a switched series LC circuit is suggested as an
alternative option. A systematic study of this optimization
problem may lead to a better understanding of admissible
topologies and suboptimal solutions.

Load Cyclodissipativity
Given the strong relationship between cyclodissipativity
and energy equalization, we postpone question Q1 to the
next section, where we explore the role of energy in the
power-factor-compensation problem. However, to illus-
trate some of the issues involved, we conclude this section
with three examples. In each example, we verify cyclodis-
sipativity with supply rates vs(d/dt)i� and vs

∫
i�, which are

implied by cyclodissipativity with supply rates (12) and
(14), respectively. In view of this implication, it is clear that
the former properties are necessary (but not sufficient) for
capacitor power-factor improvement.

In the first example, taken from [29], we consider arbi-
trary values of the circuit parameters and prove cyclodissi-
pativity with respect to vs(d/dt)i� for all vs ∈ Ln

2[0, T ) ,
hence establishing a structural property of the circuit. On
the other hand, in the remaining examples, we fix the para-
meters and an element of Vs. In these examples, we also
compare the result of power-factor compensation based on
cyclodissipativity with the classical technique of Budeanu,
which we summarize as follows. Budeanu [10] defines
reactive power as

QB :=
N∑

k =1

Qk =
N∑

k =1

2|V̂s(k)||Î�(k)| sin φ(k), (17)

where the positive integer N is the number of harmonics of
interest and Qk and φ(k) are the the reactive power and the
phase-angle difference of the kth harmonic, respectively.
The unit for reactive power is var, as discussed in “Electri-
cal Power Quantities.” The definition (17) is an attempt to
generalize, to the case of multiple frequencies, the classical
definition [1] of reactive power for a single harmonic
Q := Q1 = 2|V̂s(1)||Î�(1)| sin φ, where φ is the phase-angle
difference between voltage and current.

Since the Fourier transform is a linear operator, it fol-
lows from generalized Tellegen’s theorem [30] that QB in
(17) obeys power conservation, and thus we can sum the
values of QB over the branch elements of a circuit. This
property suggests a compensation procedure based on the
selection of an inductor or a capacitor depending on
whether QB > 0 or QB < 0, respectively. Nevertheless, the
problem with Budeanu’s reactive power definition (17)
essentially boils down to the fact that the reactive powers
Qk at different frequencies may have opposite signs due to
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Electrical Power Quantities

In physics, power is the amount of work done or energy trans-

ferred per unit of time. The unit of power is the watt (W). How-

ever, in electrical systems, the watt is reserved for

instantaneous power (the product of the voltage and current as

functions of time) and for the active (real) power P consumed

by the load. The apparent power S represents the voltage and

current delivered to the load. The apparent power S, which is

conventionally expressed in volt-amperes (VA), is the product of

rms voltage and current. The relationship between the active

power and the apparent power is given by the power factor (2).

When the load absorbs real power P, electric energy is trans-

formed into other forms of energy, for instance, heat or kinetic

energy. In contrast, when the load absorbs reactive power Q,

no useful energy is derived [1]. To distinguish reactive power

from real power, the unit for reactive power Q, including

Budeanu’s reactive power QB, is the var, which stands for volt-

amperes-reactive [40], [41].
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the sine term in (17), in which case the reactive-power
terms Qk cancel each other [12]. Consequently, QB = 0 can
occur for nonzero values of Qk, that is, despite the pres-
ence of reactive power at some frequencies. Thus QB is not
an effective measure of reactive power. Although this
deficiency is widely documented in the literature [11],
[12], [14], Budeanu’s technique continues to have wide-
spread influence.

Example 1
Consider the nonlinear RLC circuit depicted in Figure 6
with linear elements L, C, and R2 and a nonlinear current-
controlled resistor R1 with characteristic function
v̂R1 : iL �→ vR1 , where iL is the inductor current and vR1 is
the voltage across the resistor R1. A state-space representa-
tion of the circuit is given by

−L
d
dt

iL = v̂R1(iL) + vC − vs,

Cv̇C = iL − vC

R2
,

where vC is the capacitor voltage. Motivated by Theorem
1, we prove cyclodissipativity by constructing a virtual
storage function. As a candidate, we consider

V(iL, vC) =
∫ iL

0
v̂R1(τ)dτ + R2

2

[(
iL − 1

R2
vC

)2
+ i2L

]
,

which is obtained following the constructive procedure of
[31]; for details see [29]. The time derivative of V(iL, vC) is

V̇(iL, vC) =
[ d

dt iL
v̇C

]�
A

[ d
dt iL
v̇C

]
+ vs

d
dt

iL, (18)

with

A :=
[−L 2R2C

0 −C

]
.

Notice that the symmetric part of the matrix A is negative
semidefinite if and only if

R2 ≤
√

L
C

. (19)

Integrating (18), using the negative semidefiniteness of A,
and invoking Theorem 1, we conclude that the circuit is
cyclodissipative with supply rate vs(d/dt)iL provided (19)
holds. Consequently, the power factor can be improved
with a capacitor. Note that, if R1 is passive, that is, if
v̂R1(iL) is a first-third quadrant function, then V(iL, vC) ≥ 0
and qualifies as a storage function, proving that the circuit
is, in addition, dissipative with supply rate vs(d/dt)iL .

Example 2
Consider the LTI series RLC circuit of Figure 7 supplied
with a periodic voltage source

vs(t) =360
√

2 sin(ω0 t) + 144
√

2 sin(3ω0 t)

+ 42
√

2 sin(5ω0 t) V,

where ω0 = 100π rad/s, R = 15� , L = 0.0796 H, and
C = 0.0212 mF. The uncompensated circuit has power fac-
tor PFu = 0.2202.

Since 〈vs, (d/dt)i�〉 = 28.28 × 104 V-A/s and ‖v̇ s‖ =
18.85 × 104 V/s, the power factor can be compensated
using a shunt capacitor with capacitance Cc satisfying
0 < Cc < 15.90 µF. The optimal capacitor given by (16) is
C�

c = 7.95 µF, yielding an improved power factor
PF = 0.2281. Interestingly, the cyclodissipativity condition
〈vs,

∫
i�〉 ≥ 0 is also satisfied, in fact, 〈vs,

∫
i�〉 = 2.59 V-A-s.

Hence, the compensator system can be a shunt inductor
with 0.2580 ≤ Lc with optimal value

L�
c = −‖ ∫

vs‖2

〈∫ vs, i�〉 = 0.5161 H,

yielding an improved power factor PF = 0.2393. Budeanu’s
reactive power (17) is QB = −392.66 var, a negative value
suggesting that the load is predominantly capacitive.
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FIGURE 7  LTI series RLC load of Example 2. Since this circuit is
cyclodissipative with respect to vs(d/dt)iL and vs

∫
i L , the power

factor can be improved when Yc is either a shunt capacitor or a
shunt inductor.
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FIGURE 6  Nonlinear RLC circuit of Example 1. This circuit is
cyclodissipative with respect to the supply rate vs(d/dt)iL if
R2 ≤ √

(L/C). Moreover, the circuit is dissipative if, in addition, R1

is passive, that is, if v̂R1(i L) is a first-third quadrant function.
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However, as shown above, the power factor can be improved
by using either a shunt capacitor or a shunt inductor.

Example 3
For the circuit depicted in Figure 8 with vs(t) =
220

√
2 sin(ω0 t) + 70

√
2 sin(3ω0 t) V, ω0 = 100 π rad/s, R =

10 �, L = 0.2 H, and C = 0.04 mF, we have 〈vs, (d/dt)i�〉 =
−8.45 × 104 V-A/s and 〈vs,

∫
i�〉 = −0.3629 V-A-s. Therefore,

the power factor cannot be increased using a capacitor or an
inductor. On the other hand, Budeanu’s reactive power is
QB = 18.26 var, suggesting that the power factor can be com-
pensated with a capacitor having capacitance CB = 0.9211 µF.
However, comparing PF = 0.0972 with PFu = 0.0987, we see
that power factor is degraded with the shunt capacitor, as pre-
dicted by the cyclodissipativity analysis.

ENERGY EQUALIZATION AND 
POWER-FACTOR COMPENSATION
We now explore connections between LTI LC power-
factor compensation and energy equalization, where the
latter is understood in the sense of reducing the difference
between the stored magnetic and electrical energies of the
circuit. We study conditions for load cyclodissipativity,
which is established in Propositions 3 and 4 as equivalent
to power-factor improvement. Results on cyclodissipativity
of nonlinear RLC circuits are summarized in [29]. It is
shown in [32] that general n-port nonlinear RL (respectively,
RC) circuits with convex energy functions are cyclo
dissipative with supply rate i�v̇s (respectively, vs(d/dt)i�).
In [31], a similar property is established for RLC circuits,
which is a slight variation of the result given below.

In this section we also prove a one-to-one correspon-
dence between cyclodissipativity and energy equalization
for scalar circuits with linear inductors and capacitors and
nonlinear resistors. Then, we identify a class of nonlinear
RLC circuits for which a large (quantifiable) difference
between the average electrical and magnetic energies
implies power-factor compensation. Finally, we show by
example that this relation may not hold for time-varying
linear circuits.

Energy-Equalization Equivalence for Circuits 
with Linear Inductors and Capacitors
The class of RLC circuits that we consider as load models
consists of interconnections of possibly nonlinear lumped
dynamic elements (nL inductors, nC capacitors) and static
elements (nR resistors). Capacitors and inductors are
defined by the physical laws and constitutive relations [22]

iC = q̇C, vC = ∇HC(qC), (20)

vL = φ̇L, iL = ∇HL(φL), (21)

respectively, where iC, vC, qC ∈ RnC are the capacitor cur-
rents, voltages, and charges, iL, vL, φL ∈ RnL are the induc-
tor currents, voltages, and flux-linkages, HL : RnL → R is

the magnetic energy stored in the inductors,
HC : RnC → R is the electric energy stored in the capaci-
tors, and ∇ is the gradient operator. We assume that the
energy functions HL and HC are twice differentiable. For
linear capacitors and inductors, HL and HC are given
by HC(qC) = (1/2)q�

C C−1qC and HL(φL) = (1/2)φ�
L L−1φL,

respectively, where L ∈ RnL×nL and C ∈ RnC×nC are posi-
tive definite. For simplicity, we assume that L and C are
diagonal. Finally, the circuit has nRL current-controlled
resistors, which are described by their characteristic func-
tions v̂Ri(iRi), i = 1, . . . , nRL , while the nRC voltage-con-
trolled resistors are described by ̂iRi(vRi), i = 1, . . . , nRC .

Proposition 5
Consider the system of Figure 2 with n = 1, vs ∈ L2[0, T), a
(possibly nonlinear) RLC load with time-invariant resis-
tors, and fixed LTI capacitor compensator with admittance
Ŷc(s) = Ccs, where 0 < Cc < Cmax . Then the following
statements hold:

i) The power factor is improved if and only if

〈vL,∇2HLvL〉−〈iC,∇2HCiC〉 ≥ Cmaxω
2
0

∞∑
k =1

k2|V̂s(k)|2, (22)

where V̂s(k) is the kth spectral line of vs(t).
ii) If the inductors and capacitors are linear, (22)

reduces to

∞∑
k =1

k2




nL∑
q=1

Lq|ÎLq(k)|2 −
nC∑

q=1
Cq|V̂Cq(k)|2




≥ Cmax

2

∞∑
k =1

k2|V̂s(k)|2, (23)

where Cq and Lq are the qth capacitance and induc-
tance, and V̂Cq(k) and ÎLq(k) are the spectral lines of
the corresponding capacitor voltage and inductor
current.

iii) If, in addition, vs(t) =Vs sin ω0 t, then (22) becomes

HLav(ω0) − HCav(ω0) ≥ Cmax

8
V2

s ,
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FIGURE 8  LTI series-parallel RLC load of Example 3. Since this cir-
cuit is not cyclodissipative with respect to either vs(d/dt)iL or
vs

∫
i L , its power factor cannot be compensated with shunt capaci-

tors or inductors.
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where HCav(ω0) := ∑nC
q=1(1/4)Cq|V̂Cq(1)|2 and

HLav(ω0) := ∑nL
q=1(1/4)Lq|ÎLq(1)|2 are, respectively,

the average electric and magnetic energy stored in
the load.

Proof
Applying Tellegen’s theorem [22] to the RLC load yields
i�v̇s = i�R v̇R + i�L v̇L + i�C v̇C , which upon integration yields

〈i�, v̇s〉 = 〈iR, v̇R〉 + 〈iL, v̇L〉 + 〈iC, v̇C〉
= −

〈
d
dt

iL, vL

〉
+ 〈iC, v̇C〉

= −〈∇2HLvL, vL〉 + 〈iC,∇2HCiC〉,

where the second identity uses the fact that, along periodic
trajectories, 〈iR, v̇R〉 = 0 for time-invariant resistors. The
last identity follows from the constitutive relations (20)
and (21). The proof of the first claim is completed by
replacing the expression above in (13) and computing
‖v̇s‖2 with Property S5 of the sidebar “Properties of Peri-
odic Signals.”

The second and third claims are established as follows.
From linearity of capacitors and inductors we have

〈i�, v̇s〉 = −〈L−1vL, vL〉 + 〈iC, C−1iC〉
= −〈L−1φ̇L, φ̇L〉 + 〈q̇C, C−1q̇C〉

= 2 ω2
0

∞∑
k =1

k2


 nC∑

q=1
Cq|V̂Cq(k)|2 −

nL∑
q=1

Lq|ÎLq(k)|2

 ,

where (20) and (21) are used for the second identity and
Property S5 of the sidebar “Properties of Periodic Signals”
to compute the last line. Claim 3 follows by taking one
spectral line and using the classical definition of averaged
energy stored in linear inductors and capacitors [22]. 

Results analogous to Proposition 5 can be established
for inductive compensation by checking the key cyclodissi-
pation inequality

〈i�, z〉 + 1
2 Lm

‖z‖2 ≤ 0,

which stems from (14). Simple calculations show that the
latter is equivalent to 

〈qC,∇HC〉 − 〈φL,∇HL〉 ≥ 1
2 Lm

‖z‖2, (24)

which in the LTI sinusoidal case becomes

HCav(ω0) − HLav(ω0) ≥ V2
s

8 ω2
0Lmin

. (25)

Inequalities (23) and (25) reveal the energy-equaliza-
tion mechanism of power-factor compensation in the LTI
scalar sinusoidal case, that is, power-factor improvement
with a capacitor (respectively, inductor) is possible if and
only if the average magnetic (respectively, electrical) ener-
gy dominates the average electrical (respectively, magnet-
ic) energy. Claim 2 shows that this interpretation of
power-factor compensation remains valid when the
source is an arbitrary periodic signal and the resistors are
nonlinear, by viewing, in a natural way, Lq|ÎLq(k)|2 and
Cq|V̂Cq(k)|2 as the magnetic and electric energies of the kth
harmonic for the qth inductive and capacitive element,
respectively. On the other hand, we do not have a natural
energy interpretation for (22).

Claim 3 of the proposition is established in [33] using
the relation between the impedance Ẑ�(s) = (V̂s(s)/Î�(s)) of
an LTI RLC circuit and the averaged stored energies

Ẑ�( jω) = 1

|Î�( jω)|2
{2Pav(ω)+4 jω[HLav(ω)−HCav(ω)]}, (26)

where Pav(ω) := 1
2

∑nR
q=1 Rq|Îq( jω)|2 is the power dissipated

in the resistors. The expression (26) appears in equation (5.6) of
Chapter 9 of [22]. Indeed, applying Parseval’s theorem to the
cyclodissipation inequality (13), we obtain the equivalences

〈i�, v̇s〉 + Cmax

2
‖v̇s‖2 ≤ 0

if and only if

Re{ jωẐ�( jω)}|Î�( jω)|2 + Cmaxω
2

2
V2

s ≤ 0, (27)

if and only if

4ω2[HCav(ω) − HLav(ω)] + Cmaxω
2

2
V2

s ≤ 0.

Simple calculations show that (11) of Proposition 2 with
Ŷc(s) = Cmaxs is equivalent to (27). Indeed, it is easy to
prove that

Re{ jωẐ�( jω)} = ω|Ẑ�( jω)|2Im{Ŷ�( jω)}.

Replacing the lat ter ,  together  with |V̂s( jω)|2 =
|Ẑ�( jω)|2|Î�( jω)|2, in (27) yields Im{Ŷ�( jω)} < −Cmax(ω/2),
which is obtained in (11) for capacitive compensation (see
Figure 5).

56 IEEE CONTROL SYSTEMS MAGAZINE » APRIL 2007

A fundamental energy-equalization mechanism underlies the

phase-shifting action of power-factor compensation.
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Necessity of Energy Equalization 
for Nonlinear RLC Loads
The presence of the energy functions in (22) and (24),
which hold for nonlinear RLC loads, suggests that energy
equalization is related to power-factor compensation for
more general loads. Indeed, Proposition 6 below establish-
es that a sufficiently large difference between magnetic
and electrical energies is necessary for capacitive power-
factor compensation. The proof of this result, which is
technical and thus is outside the scope of this article, fol-
lows from the arguments used in [31]. The dual result for
inductive power-factor compensation is also true, but is
omitted for brevity.

Proposition 6
Consider a nonlinear topologically complete RLC circuit
with a voltage source vs ∈ Ln

2[0, T) in series with inductors
and satisfying the following assumptions.

B.1)  The energy functions of the inductors and capacitors
are strictly convex.

B.2)  The voltage-controlled resistors are linear and passive.
B.3)  All capacitors have a (voltage-controlled) resistor in

parallel, and the value of the resistance is sufficiently
small.

Then, the circuit is cyclodissipative with supply rate
(d/dt)i�� vs. Furthermore, if the current-controlled resistors
are passive, then the circuit is dissipative.

Assumptions B.1 and B.2 are technical conditions
needed to construct the virtual storage function.
Assumption B.3 ensures that the electrical energy
stored in the capacitors is smaller than the magnetic
energy stored in the inductors. As shown in [31], the
qualifier sufficiently small in Assumption B.3 can be
explicitly quantified using an upper bound on the resis-
tances. Indeed, since all capacitors have linear resistors
in parallel, it follows that, as the value of the resistances
decreases, the currents tend to flow through the resis-
tors, and the energy stored in the capacitors
becomes small. The stored energy tends to
zero as the resistances go to zero, which is the
limiting case when all of the capacitors are
short-circuited.

Limits of Energy-Equalization Equivalence
Unfortunately, the energy-equalization inter-
pretation of power-factor compensation
breaks down even for simple time-varying
linear circuits, as shown in the following
example taken from [14].

Example 4
Consider the linear time-varying circuit of Fig-
ure 9 with a TRIAC-controlled purely resistive
load R = 10 �. The TRIAC can be modeled as a
switched resistor with characteristic

i�(t) =
{ 0, if t ∈

[
kT
2 , kT

2 + α
)

, k = 0, 1, . . . ,

vs(t)
R , otherwise,

where T = 2π/ω0 is the fundamental period and 0 ≤ α < T/2
is the TRIAC’s firing angle. The uncompensated volt-
age vs(t) and current is(t) are depicted in Figure 10
for vs(t) = 220

√
2 sin(ω0 t) V and vs(t) = 220

√
2 sin(ω0 t)+

50
√

2 sin(3ω0 t) V, with ω0 = 100 π rad/s and α = T/4 =
0.005 s. It is important to emphasize that this switched resistor
circuit does not contain energy-storage elements. Furthermore,
the TRIAC does not satisfy condition 〈iR, v̇R〉 = 〈i�, v̇s〉 = 0,
which is used to establish the proof of Proposition 5.

For the sinusoidal source, we obtain 〈v̇s, i�〉 =
−48.4 × 104 V-A/s and ‖v̇s‖ = 6.91 × 104 V/s, and thus a
shunt capacitor with 0 < Cc < 0.202 mF improves the
power factor. From (16), we obtain that the optimal capacitor
is C� = 0.101 mF, which increases the uncompensated
power factor PFu = 0.7071 to PF = 0.7919. In this sinusoidal
case, Budeanu’s analysis is consistent with cyclodissipativity,
and both yield the same optimal capacitor compensator.

FIGURE 9  Circuit with the TRIAC-controlled resistive load of Exam-
ple 4. The power factor of this circuit, which does not contain ener-
gy-storing elements, can be improved with a capacitor. This
example thus shows that power-factor improvement does not imply
an order relation between stored energies.

α

R

Switched Resistive Load Σ

Yc

ic

is il
Network

vs ∼

FIGURE 10  Voltage and current waveforms in the (uncompensated) circuit
with the TRIAC-controlled resistive load of Example 4. (a) illustrates the
corresponding voltage vs and i s for the sinusoidal case with
vs(t) = 220

√
2 sin(ω0t) V, while (b) illustrates the nonsinusoidal case with

vs(t) = 220
√

2 sin(ω0t) + 50
√

2 sin(3ω0t) V. In both cases, ω0 = 100 π rad/s,
and the TRIAC firing angle is α = T/4 = 0.005 s.

(a)

il

vs

vs, il

t
α

(b)

vs

vs, il

tα

il

APRIL 2007 « IEEE CONTROL SYSTEMS MAGAZINE 57

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on December 17, 2008 at 07:30 from IEEE Xplore.  Restrictions apply.



If vs(t) is the two-harmonic periodic signal above, we
obtain 〈vs, (d/dt)i�〉 = 28.9 × 104 V-A/s. Hence the load
can be compensated with a capacitor whose optimal value
is C� = 0.0413 mF, yielding PF = 0.7258. By using
Budeanu’s reactive power QB = 1.5 × 103 var, the result-
ing capacitor is CB = 0.08923 mF and PF = 0.7014.
Although the capacitor doubles its value, the power factor
is worse than in the uncompensated case.

CONCLUDING REMARKS AND FUTURE WORK
This article advances an analysis and compensator design
framework for power-factor compensation based on
cyclodissipativity. Although the framework applies to gen-
eral polyphase unbalanced circuits, we have focused on
the problem of power-factor compensation with LTI capac-
itors or inductors of single-phase loads. We expect the full
power of the approach to become evident for polyphase
unbalanced loads with possibly nonlinear lossless compen-
sators, where the existing solutions are far from satisfacto-
ry [13]. The main obstacle appears to be the lack of
knowledge about the load, a piece of information that is
essential for a successful design. In this respect, we plan to
study simple circuit topologies that capture the essence of
the problem, for instance, basic diode and transistor recti-
fiers. Preliminary calculations reported in [34] and [35] are
encouraging.

While we concentrated here on passive shunt compen-
sation, we are aware that current-source-based control is
an attractive option in some cases. For these actuators or
active filters, which can be modeled by discontinuous dif-
ferential equations, the control objective is current track-
ing. See [2] for an introduction and [36] for a modeling
procedure consistent with the energy-based approach
advocated here. Although nonlinear control strategies
have been used for basic topologies [34], [35], [37] many
questions remain unanswered [38].

Another important problem in energy-processing sys-
tems with distorted signals is the regulation of harmonic
content. Although we have not explicitly addressed this
issue here, it is clear that improving the power factor
reduces the harmonic distortion; a quantification of this
effect is a subject of current research. It would also be high-
ly desirable to formulate a natural optimization problem
for the interconnection approach to power-factor compen-
sation, especially for general circuit topologies and
polyphase loads. Issues including compensator-circuit
complexity, existence of the optimal solution, and subop-
timality need to be addressed. Once again, we believe the
analytically skilled control community, working in collab-
oration with circuit and energy specialists, can contribute
along these lines.
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