Experimental Validation of a Real-Time Energy Management System Using Multi-Period Gravitational Search Algorithm for Microgrids in Islanded Mode

Mousa Marzbanda,b, Majid Ghadimib, Andreas Sumperc,d,e, José Luis Domínguez-Garcíaf

aThe University of Manchester, School of Electrical and Electronic Engineering, Ferranti Building, Manchester, M13 9PL, UK
bDepartment of Electrical Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Guilan, Iran
cCatalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 08930 Sant Adrià de Besòs, Barcelona, Spain
dDepartament d’Enginyeria Elèctrica, EU d’Enginyeria Tècnica Industrial de Barcelona (ITCEA-UPC), Universitat Politècnica de Catalunya (UPC), C. Comte d’Urgell, 187, Pl. 2. 08036 Barcelona, Spain
eCentre d’Innovació Tecnològica en Convertidors Estàtics i Accionaments (ITCEA-UPC), Departament d’Enginyeria Elèctrica, Universitat Politècnica de Catalunya, ETS d’Enginyeria Industrial de Barcelona, Av. Diagonal, 647, Pl. 2. 08028 Barcelona, Spain

Abstract

Both performance optimization and scheduling of the distributed generation (DG) are relevant implementing an energy management system (EMS) within Microgrid (MG). Furthermore, optimization methods need to be applied to achieve maximum efficiency, improve economic dispatch as well as acquiring the best performance. This paper proposes an optimization method based on gravitational search algorithm to solve such problem in a MG including different types of DG units with particular attention to the technical constraints. This algorithm includes the implementation of some variation in load consumption model considering accessibility to the energy storage (ES) and demand response (DR). The proposed method is validated experimentally. Obtained results show the improved performance of the proposed algorithm in the isolated MG, in comparison with conventional EMS. Moreover, this algorithm which is feasible from computational viewpoint, has many advantages as peak consumption reduction, electricity generation cost minimization among other.

Keywords: Day Ahead Scheduling, Demand Response, Energy Management System, Microgrid, Optimal Operation and Scheduling, Gravitational Search Algorithm.

Nomenclature

\begin{itemize}
 \item \textbf{Acronyms}
 \begin{itemize}
 \item DR \quad \text{demand response}
 \item DS \quad \text{distributed storages}
 \item DSM \quad \text{demand side management}
 \item EGP \quad \text{excess generated power}
 \item EMS \quad \text{energy management system}
 \item EMS-MGSA \quad \text{EMS based on MGSA}
 \item ES \quad \text{energy storage}
 \item ES+ \quad \text{ES during charging mode}
 \item ES- \quad \text{ES during discharging mode}
 \item EWH \quad \text{electric water heater}
 \item MG \quad \text{microgrid}
 \item GSA \quad \text{gravitational search algorithm}
 \item LEM \quad \text{local energy market}
 \item MCEMS \quad \text{modified conventional EMS}
 \item MCP \quad \text{market clearing price}
 \item MGSA \quad \text{multi-period GSA}
 \item MT \quad \text{micro-turbine}
 \item NRL \quad \text{non-responsive load}
 \item PV \quad \text{photovoltaic}
 \item RLD \quad \text{responsible load demand}
 \end{itemize}
 \item \textbf{Variables}
 \begin{itemize}
 \item π^A \quad \text{the supply bids by A (€/kWh)}
 \item $A \in \{\text{WT, PV, MT, ES},-, \text{ES+}, \text{LIP, EGP, & EWH}\}$
 \item λ_M^{MCP} \quad \text{MCP at each time t in MCEMS (€/kWh)}
 \item λ_M^{MGSA} \quad \text{MCP at each time t in EMS-MGSA (€/kWh)}
 \item π^A_t \quad \text{available power of A in MCEMS (kW)}
 \item π^A_t' \quad \text{available power of A in EMS-MGSA (kW)}
 \item $\tilde{\pi}_t^A$ \quad \text{real power set-points of A in MCEMS (kW)}
 \item $\tilde{\pi}_t^A'$ \quad \text{real power set-points of A in EMS-MGSA (kW)}
 \item π^A_n \quad \text{available power of A (kW)}
 \item π^A_n' \quad \text{non-responsive load (NRL) demand (kW)}
 \item SOC_1 \quad \text{battery SOC in MCEMS (%)}
 \item SOC_1' \quad \text{battery SOC in EMS-MGSA (%)}
 \item P_{limit} \quad \text{limit of power (kW)}
 \item E_{limit} \quad \text{limit of energy (kWh)}
 \item SOC_{max} \quad \text{maximum SOC (%)}
 \item SOC_{min} \quad \text{minimum SOC (%)}
 \item Δt \quad \text{time step}
 \end{itemize}
 \end{itemize}
1. Introduction

Distributed generation can become integrated into distribution power systems through a controllable platform called Microgrid (MG) which includes converter-based systems [1]. In the MGs, if energy generation sources are not enough to feed the requested load, the system is not able to match supply demand. To apply a proper energy management system (EMS) is crucial to avoid this problem. An EMS makes possible the optimum implement and use of distributed energy sources. Failing of these systems in load feeding is possible if the total demand is more than the maximum capacity of the generation sources.

Applying either supporting systems such as diesel generators, distributed storages (DS) or implementing demand side management (DSM), may be useful to reduce a supply-demand mismatch [2–4]. Special attention is considered in using support systems as DSM and storage systems in this paper. The main objectives of DSM program is minimizing mismatch between feed power and load during consumption peak by changing the system load curve. The variation of system load curve can be done through both the distribution system facilities and end-use customers [5–7]. Demand response (DR) is a mechanism in which consumers participate voluntarily in reducing consumption peak by changing the consumption model. Consumers participating in DR receive some energy cost benefit [8]. Large scale participation in DR into distribution systems can be managed by applying aggregators. The role of an aggregator is gathering all the DRs requested by the end users, to present them in wholesale electricity market [9, 10]. One of the key goals of DR management plans is shift power demand to nonpeak hours [8]. The combined operation of DS and DR brings more reliability into distribution system operation [11]. DS may include some constant storage systems (e.g. battery energy storage) and mobile storage (e.g. plug-in electric vehicle). On the other hand, the DR can also be treated as a load shaping tool in distribution grids with high penetration of plug-in loads, such as electric vehicle [12]. Applying DR in smart distribution networks with several micro sources requires a complex and fast EMS [13–15]. Thus, optimal techniques are required to fulfill the aforementioned cases.

The use of deterministic methods is not complex and time consuming to solve optimum problems with large dimensions. Hence, these problems can be solved with the non-deterministic polynomial-hard (NP-hard) problem [16]. There is increased tendency for using population algorithms in recent years. These are inspired by social and natural behaviors. Several research is done over these algorithms dealing with solving complex numerical problems. Various innovative methods are introduced for solving optimization problems like genetic algorithm (GA) [17, 18], simulated annealing (SA) [19], ant colony optimization (ACO) [20] and particle swarm optimization (PSO) [21–23].

For that reason, a swarm intelligence method called multi-period gravitational search algorithm (MGSA) is applied in this paper. Its main benefits include exploration operation can be started in several working point at the same time [24], without memory and evaluation of the masses can be done in each interval [25], multi-agent considering an agent can be evaluated by noting the total force obtained by all of the other agents [26], update results applying the quality of solving the problem with attention to fitness function [27]. Because of this, it is implemented for EMS.

This paper aims to introduce and validate experimentally an EMS based on MGSA within MG. The main contribution are as follows:

1. The implementation of MGSA algorithm for using in MG applications with the following characteristic:
 (a) Presented method for solving problems with K spaces N dimensional; It is useful for calculation of each interval.
 (b) Modification of the relationship of velocity, displacement and force for compatibility with MG applications.

2. Experimental implementation of the MGSA for EMS which demonstrates that it is fast, extendible and flexible;

2. Problem formulation

The system under analysis encompasses a stand-alone wind turbine (WT), photovoltaic (PV), microturbine (MT), and energy storage (ES) system.

2.1. The mathematical implementation of MGSA units

The following assumptions will be considered for the optimization problem:

- The voltage level in all of the points of MG is the same;
- The power loss is neglected;
- The reactive power flow is neglected.

The optimization problem is defined according to the following objective function:

\[
\min \sum_{t=1}^{m} \left[(C_t^q + C_t^qg + C_t^{ES} - C_t^c - C_t^{ES+} + \Omega_t) \times \Delta t \right] (1)
\]

where \(m \) is the number of time periods in the scheduling time horizon \(T \), \(C_t^q \), \(C_t^qg \) depict the cost of energy produced by renewable and non-renewable generation units in period \(t \), \(C_t^{ES+}, C_t^{ES-} \) present the cost of energy produced by ES units during charging and discharging operation mode in period \(t \), \(C_t^c \) is the cost of energy consumed by responsive load demand (RLD) and \(\Omega_t \) is the penalty cost resulting from undelivered power (UP) during the time period \(t \).
The production cost of different unit types can be determined as

\[C_i^g = \sum_{k=1}^{n_i^g} \pi_i^k \cdot p_i^k \quad (2) \]

\[C_t^g = \sum_{k=1}^{n_t^g} \pi_i^k \cdot p_i^k \quad (3) \]

\[C_t^E = \sum_{k=1}^{n_t^E} \pi_i^k \cdot p_i^k \quad (4) \]

\[C_t^{ES+} = \sum_{k=1}^{n_t^{ES+}} \pi_i^k \cdot p_i^{k, ES+} \quad (5) \]

\[C_t^{ES-} = \sum_{k=1}^{n_t^{ES-}} \pi_i^k \cdot p_i^{k, ES-} \quad (6) \]

\[\Omega_t = \pi_t^{UP} \cdot p_t^{UP} \quad (7) \]

where \(\pi_i^k \) represents the offer price by the \(k \)th renewable and non-renewable resources during \(t \) period, \(p_i^k \) are output power of \(k \)th renewable and non-renewable units during \(t \) period, \(n_i^g \) indicate the number of renewable and non-renewable generation units installed in the MG system, \(\Delta t \) is duration of \(t \) period, \(\pi_i^{k, f} \) is relevant to offer price by the \(k \)th RLD during \(t \) period, \(p_i^{k, f} \) is the consumed power by the \(k \)th RLD during \(t \) period, \(\pi_t^{UP} \) is the offer price when the system has UP and \(p_t^{UP} \) is the amount of power that has not been supplied by MG.

The total generation cost should be minimized subject to the following constraints.

- **Power balance**

\[\sum_{k=1}^{n_i^g} p_i^k + \sum_{k=1}^{n_t^g} p_i^k + \sum_{k=1}^{n_t^E} (1 - x_t^E) \cdot p_i^{k, ES} + p_t^{UP} = p_i^{NRL} + \sum_{k=1}^{n_t^E} x_t^E \cdot p_i^{k, ES} + \sum_{k=1}^{n_t^E} \pi_t^{ES+} \cdot p_i^{k, ES} \quad (8) \]

- **The renewable generation unit** [28]

\[0 \leq \sum_{k=1}^{n_i^g} p_i^k \leq \bar{P}^g \quad (9) \]

where \(\bar{P}^g \) is the maximum available power by the renewable resources at time \(t \).

- **The non-renewable generation units** [20, 28]

- **Energy storage limits**

\[E_t^{ES} \leq \Delta E^{ES} \quad (15) \]

- **Maximum discharge limit**

\[(1 - x_t^{ES}) \cdot p_t^{ES-} \leq p_t^{ES-} \quad (16) \]

- **Maximum charge limit**

\[x_t^{ES} \cdot p_t^{ES+} \leq p_t^{ES+} \quad (17) \]

Eq.(16) shows that when the ES is in the discharging mode (i.e., \(x_t^{ES} = 0 \)), the discharging power cannot exceed the maximum discharging power of the ES. The same operation characteristic is defined for the charging mode, which is given in Eq.(17).
storage devices should be used to supply DR, ES and EWH.

The total excess generated power (EGP) by generation and

\[\sum_t p_t^{\text{EGP}} = \sum_t X_t^{\text{ES}} \cdot p_t^{\text{ES}+} + \sum_t p_t^{\text{DR}} + \sum_t p_t^{\text{EWH}} \]

(26)

In addition, the summation of consumed power by these
customers should be equal to the summation of EGP during a
daily operation system as shown mathematically in Eq. (26).

2.2. Implementation of the EMS based on GSA

2.2.1. Introduction to the MGSA Method

In this algorithm, the search of optimum points is done
based on gravitational Newtons’ laws governing the dynamics
of the masses [24, 32–34]. In this method, N masses are
considered and each mass is placed in the D dimensional
space. The position of each mass is an answer of the problem.

The resultant of the forces applied on mass

\[\vec{F}_t = \sum_{j} F_{ij,t} \]

(27)

where \(dX^i \) presents the position of \(i^{th} \) mass in the \(d^{th} \)
dimension. The force exerted on mass \(i \) from mass \(j \) in the
direction of dimension \(d \) at the time \(t \) (iteration \(t \)) is defined as

\[dF_{ij,t} = G_i \frac{M_i^i \cdot M_j^j (dX^i \cdot dX^j)}{R_{ij,t}^d + \varepsilon} \]

(28)

where \(M_i^i \) and \(M_j^j \) are masses of body \(i \) and \(j \), respectively.
\(R_{ij,t}^d \) is distance between \(i \) and \(j \) at \(t^{th} \) repetition and \(\varepsilon \) is an
extremely small constant to avoid division by zero. \(R_{ij,t}^d \) can
be achieved as

\[R_{ij,t}^d = \sqrt{\sum_{d=1}^{D} (dX_i^d - dX_j^d)^2} \]

(29)

The resultant of the forces applied on \(i^{th} \) mass in the \(d^{th} \)
dimension is calculated by

\[dF_i = \sum_{j=1, j \neq i}^{N} \rho^f \cdot dF_{ij,t} \]

(30)

where \(\rho^f \) is a random number between zero and one. The resulting response becomes farther than the optimum
response because of using the random places which is less
affected by larger masses. To avoid unexpected results,
Eq. (30) is modified as
The force exerted on i^{th} mass creates acceleration in the direction of d^{th} dimension as

$$d\mathbf{a}_i^t = \frac{d\mathbf{F}_i^t}{M_i^t}$$ \hspace{1cm} (32)

New velocity $(d\mathbf{V}_i^{t+1})$ and relocation $(d\mathbf{X}_i^{t+1})$ mass i in the direction of dimension d $(d\mathbf{X}_i^{t+1})$ can be calculated as

$$d\mathbf{V}_i^{t+1} = \rho^V \cdot d\mathbf{V}_i^t + d\mathbf{a}_i^t \times T$$ \hspace{1cm} (33)

$$d\mathbf{X}_i^{t+1} = d\mathbf{X}_i^t + d\mathbf{V}_i^{t+1} \times T$$ \hspace{1cm} (34)

where ρ^V is a random number between zero and one.

In the velocity relation, using random function (i.e. ρ^V) causes the increase of the exploration of the algorithm. In these relations, the time duration parameter of the motion (i.e. T) is considered 1. In the modified algorithm, the control parameter T is considered as the time duration of the i^{th} mass from the present position to the next position. According to the done analysis, it is indicated by the trial-and-error hypothesis that the value of 2 seconds leads to a better answer.

The gravitational constant G is obtained by

$$G_t = G_0 \times \exp(-\alpha \frac{t}{T})$$ \hspace{1cm} (35)

where G_0 is the initial value of the gravitational constant, α is the controlling parameter, t is the current iteration and T is the number of total iterations. After each iteration and movement, the bodies must be evaluated based on the objective function in their new positions. In this order, the masses with better position (smaller objective function) have heavier mass and members with worse position have lighter mass. The masses can be computed as

$$M_i^t = \frac{\text{fit}_i^t - \min(\text{fit}_i^t)}{\max(\text{fit}_i^t) - \min(\text{fit}_i^t)}$$ \hspace{1cm} (36)

where fit_i^t is the value of the objective function of mass i in the t^{th} iteration, $\max(\text{fit}_i^t)$ and $\min(\text{fit}_i^t)$ are respectively the worst and the best value of the objective function in the t^{th} iteration.

One way to perform a good compromise between exploration and exploitation is to reduce the number of masses with lapse of time in Eq. (30). After several iterations only the best masses are chosen for calculating the gravity force exerted on other masses.

For example, at the beginning of the process, all the masses participate in the gravity force inside local optimum points. But, this number reduces in next iterations. In order to reach this goal, the percentage of members is defined as a control parameter ξ, at the end of time. Ψ_t is defined as the best of the masses at each iteration. Ψ_t can be estimated as

$$\Psi_t = \text{round}([\xi + 1 - \frac{t}{T} \times (100 - \xi)] \times N)$$ \hspace{1cm} (37)

On this basis, the resultant of the forces exerted on mass i in the dimension d is calculated as Eq.(31) where j exists on Ψ_t.

2.2.2. MGSA application to MG case

It is noteworthy that one day period is equal a total space of $48 \times D$ dimensions. D is the number of independent parameters. Space and the number of variables must be failed in the algorithm at the first moment.

Independent variables in the matrices \mathbf{XM}_j for mass j is defined as follows:

$$\mathbf{XM}_j = [\mathbf{p}^{\text{WT}}, \mathbf{p}^{\text{PV}}, \mathbf{p}^{\text{MT}}, \mathbf{p}^{\text{ES}}, \mathbf{p}^{\text{DR}}]$$ \hspace{1cm} (38)

The variables \mathbf{p}^{WT}, \mathbf{p}^{PV}, \mathbf{p}^{MT}, \mathbf{p}^{ES} and \mathbf{p}^{DR} are respectively the vector of the powers of WT, PV, MT, ES and DR power. MGSA method considers a space with the dimension $nT \times 5 \times N$, where, nT represent the number of the periods, 5 is the number of independent variables and N is the number of masses. The rest of the existing variables are dependent on these previous 5. The position of the masses are determined by the matrices \mathbf{XM}_j. The forces between the masses affect this variables directly. By knowing E^{\pm}_j at different times of a period, the parameters $\mathbf{p}^{\text{ES}+}_j$ and $\mathbf{p}^{\text{ES}-}_j$ can be derived. Having the generated and consumed powers, the parameters \mathbf{p}^{WH}_j and \mathbf{p}^{HP}_j can be obtained through power balance. For this purpose, two matrix variables namely EM and YM are defined as

$$\mathbf{EM}_j = [\mathbf{p}^{\text{ES+}}_j, \mathbf{p}^{\text{ES-}}_j, \mathbf{X}^{\text{ES}}_j]$$ \hspace{1cm} (39)

$$\mathbf{YM}_j = [\mathbf{p}^{\text{HP}}_j, \mathbf{p}^{\text{WH}}_j]$$ \hspace{1cm} (40)

In this order, the variables \mathbf{EM}_j and \mathbf{YM}_j are calculated indirectly. It should be noted that all the independent and dependent variables take part in the calculation of objective function. As a result, the effect of gravitational forces is directly applied over \mathbf{XM}_j, \mathbf{EM}_j and \mathbf{YM}_j.

Figure 1 shows an example scheme. Total response can be achieved from the combination of optimum responses obtained in similar spaces. The number of N masses are considered in each space. Optimum point can be determined by noting the cost function and the technical constraints considered. The initial SOC in each space is equal to the last condition of the ES in the previous space. As illustrated in this figure, an increase in the distance between two masses means decreasing the gravity force between them. Every mass accelerate toward the result force acting on it from the other masses. In this figure, F_i^{fit} is the force that exerts on M_i^t from M_i^t. F_i^t produces the overall net force applied to M_i^t mass.
2.3. Mathematical implementation of the local energy market (LEM) unit

In this unit, the single sided auction structure is used to find the value of MCP in each time interval. In this unit, the energy consumed and the energy generated are sent to the LEM unit. The algorithm used is presented in the previous papers [1].

3. The algorithm suggested for MGSA

EMS-MGSA algorithm is made up of two units including MGSA and LEM units as shown in Figure 2. The implementation of each units are explained in the following subsections.

3.1. MGSA unit

The flowchart of implementing this algorithm is shown in Figure 3. The stages of the process are briefly listed and related to the previous equation as follows:

1. identification of the space (Eq. (27));
2. the random initial value of the masses;
3. masses evaluation by calculating the values of the objective function;
4. updating the values of \(M_i, \) \(\max(\text{fit}_i) \), \(\min(\text{fit}_i) \) and \(G_i \) for all the masses (Eq. (35)-(36));
5. calculating the force resultant in different directions (Eqs. (30)-(35));
6. calculation of acceleration and velocity (Eq. (34) and (33));
7. updating the position of the masses (Eq. (34));
8. iteration of the stages 3 to 7 until the stopping conditions;
9. End

The Pseudo-code of MGSA unit is provided in Algorithm 1 for clarify. In addition, Algorithm 2 is a general outline of the proposed algorithm followed in detail by pseudo-code.

Algorithm 1 MGSA unit

Require: Definition (Fitness function, constants, conditions, rules, limitation, variables, boundaries and number of agents)

1. **Initialization according to Algorithm 3**
2. **Evaluation and update** (G, M, best and worst of the agents) (Eqs. (35)-(36));
3. **Calculation of F** (Eqs. (28) and (31)), \(a \) (Eq. (34)), velocity (Eq. (33)) and new agents' position (Eq. (34))
4. **Checking agents’ position in space-boundaries and return or reinitialize those agents being out of space**
5. **End of criterion is met?**
 - 1. No. go to Step 3
 - 2. Yes. return the best solution

Algorithm 2 MGSA unit

Require: Input data \(\Delta \)

- Number of agents, max iteration, Limits, etc.
- Space definition \(\Delta \)
- Number of spaces, dimension (DIM) and boundaries

for k = 1 : Number of spaces do

Initialization (Algorithm 3)

for I = 1 : \(\Delta \) do

for J = 1 : N do

- Calculating of objective function for each agent

end if

Fbest: the final best value of objective function in each space

Lbest: the location of the best agent in each space

Mass calculation (Eq. 36)

Update gravitational constant (Eq. 35)

Calculation of the force and acceleration (Eqs. 31-34)

Calculation of the velocity and movement of agents (Eq. 33 and 34)

Check agents’ location in space boundaries

end for

Saving the final best objective function and the location of the best agent in space (K)

Updating SOC and DR

end for

return the total best value of objective function and total best location in the whole universe
Algorithm 3 Initialization

Require: Update max WT, PV and load demand vectors in space K
for J = 1: N do random value for WT and PV between (0, max available power) also for MT between (P^MT, P^MT)
for I = 1: DIM do X^{ES}_I = random value [0,1]
if X^{ES}_I = 1 then Charging mode
else SOC_{I,J} = SOC_{I,J-1} + P^{ES}_{I,J} × Δt
end if
if SOC_{I,J} < SOC then SOC_{I,J} = SOC
if I = 1 then P^{ES+}_{I,J} = SOC_{I,J-1} - SOC_{I,J} / Δt
else P^{ES+}_{I,J} = SOC_{I,J-1} - SOC_{I,J} / Δt
end if
else > discharging mode
P^{ES-}_{I,J} = random value [0, P^{ES+}_{I,J}]
P^{ES-}_{I,J} = 0
if I = 1 then SOC_{I,J} = SOC_{I,J-1} - P^{ES-}_{I,J} × Δt
else SOC_{I,J} = SOC_{I,J-1} - P^{ES-}_{I,J} × Δt
end if
if SOC_{I,J} < SOC then SOC_{I,J} = SOC
if I = 1 then P^{ES-}_{I,J} = SOC_{I,J-1} - SOC_{I,J} / Δt
else P^{ES-}_{I,J} = SOC_{I,J-1} - SOC_{I,J} / Δt
end if
end if
end for
return P^{ES+}, P^{ES-}, SOC_{I,J} and X^{ES}
Calculation of power balance
ΔP_I = P^WT_I + P^PV_I + P^MT_I × D - P^ES-I × Δt
for I = 1: DIM do
if ΔP_I < 0 then P^{RLD}_{I,J} = 0
else P^{RLD}_{I,J} = 0
end if
end for
Save XM_I, EM_I and YM_I
XM_I = [P^WT_I, P^PV_I, P^MT_I, SOC_I]
EM_I = [P^{ES+}_I, P^{ES-}_I, X^{ES}_I]
YM_I = [P^{RLD}_I, P^{RLD}_I]
end for
return matrix [XM, EM, YM]

4. Application to MG Testbed

The proposed algorithm is validated experimentally over IREC’s MG. This contains different types of generation and consumer units which are emulated in the real-time converters. This Testbed is shown in Figure 4. The details of the structure, communications and settings are reported in [1, 35, 36].

For this study, both simulation and experimental evaluations are presented for an isolated MG including WT/PV/MT/ES. The real life experimental data carried out from [1] are also used to emulate WT, PV and non-responsive load (NRL) emulators.

The offer of each generation and responsive load demand (RLD) emulators are presented in Table 1 [1].

Three scenarios are considered to evaluate the performance and accuracy of the proposed algorithm. The ability of the proposed algorithm in scheduling and optimum operation, minimizing the electricity generation cost and finally the generation side management are considered:

- Scenario §1: Normal operation
Table 1: The supply bids by the generation and consumers assets [€ /kWh]

<table>
<thead>
<tr>
<th>π<sub>WT</sub></th>
<th>π<sub>PV</sub></th>
<th>π<sub>MT</sub></th>
<th>π<sub>ES−</sub></th>
<th>π<sub>ES+</sub></th>
<th>π<sub>UP</sub></th>
<th>π<sub>EWH</sub></th>
<th>π<sub>DR</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.083</td>
<td>0.1</td>
<td>0.15</td>
<td>0.145</td>
<td>0.125</td>
<td>1.5</td>
<td>0.105</td>
<td>0.115</td>
</tr>
</tbody>
</table>

This fact indicates that despite the MT offer is high, the optimization algorithm is decided to use MT for compensating the lack of power. This fact is shown in Figure 6(b). The algorithm during this period, in addition to supplying the load required power, produces the excess generated power (EGP) as shown in Figure 7(b), for feeding ES, EWH and DR. At the end of the second and third 6 hours of the system operation, ES system in both of the algorithms is almost completely discharged and SOC is approached almost to SOC. The key point is that at the fourth period of system operation, ES in the EMS-MGSA is started to operate in charging mode after a short period of discharging. As a result, the value of SOC in this algorithm reaches about 67% at the end of daily operation. While, its value is reached close to SOC in the algorithm MCEMS, hence, ES definitely will show a better capability in the EMS-MGSA to support the system at the beginning of the next day.

5. Results and discussion

This section describes the results of experimental evaluation under different scenarios.

SOC is shown in Figure 5 for the algorithms MCEMS and EMS-MGSA. At the first 6 hours of the system operation, ES in EMS-MGSA is always operated in charging mode. Nevertheless, in MCEMS, ES is mostly operated in discharging mode.

ES and MT power profile during the MG daily operation are shown in Figures. 6(a) and 6(b), respectively. In the MCEMS, ES is operated about 42% period in charging mode, 29% in discharging mode and 29% in the idle mode during 24h of system operation. However, in the EMS-MGSA algorithm, it is respectively operated 39.55 in the charging mode, 27% in the discharging mode and 33.5% in the idle mode. This shows that despite the higher offer of MT relative to ES, the EMS-MGSA algorithm uses MT in more time intervals. Noting that the minimum power generated by MT is equal to P_{MIN} so after the deduction of the power required by the load, one of the options of using EGP is the charging of the
battery. Despite this fact, as it is observed from Figure 7(b), the optimization algorithm decides to use EGP for feeding the loads including DR and EWH. In the EMS-MGSA algorithm, the selection of generation unit is included by considering the minimization of the objective function. MT in the MCEMS algorithm is off at 46% of the times while in the EMS-MGSA algorithm is around 14% on during MG daily operation.

As it is observed from Figure 6(b), in the EMS-MGSA algorithm, MT is used more than ES for supplying the consumers. Although, λ_1^{MCP} in most of the time intervals is lower than λ_2^{MCP}.

The power consumed by DR, EWH, ES during charging and discharging, UP and EGP are shown as a bar graph in Figures 7(a) and 7(b). ES is operating in charging mode around 42% of the times. ES in the MCEMS algorithm is generated P_E^{ES} during 31% of the time operation. This percentage in the EMS-MGSA algorithm reaches 8.33% of the times. On the other hand, as it is observed from Figure 5, SOC in the EMS-MGSA algorithm is much better than the MCEMS algorithm. This fact shows that the algorithm based on optimization makes better decisions for using the EGP of the microsources regarding the best use of the electric power generation resources and storage devices in the MG.

MT is entered service with the power P_M^{MT} at the same time. From Figure 7(a), it is evident that most of DR is fed in the time interval 10:00 A.M to 15:00 PM. As seen from Figure 7(b), all the DR in EMS-MGSA is fed during 00:00-04:30 periods. In this time period, λ_1^{MCP} is variable between 0.16 €/kWh to 0.4 €/kWh. Hence, significant reduction in the cost to supply DR is done by the optimization algorithm. In the time intervals that the scenarios are occurred (time interval 17:00-21:00) and the consumed load is decreased (the system is encountered UP), average of λ_2^{MCP} is equal to 1.2 €/kWh. While in this time interval, the average value of λ_2^{MCP} is equal to 1 €/kWh. It means that the penalty cost is substantially reduced in the optimization algorithm.

So, by feeding DR in the first 6 hours of system operation, the optimization algorithm presents the best choice for its feeding with the least possible expense. EWH in the MCEMS algorithm is only fed in the time interval 15:00-16:30. In this time interval, the average of λ_1^{MCP} is equal to 0.51 €/kWh.

The proposed algorithm for solving EMS problem is implemented in MATLAB 8.01 platform and executed with i5-3320M CPU, 2.6 GHz desktop computer with 4GB RAM. In order to compare the computation time of the proposed algorithm, absolute CPU time is maintained in Table 2. It is also compared with reported simulation times in [20] to implement EMS based on particle swarm optimization (PSO) (EMS-PSO) algorithm. The obtained results shown that CPU can devote the less execution time (reduced by around 38%) for the proposed algorithm compare to EMS-PSO algorithm. Apparently, the technical contribution of the proposed EMS-MGSA algorithm not only gives a fine solution to minimize
Table 2: Average computational time for case study corresponding to 100 iteration

<table>
<thead>
<tr>
<th></th>
<th>MGSA</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Execution time (s)</td>
<td>17.12</td>
<td>27.45</td>
</tr>
</tbody>
</table>

the total generation cost for the unit commitment problem in MG application, but also a good compromise between computation time and precision.

Convergence curves of EMS-MGSA and EMS-PSO algorithms are also depicted in Figure 8. Both EMS-MGSA and EMS-PSO employ the same maximum iteration settings (is set to 100 iterations). It can be observed that the proposed algorithm not only provides better solution quality with minimum generation cost but also has faster convergence rate than EMS-PSO. The dominant convergence characteristic of the proposed EMS-MGSA is more obvious when applied to a large-scale system including multiple MGs with a lot of variables.

![Cost convergence curve](image1)

Figure 8: The cost convergence curve

MCP is shown in Figure 9 at each time interval. Its average value is also mentioned in each 6 hours period in Table 3. At the first 6 hours of system operation, the average value of MCP in the EMS-MGSA algorithm is much less than the MCEMS algorithm. This means that feeding RLD loads (that is DR and EWH) at this time interval is the best option. As a result, by this way, less expenses will be paid for feeding them by consumers. At the second 6 hours of the system operation, despite the rising of \(\lambda_{MCP} \), the EGP power is used for feeding ES and DR in the MCEMS algorithm. But as it is observed from Figure 7(a), most of the EGP power is used for feeding EWH which presents much less offer relative to ES and DR. In the third 6 hours of system operation, the average value of MCP is reduced in both of the algorithms. Considering MCEMS algorithm, in half of this period, EGP power is used only for feeding DR and ES. When feeding DR is completed, the rest of the time is used to feed ES and EWH, respectively. However, EGP in the EMS-MGSA algorithm is used for feeding EWH most of the times. At the last 6 hours of system operation, EGP power in the MCEMS algorithm is used only for charging ES. Dispite the ES charge offer is higher than the DR and EWH offers and the average value of \(\lambda_{MCP} \) is more than its average value in other periods, an adequate chosen is not intended for the consumers. However, EGP in the optimization algorithm is mostly allocated for feeding EWH that has the least offer among the consumers.

Both experimental and simulation results show that EMS-MGSA algorithm is capable to operate in optimal scheduling, optimal operation, economic dispatch and demand side management in the best possible way. The total generation cost and MCP are reduced in the proposed algorithm by efficient management of generation, storage and load assets, by 18% in comparison with MCEMS.

![MCP for each interval during the system daily operation](image2)

Figure 9: MCP for each interval during the system daily operation

6. Conclusions

The obtained results have demonstrated the effectiveness of EMS-MGSA algorithm in solving the optimal operation point within isolated MG. The optimal power setpoints for microsources has been achieved based on previous information and real-time experimental data by noting the fulfillment of all technical constraints. The optimization method in accordance with GSA approach has been introduced to minimize the production cost as well as to increase the system efficiency. A strategy for smart grid has been developed to shift the load and the accordance of power generation by renewable and non-renewable sources. This solution has been implemented experimentally over the IRECS’s MG system. Its efficiency and performance has been verified by using different scenarios. The priority index for consumers to participate in LEM has been considered based on the offer by
them and minimizing objective function. The obtained results have shown the improvement of the overall system operation in comparison with MCEMS. The experimental and simulation results have shown that the increase in the percentage of the load shifting not only could yield more flexibility to the system but also cause the use excess of generated energy. Moreover, it has been observed that the system efficiency in finding the best way would lead to maximize the usage of the power generated by renewable sources. In addition, consumers have participated in DR with high priority index could be supplied with less cost (approximately 18%). It is worth to remark that EMS-MGSA has operated better in reducing overall peak demand, the optimum operation of the present micro-sources and decreasing the total generation cost relative to the MCEMS algorithm. The proposed algorithm proves the efficiency of GSA method for managing and exchanging power in smart grids. Eventually, using the proposed algorithm will enable utility companies to have an energy management tool with the optimization ability of using non-dispatchable and ES assets to supply industrial/commercial and household loads.

7. Acknowledgments

The research leading to these results has received funding from the European Union seventh framework program “FP7-SMARTCITIES-2013” under grant agreement 608860.

References

[28] M. Marzband, A. Sumper, “implementation of an optimal energy man-
agement within islanded microgrid”, *International Conference on Renewable Energies and Power Quality (ICREPO)*, Cordoba, Spain, 2014.

List of Tables

1 The supply bids by the generation and consumers assets [€/kWh] ... 8
2 Average computational time for case study corresponding to 100 iteration 10
3 The average value of MCP in each 6 hour period of system performance 10