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Aplicada III, Universitat Politècnica de Catalunya-BarcelonaTECH, Comte d’Urgell 187,

E08036 Barcelona, Spain. E-mails: leonardo.acho@upc.edu, yolanda.vidal@upc.edu

Abstract

In this paper, a new modified Chua oscillator is introduced. The original
Chua oscillator is well known for its simple implementation and mathemati-
cal modeling. A modification of the oscillator is proposed in order to facilitate
the synchronization and the encryption and decryption scheme. The modifi-
cation consists in changing the nonlinear term of the original oscillator to a
smooth and bounded nonlinear function. A bifurcation diagram, a Poincaré
map and the Lyapunov exponents are presented as proofs of chaoticity of the
newly modified oscillator. An application to secure communications is pro-
posed in which two channels are used. Numerical simulations are performed
in order to analyze the communication system.

Keywords: Chua oscillator, chaos, secure communication, synchronization,
Lyapunov methods

1. Introduction

The Chua oscillator is a well known system characterized by its simplicity
and chaotic behavior. It contains a nonlinear term originally represented by
a piecewise-linear function [22] and displays very rich and typical bifurcation
and chaos phenomena such as double scroll and dual double scroll [13]. Some
researchers have investigated the way to modify the original system. One of
the reasons for doing this was the fact the numerical simulations revealed
that not all features of a real circuit were correctly captured by the piece-
wise-linear circuit [16]. Thus, a smooth nonlinearity was desirable. A cubic
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nonlinearity was proposed by [43] as an appropriate modification, physically
realizable, that preserved the chaotic characteristics of the oscillator. This
nonlinearity has a shape similar to that of the original function but with the
advantage that smoothness is gained avoiding analysis difficulties due to the
discontinuities of the original function. Some other proposals in which this
variation is employed are found in the works by [29], [37] and [40]. A new
version of the Chua circuit is investigated by [17]. The objective of the work
was to perform an experimental study about the impulsive synchronization
of the modified Chua circuits. A simple and flexible modification scheme was
presented in which some circuit connections were broken and passive elements
were inserted. The resulting circuit was a higher dimensional system that
exhibits the original dynamics of the Chua circuit.

The Chua oscillator, as well as other chaotic maps and systems, has been
investigated in applications to secure communications. This field became an
important research line in the latest years due to the possibility of encrypt-
ing information using chaotic systems. The synchronization of two coupled
chaotic systems was proven to be feasible as shown by [26]. This discovery
aroused interest as a potential means for secure communications [2, 23, 39].
The idea of synchronization is to use the output of the driving system to
control the response system in such a way that they both oscillate in a syn-
chronized manner. A wide variety of synchronization schemes have been de-
veloped since then, from those that assume perfect knowledge of the system
to those that account for uncertainties. For instance, in [1] the synchroniza-
tion of chaotic systems by means of active control was demonstrated. The
authors worked with two systems: one of them composed of two identical
Rössler systems and the other one composed of two identical Chen systems.
[15] investigates the chaos synchronization between the Lorenz-Stenflo (LS)
system and a novel dynamical system called CYQY, as well as the synchro-
nization between an LS system and a hyper chaotic system. This is done by
means of adaptive control techniques. [25] investigates chaos synchronization
between two different chaotic systems by means of nonlinear control laws. He
demonstrates that the two different systems could be controlled using non-
linear control techniques and proved the closed-loop stability by means of
linear control theory. [11] studied the synchronization of a two-degree of
freedom heavy symmetric gyroscope using the Lyapunov theory with control
terms, adaptive control and random optimization. [19] proposed two kinds
of synchronization schemes for hyper chaotic systems using adaptive control.
The hyper chaotic system they analyzed was presented by [27] and has two
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large positive and small negative Lyapunov exponents over a large range of
parameters which makes it suitable for secure communications applications.
[20] also investigated the synchronization of two hyper chaotic systems. In
this case, the authors worked on a Rössler hyper chaotic system with four
unknown parameters and applied an adaptive control scheme for functional
lag synchronization. In [21] the problem of synchronizing uncertain dynamic
systems in the presence of missing data is further investigated. Other exam-
ples can be found in the works by [3], [6], [7], [10], [18], [33] and [42], to name
a few.

Such a wide variety of synchronization schemes opened the possibility
of using the signals generated by chaotic systems as carriers for analog and
digital communications. For instance, in [41] a chaotic communication system
in which a binary signal is encrypted in the frequency of the sinusoidal term of
a chaotic Duffing oscillator is designed. Two chaotic signals of the oscillator
are further encrypted with a Delta modulator before they are sent through
the channel. In the receiver, a Lyapunov-based observer uses the chaotic
signals for retrieving the sinusoidal term that contains the message. A novel
frequency estimator is then used to obtain the binary signal. The numerical
simulations demonstrated the high accuracy of the proposed scheme and its
robustness in noisy environments. [9] developed a chaotic communication
system based on multiplication modulation. The transmitter consists of a
chaotic system and a chaos multiplication modulator that encrypts the signal.
The chaotic signal is generated by using the Gnesio-Tesi chaotic system. The
synchronization of the chaotic signals in the recover is achieved by means of
an Extended Kalman Filter that estimates the states of the oscillator in the
presence of noise. This scheme does not require the knowledge of the initial
conditions of the transmitter. The authors also prove that the system security
could not be broken with the existing methods at that time. [35] proposed
an observer based on parameter modulation theory where the information
modulates the parameters of the chaotic system. [38] presented different
schemes of chaotic parameter modulation. The objective was to modulate
one parameter of the transmitter Chua oscillator while keeping the other at a
fixed value. In the receiver, an adaptive controller was implemented in order
to determine the corresponding changing parameter.

The objective of this paper is twofold. First, we introduce a new modifica-
tion of the Chua oscillator and second, a communication scheme is proposed
as an application based on it. The modification consists in changing the non-
linear term to a smooth nonlinear function that is also bounded. We present
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different proofs of chaoticity of this newly modified system. Thus, a bifur-
cation diagram, a Poincaré map and the Lyapunov exponents are presented
in order to show how the modified oscillator features chaotic behavior when
the appropriate parameters values are chosen. The modified Chua oscillator
is used to encrypt/decrypt a message signal based on the scheme proposed
by [44] in which a highly nonlinear function is used along with the chaotic
signals. The advantage of the scheme is that neither the key signals nor the
encrypted signals are transmitted over the channels.

The structure of this paper is as follows. A brief introduction to the Chua
oscillator and the details of the proposed modification are given in Section 2.
The application to secure communications is then presented. The details of
the transmitter and receiver as well as the encryption/decryption blocks are
explained in Section 3. Then, the numerical results corresponding the secure
communications application are presented in Section 4. Finally, conclusions
are outlined in Section 5.

2. Modified Chua oscillator

The Chua oscillator, as shown in Figure 1(a), is the physical realization of
an oscillator developed by Leon Chua during his visit to Waseda University
(Tokyo, Japan) in 1983 - 1984. The circuit is well known for its simplicity
and the fact that its dynamic becomes chaotic when the appropriate devices
are selected. Hence the interest it has raised since it was published and that
is patent in several works found in literature. The dynamic of the circuit is
given by the following set of equations [22]:

C1

dvC1

dt
= G(vC2

− vC1
) − g(vC1

), (1)

C2

dvC2

dt
= G(vC1

− vC2
) + iL, (2)

L
diL
dt

= −vC2
. (3)

where vC1
, vC2

denote the voltage across the capacitors C1 and C2, respec-
tively and iL is the current through the inductor L; G is the electric conduc-
tance of the resistor. The function g(vC1

) is a piecewise linear function that
can be graphically represented as in Figure 1(b) and is given by:

g(vC1
) = m0vC1

+
1

2
(m1 −m0)|vC1

+Bp| +
1

2
(m0 −m1)|vC1

− Bp|. (4)
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(a) (b)

Figure 1: The Chua circuit. (a) Electric diagram. (b) Graphic of the nonlinear function
g(vC1

).

where m0 and m1 are parameters with units of Ω−1 and Bp has units of V .
Chaos in the circuit occurs when 1/C1 = 9, 1/C2 = 1, 1/L = 7, G =

0.7, m0 = −0.5, m1 = −0.8 and Bp = 1 [22]. In that paper, the authors
physically proved the existence of a chaotic attractor using this circuit but it
was not until 1986 that Chua, Matsumoto and Komuro provided a rigorous
mathematical demonstration of the chaoticity of this system [5].

The dynamic equations derived form the electric circuit analysis can be
transformed into a dimensionless form. Thus the following set of equations
is frequently used for studying the Chua chaotic oscillator [5]:

ẋ1 = α (x2 − f(x1)) , (5)

ẋ2 = x1 − x2 + x3, (6)

ẋ3 = −βx2, (7)

f(x1) = m1x1 +
1

2
(m0 −m1)(|x1 + 1| − |x1 − 1|). (8)

where the overdot denotes differentiation with respect to time t; α > 0,
β > 0, m0 and m1 are parameters that must be chosen appropriately to
obtain chaotic behavior. The function f(x1) is the canonical piecewise-linear
function describing an odd-symmeric three-segment piecewise-linear curve
having a breakpoint at x1 = −1 and at x1 = 1, a slope equal tom0 = a+1 < 0
at the inner segment and m1 = b+ 1 > 0 at the outer segments, respectively.
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Figure 2: Bifurcation diagram of the modified Chua oscillator.

In the next subsection of this paper, we will give the details of the modi-
fication of the Chua oscillator that we propose.

2.1. Proposed modification

We modified the original oscillator given by Equations 5 - 8 by choosing
the following characteristic function f(x1):

f(x1) = − sin x1 · e−0.1|x1|. (9)

Note that, unlike Equation 8, Equation 9 is a bounded smooth function
such that |f(x1)| ≤ 1. The new system has infinite equilibrium points located
at (x1, x2, x3) = (−kπ, 0, kπ), k ∈ Z, and it is possible to show that all of
them are unstable. Figure 2 is a bifurcation diagram of the modified Chua
oscillator. It depicts the route to chaos of the oscillator variable x1 when
the parameter α is varied form 8.7 to 9.36 and the parameter β is set at a
fixed value equal to 14.35. Period doubling occurs at α = 8.84, 9.01 and 9.05
approximately, and then, as α increases, the dynamics becomes more and
more complex until it reaches chaos at α = 9.065 approximately. Figure 3
illustrates the limit cycles of the oscillator for different values of α, namely
8.50, 8.90, 9.05, 9.10, 9.15 and 9.35 with β = 14.35.

According to the bifurcation diagram, the system of Equations 5-7 and 9
is chaotic when α = 9.35 and β = 14.35. The sensibility of this oscillator to
small changes in the initial conditions can be observed in Figure 4. This figure
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Figure 3: Limit cycles of the modified Chua oscillator for different values of α.

shows a comparison of the oscillator trajectories with three different sets of
initial conditions: IC1=[15, 0, -15], IC2=[15, 0.01, -15] and IC3=[15.01, 0,
-15].

2.2. Poincaré map and Lyapunov exponents

Further proofs of chaoticity of the modified Chua oscillator are given
in this subsection. We begin by plotting a Poincaré map of the modified
oscillator. It is well known that the Poincaré map is a useful graphical
tool that helps determining if a system is periodic, non-periodic, chaotic or
random [34]. It is created by plotting the points where the trajectories of the
system intersect a particular plane. If the Poincaré map consists neither of a
finite number of points nor of points filling up a closed curve but nevertheless
appear ordered, then it is a strong indicator of chaos [34].

Figure 6 depicts the Poincaré map of the modified Chua oscillator with
α = 9.35 and β = 14.35, generated when the trajectories intersect the plane
x+y+z+1 = 0 as it is depicted in Figure 5. The map of Figure 6 shows the
points where the trajectories intersect the plane. The two different markers
show if the trajectory goes in one direction or another as it intersects the
plane. The map is seen in the XY plane perspective.

Finally, the Lyapunov exponents of the system are calculated and pro-
vided as another proof of chaoticity. The Lyapunov exponents are the average
exponential rates of convergence or divergence of nearby orbits in phase space
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Figure 4: Oscillator dynamics subject to different initial conditions.

[28]. When the system is chaotic, the trajectories diverge, on average, at an
exponential rate characterized by the largest Lyapunov exponent. A positive
Lyapunov exponent is a strong indicator of chaos. If a system has at least
one positive Lyapunov exponent, then the system is chaotic [36]. A positive
exponent gives an indication of the rate at which the ability to predict the
system response is lost [24]. Several algorithms have been developed to cal-
culate both the largest Lyapunov exponent or all of them for a given system
(see for instance [24], [31], [28], [36] to name a few). In order to calculate
the maximum Lyapunov exponent, λ, we applied the numerical algorithm
detailed in [34]. The algorithm was implemented in Matlab/Simulink. The
simulation was run for a long time enough to let the system trajectories con-
verge. Figure 7 shows how λ evolves until it reaches stability. From these
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data, it could be found that the maximum Lyapunov exponent of our modi-
fied oscillator is λ ≈ 0.0025 which confirms the chaoticity of the system. We
have also calculated all the Lyapunov exponents following the algorithms de-
scribed in [36] using the Matlab program developed by [12]. The resulting
exponents were λ1 = 0.192222, λ2 = 0.003675 and λ3 = −1.807019. The
Lyapunov dimension was also calculated. It was done following the Kaplan-
Yorke definition which establishes a conjecture about the fractal dimension
of the attractor and the Lyapunov spectrum [30]. It can be defined as the
fractional dimension in which a cluster of initial conditions will neither ex-
pand nor contract as it evolves in time [4]. The Lyapunov dimension DL can
be calculated according to [30]:

DL = j +

∑j
i=1 λi

|λj+1|

where j is the largest integer such that λ1 + λ2 + ... + λj > 0. Then, the
Lyapunov dimension of the system is DL = 2.1084 which is consistent with
that of a third order chaotic system. Figure 8 illustrates the evolution of the
Lyapunov exponents when the initial conditions are IC= [15, 0,−15]. Finally
the results obtained with the Matlab program developed by [32] which is
based on the algorithms by [8] and [36] are: λ1 = 0.22037, λ2 = −0.005839
and λ3 = −1.82700 with DL = 2.1174 and IC= [15, 0,−15].

In the remaining of the paper, we present an application to secure com-
munications using this oscillator. In order to gain higher flexibility in the
implementation of the communication system, let t = µτ , µ > 0. This
time scaling allows for the use of higher frequency message signals without
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Figure 5: Trajectories of the modified Chua oscillator intersecting the plane x+y+z+1 = 0.
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Figure 7: Top: evolution of the maximum Lyapunov exponent. Bottom: zoom of the
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compromising the chaotic behavior of the oscillator. Thus dt = µdτ and
the following state space realization of the modified Chua oscillator can be
obtained:

ẋ1 = µα (x2 − f(x1)) , (10)

ẋ2 = µ (x1 − x2 + x3) , (11)

ẋ3 = −µβx2, (12)

f(x1) = − sin x1 · e−0.1|x1|. (13)

3. Application to secure communications

In this section, we present the scheme of a secure communication system
based on the modified Chua oscillator. The diagram of the proposed scheme
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Figure 8: Evolution of the Lyapunov exponents.

is shown in Figure 9. It consists of the following elements:

1) Chaotic oscillator : It is the modified Chua oscillator presented in Sec-
tion 2.1 that generates three signals (x1, x2 and x3). The signal x1 is
sent through the first channel for synchronization purposes.

2) Encryption block: The message m(t) is encrypted using a nonlinear
function me(t) = φ(x(t), m(t)), x(t) = [x1, x2, x3]. This signal is sent
through the second channel.

3) Channels: Two channels transmit the chaotic signal and the encrypted
message. Channel noise nd(t) is added to the signals x1(t) and me(t)
converting them into x1n(t) and men(t) respectively. In the receiver
side, the signals are filtered with a bank of filters, producing signals
x1f (t) and mef(t).

4) Synchronization block: A synchronization system is implemented in
order to retrieve the chaotic signals. It works by using the chaotic
signal x1f (t) only.

5) Decryption block: The message signal is decrypted by using a nonlinear
function md(t) = ψ(y(t), mef(t)), y(t) = [y1, y2, y3]. In this case, y(t)
is the estimation of the chaotic signals x(t) generated by the synchro-
nization block.

6) Retrieving block: In this stage, a decision algorithm is implemented in
the case that the transmitted message corresponds to a digital signal.
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The details of the main blocks of the communication system are given in
Sections 2 - 3.2

3.1. Encryption and decryption

We use the encryption/decryption scheme proposed by [44] in his work
about chaotic secure communication systems. We have modified the encryp-
tion and decryption functions as well as the chaotic oscillator. In this scheme,
there are two channels in order to make the synchronization process faster.
We now summarize the encryption/decryption mechanism:

• Encryption: The message m(t) to be sent is encrypted by means of
a nonlinear function φ : R

3 × R → R that is continuous in its first
argument x ∈ R

3 and satisfies the following property: for every fixed
pair of (x, m) ∈ R

3 × R, there exists a unique function ψ : R
3 →

R that is continuous in its first argument x ∈ R
3 and is such that

ψ(x, φ(x, m)) = m. The encryption function φ is built in terms of the
chaotic signals. The result is a signal me(t) containing the message
that is sent through one of the channels.

• Synchronization: In the receiver side of the communication system, a
synchronization block is implemented in order to retrieve the chaotic
oscillator signals and get the necessary information for the decryption.
Recall that the oscillator signal x1 is sent though one of the channels
for synchronization purposes. This signal is sufficient to generate the
signals y1, y2 and y3 that are estimations of the master oscillator signals
x1, x2 and x3, respectively. Retrieving this signal is necessary in order
to decrypt the message that is received on the second channel. The
details of the synchronizer will be provided in Section 3.2
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• Decryption: Once the oscillator signals are retrieved, the decryption
function ψ can be used along with the signal mef(t) in order to get the
message m(t).

3.2. Synchronization

The synchronization block is implemented in the receiver side of the com-
munication system in order to retrieve the oscillator signals. It consists of a
dynamic system that takes the signal x1 sent through the first communica-
tion channel producing the signals y1, y2 and y3 that are estimations of the
oscillator signals x1, x2 and x3, respectively. The following theorem is the
base of the synchronization system.

Theorem 1. Consider the modified Chua oscillator given by Equations 10 -
12 and 13 with α and β having appropriate positive values that guarantee the
chaoticity of the system. Consider also a constant ρ > 0 such that |x2(t)| < ρ.
Then the system given by:

ẏ1 = µk · sgn(x1 − y1), (14)

ẏ2 = µ (x1 − y2 + y3) , (15)

ẏ3 = −µβy2, (16)

where k is a design parameter such that k > α(ρ+ 1), synchronizes with the
modified Chua oscillator and thus:

i) lim
t→Ts

y1(t) = x1(t), for a given Ts ∈ R
+.

ii) lim
t→∞

y2(t) = x2(t).

iii) lim
t→∞

y3(t) = x3(t).

Proof 1. Let the system of Equations 10 - 12 be the master and the system
of Equations 14 - 16 be the slave. The function f(x1) in 13 is such that
|f(x1)| ≤ 1, ∀t ≥ 0. Since the system 10 - 12 is chaotic, the signal x2(t) is
bounded and thus, there exists a constant ρ > 0 such that |x2(t)| ≤ ρ ∀t ≥ 0.
In fact, ρ depends on the initial conditions. However, assuming that x2(0)
lays inside the attractor then ρ can be obtained independently of the initial
conditions. The proof begins by defining the following error variable and its
derivative:

e1 = x1 − y1, ė1 = ẋ1 − ẏ1. (17)
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Consider the terms ẋ1 and ẏ1 from Equations 5 and 14, respectively.
Substitution of these terms into Equation 17 yields:

ė1 = µα(x2 − f(x1)) − µksgn(x1 − y1). (18)

Let V1 =
1

2
e2

1 be a Lyapunov function candidate. Then:

V̇1 = e1ė1 = e1µαx2 − e1µαf(x1) − µke1sgn(e1)

= −µk|e1| + µαx2e1 − µαf(x1)e1

≤ −µk|e1| + µαx2e1 + |µαf(x1)e1|

≤ −µk|e1| + µαx2e1 + |µα| · 1 · |e1|

= −µk|e1| + µαx2e1 + µα|e1|.

Recall that α > 0 and |x2(t)| < ρ. Thus we can write:

V̇1 ≤ −µk|e1| + µαρ|e1| + µα|e1|

= −µ|e1| (k − α(ρ+ 1)) .

V̇1 will decrease and converge in finite time if and only if k > α(ρ + 1).
Under this condition, there exists a settling time t = Ts such that

lim
t→Ts

x1(t) = y1(t),

and thus x1(t) = y1(t), ∀t ≥ Ts. After t = Ts, the synchronization system is
completed with the subsystem of Equations 15 and 16. Define two new error
variables e2 and e3 and their derivatives, as follows:

e2 = x2 − y2, ė2 = ẋ2 − ẏ2,

e3 = x3 − y3, ė3 = ẋ3 − ẏ3.

From Equations 6 and 15 we have that

ė2 = µ (x1 − x2 + x3 − x1 + y2 − y3)

= µ (−x2 + x3 + y2 − y3)

= µ (−e2 + e3) .

14



From Equations 7 and 16 we have that

ė3 = −µβx2 + µβy2 = −µβ(x2 − y2) = −µβe2.

Rearrange the error variables e2 and e3 as a matrix system ė = µAe:

[

ė2

ė3

]

= µ

[

−1 1
−β 0

]

︸ ︷︷ ︸

A

[

e2

e3

]

.

It is straightforward to show that for all β > 0, the eigenvalues of matrix
A have negative real parts and thus:

lim
t→∞

y2(t) = x2(t),

lim
t→∞

y3(t) = x3(t).

4. Numerical results

The communication system of Section 3 was implemented in Matlab/
Simulink for performance analysis. The transmitter is the implementation
of Equations 10 - 13 with α = 9.35 and β = 14.35. The receiver is the
implementation of Equations 14 - 15 with k = 1000. For simulation purposes,
noise was added to each signal and thus, a bank of filters was implemented
at the input of the receiver to clean the signals before their processing. The
filters implemented in the system are of the Butterworth type with cutoff
frequencies of 40 rad/s and 100 rad/s. They have the following transfer
functions:

i) Channel 1 (Synchronization signal): H1(s) =
1600

s2 + 56.6s+ 1600
.

ii) Channel 2 (Encrypted message): H2(s) =
10000

s2 + 141s+ 10000
.

The following simulations were performed with the following initial con-
ditions: x1(0) = 15, x2(0) = 0, x3(0) = −15, y1(0) = 14, y2(0) = 1 and
y3(0) = −14. Figure 10 illustrates the synchronization of the chaotic signals
in the receiver. It is observed that signal y1 synchronizes first, at t = 0.2
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seconds approximately, while signals y2 and y3 take longer (5 seconds, ap-
proximately). Given that the signals y2(t) and y3(t) have an asymptotic
convergence to x2 and x3, respectively, it could be expected that some errors
might occur initially, during the transient response, when decrypting the mes-
sage. In order to avoid this problem, we propose sending dummy information
in the beginning of the communication so as to avoid losing information.
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Figure 10: Oscillator signals synchronization and their estimations.

In the first simulation, the message m(t) is composed of a sequence of sine
waves with frequencies ω = π, 2π and 3π rad/s and µ = 1. The encryption
and decryption functions were chosen as:

Encryption: φ : me(t) = |x3|
2

3 − 6.5 + (x2
2 + 0.1)m(t).
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Decryption: ψ : md(t) =
me(t) + 6.5 − |y3|

2

3

y2
2 + 0.1

.

Figure 11 shows the simulation results of the 50-second transmission. The
top subfigure compares the encrypted message signal as it travels through
the channel. Thus, this subfigure depicts the signals me(t) (generated by
the master oscillator), men(t) (the noisy me(t) signal) and men(t) (the fil-
tered version of the noisy signal). The bottom subfigure shows the original
message sent, m(t), compared to the decrypted version md(t). As explained
earlier, during the first five seconds of transmission the estimation is not good
because the slave oscillator signals have not synchronized yet. Once synchro-
nization is achieved, the message is estimated correctly as can be observed
in the figure.
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Figure 11: Sinusoidal message signal. Top: encrypted message (original, noisy and fil-
tered). Bottom: original and retrieved message.

In the second test, a digital message m(t) is sent through the channel. The
digital message signal consists of a binary signal with the following values:
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-0.5 and +0.5. The message is sent at a rate of Tb bits/second. For this
simulation, we set µ = 5 and Tb = 0.5. The encryption and decryption
functions were chosen as:

Encryption: φ : me(t) = sgn(x2)m(t).

Decryption: ψ : mr(t) = sgn(y2)me(t).

Figure 12 shows the first ten 10 seconds of transmission of the digital
message. The top subfigure compares the encrypted message (original, noisy
and filtered). The bottom subfigure compares the original digital message
m(t) to the decrypted message in the receiver md(t). Recall that m(t) is
a digital signal and thus a decision algorithm must be implemented before
obtaining the actual message. The decision algorithm implemented in this
case is as follows: at an instant t = tk, k = 1, 2, ..., n, compare the value
of md(tk) to a threshold equal to zero. If md(tk) ≥ 0 then mr(tk) = +0.5,
otherwise, mr(tk) = −0.5. Figure 13 (top) shows the results. As explained
earlier, some dummy information is sent before the actual message in order to
let the slave oscillator synchronize and avoid errors in retrieving the message.
The error is defined as em(tk) = |m(tk) − mr(tk)|. In this case, 2 seconds
of dummy information were introduced followed by the true message which
was correctly retrieved (Figure 13, bottom). The time to synchronize the
signals is less than in the previous case because the time has been scaled by
the factor µ = 5.

5. Conclusion

In this paper we introduced a modified Chua chaotic oscillator. The non-
linear term of the original oscillator was changed to a smooth and bounded
function that allows for easier analysis and synchronization with another os-
cillators. The diagram of bifurcation, the Poincaré map and the Lyapunov
exponents were presented as proofs of the chaotic dynamics of the proposed
oscillator. An application to secure communications using the modified oscil-
lator was developed and its performance evaluated by numerical simulations.
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