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Abstract Gvozdeva, Hemaspaandra, and Slinko (2011) have introduced three hierar-
chies for simple games in order to measure the distance of a given simple game to the
class of (roughly) weighted voting games. Their third class Cα consists of all simple
games permitting a weighted representation such that each winning coalition has a
weight of at least 1 and each losing coalition a weight of at most α. For a given game
the minimal possible value of α is called its critical threshold value. We continue
the work on the critical threshold value, initiated by Gvozdeva et al., and contribute
some new results on the possible values for a given number of voters as well as some
general bounds for restricted subclasses of games. A strong relation beween this con-
cept and the cost of stability, i.e. the minimum amount of external payment to ensure
stability in a coalitional game, is uncovered.
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1 Introduction

For a given set N = {1, . . . , n} of n voters a simple game is a function χ : 2N →
{0, 1} which is monotone, i.e. χ(S) ≤ χ(T ) for all S ⊆ T ⊆ N , and fulfills χ(∅) =
0, χ(N) = 1. Here 2N denotes the set of all subsets of N . Those subsets are also
called coalitions andN is called the grand coalition. By representing the subsets ofN
by their characteristic vectors in {0, 1}n we can also speak of a (monotone) Boolean
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function. If χ(S) = 1 then S is called a winning coalition and otherwise a losing
coalition. An important subclass is the class of weighted voting games for which there
are weights wi for i ∈ N and a quota q > 0 such that the condition

∑
i∈S wi ≥ q

implies coalition S is winning and the condition
∑
i∈S wi < q implies coalition

S is losing. One attempt to generalize weighted voting games was the introduction
of roughly weighted games, where coalitions S with

∑
i∈S wi = q can be either

winning or losing independently from each other. 1 As some games being important
both for theory and practice are not even roughly weighted, Gvozdeva et al. (2012)
have introduced three hierarchies for simple games to measure the distance of a given
simple game to the class of (roughly) weighted voting games. In this paper we want
to study their third class Cα, where the tie-breaking point q is extended to the interval
[1, α] for an α ∈ R≥1. Given a game χ, the smallest possible value for α is called the
critical threshold-value µ(χ) of χ, see the beginning of Section 2. Let cS(n) denote
the largest critical threshold-value within the class of simple games χ ∈ Sn on n
voters. By SpecS(n) := {µ(χ) | χ ∈ Sn} we denote the set of possible critical
threshold values.

During the program of classification of simple games, see e.g. von Neumann and
Morgenstern (2007), several subclasses have been proposed and analyzed. Although
weighted voting games are one of the most studied and most simple forms of sim-
ple games, they have the shortcomming of not covering all games. The classes Cα
resolve this by introducing a parameter α, so that by varying α the classes of games
can be made as large as possible. The critical threshold value in some sense mea-
sures the complexity of a given game. Another such measure is the dimension of a
simple game, see e.g. Taylor and Zwicker (1993). Here we observe that there is no
direct relation between these two concept, i.e. simple games with dimension 1 have a
critical threshold value of 1, but simple games with dimension larger than 1 can have
arbitrarily large critical threshold values.

Also graphs have been proposed as a suitable representational language for coali-
tional games. There are a lot of different graph-based games like e.g. shortest path
games, connectivity games, minimum cost spanning tree games, and network flow
games. The players of a network flow game are the edges in an edge weighted graph,
see Granot and Granot (1992) and Kalai and Zemel (1982). For so called threshold
network flow games, see e.g. Bachrach (2011), a coalition of edges is winning if and
only if those edges allow a flow from a given source to a sink which meets or exceeds
a given quota or threshold. Here the same phenomenon as for weighted voting games
arises, i.e. those graph based weighted games are not fully expressive, but general
network flow games are (within the class of stable games). Similarly one can define
a hierarchy by requesting a flow of at least 1 for each winning coalition and a flow of
at least α for each losing coalition.

The concept of the cost of stability was introduced in Bachrach et al. (2009). It
asks for the minimum amount of external payment given to the members of a coaltion

1 Some authors, e.g. Gvozdeva et al. (2012), allow q = 0, which makes sense in other contexts like
circuits or Boolean algebra. Later on we want to rescale the quota q to one, so that we forbid a quota of
zero by definition. Another unpleasant consequence of allowing q = 0 would be that each simple game on
n voters is contained in a roughly weighted game on n + 1 voters, i.e., we can add to each given simple
game a voter who forms a winning coalition on its own to obtain a roughly weighted game.
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to ensure stability in a coalition game, i.e. in other words, to guarantee a non-empty
core. It will turn out that the cost of stability is closely related to the notion of α-
roughly weightedness. For network flow games some results on the cost of stability
can be found in Resnick et al. (2009).

Another line of research, that is related with our considerations, looks at the ap-
proximability of Boolean functions by linear threshold functions, see Diakonikolas
and Servedio (2012).

In Gvozdeva et al. (2012) the authors have proven the bounds 1
2 ·
⌊
n
2

⌋
≤ cS(n) ≤

n−2
2 and determined the spectrum for n ≤ 6. For odd numbers of voters we slightly

improve the lower bound to cS(n) ≥
⌊
n2

4

⌋
/n, which is conjectured to be tight. As

upper bound we prove cS(n) ≤ n
3 . In order to determine the exact values of cS(n) for

small numbers of voters we provide an integer linear programming formulation. This
approach is capable to treat cases where exhaustive enumeration is computationally
infeasible due to the rapidly increasing number of voting structures. Admittedly, this
newly introduced technique, which might be applicable in several other contexts in
algorithmic game theory too, is still limited to a rather small number of voters.

From known results on the spectrum of the determinants of binary n×n-matrices
we are able to conclude some information on the spectrum of the possible critical
threshold values.

The same set of problems can also be studied for subclasses of simple games and
we do so for complete simple games, denoted here by C. Here we conjecture that the
maximum critical threshold value cC(n) of a complete simple game on n voters is
bounded by a constant multiplied by

√
n on both sides. A proof could be obtained

for the lower bound, and for some special subclasses of complete simple games, also
for the upper bound. In general we can show that cC(n) grows slower than any linear
function reflecting the valuation that complete simple games are somewhat nearer to
weighted voting games than general simple games.

The remaining part of this paper is organized as follows: After this introduction
we present the basic definitions and results on linear programs determining the crit-
ical threshold value of a simple game or a complete simple game in Section 2. In
Section 3 we provide certificates for the critical threshold value. General lower and
upper bounds on the maximum possible critical threshold values cS(n) and cC(n) of
simple games and complete simple games are the topic of Section 4. In Section 5
we provide an integer linear programming formulation to determine the exact value
cS(n) and cC(n). To this end we utilize the dual of the linear program determining
the critical threshold value. In Section 6 we give some restrictions on the set of pos-
sible critical threshold values and tighten the findings of Gvozdeva et al. (2012). We
end with a conclusion in Section 7.

2 Preliminaries

In this paper we want to study different classes of voting structures. As abbreviation
for the most general class we use the notation Bn for the set of Boolean functions
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f : 2N → {0, 1} with f(∅) = 0 on n variables2. Later on we specialize these
sets to monotone Boolean functions with the additional restriction f(N) = 1, called
simple games, and use the notation Sn. Even more refined subclasses are the set Cn of
complete simple games and the setWn of weighted voting games on n voters. These
sets are ordered as Bn k Sn k Cn kWn, where the inclusions are strict if n is large
enough. In order to state examples in a compact manner we often choose weighted
voting games χ, since they can be represented by [q;w1, . . . , wn], where q is a quota
and the wi are weights. We have χ(S) = 1 if and only if the sum

∑
i∈S wi ≥ q for

each subset S ⊆ N . As a shortcut for the sum of weights
∑
i∈S wi of a coalition

S ⊆ N we will use w(S) in the following.
In this section we state the preliminaries, i.e., we define the mentioned classes

of voting structures and provide tailored characterizations of the criticial threshold
value within these classes. As a first result we determine the largest possible critical
threshold value for Boolean functions in Lemma 1. Since it is closely related, we
briefly introduce the concept of the cost of stability for binary voting structures.

Definition 1 A (Boolean) function f : 2N → {0, 1} with f(∅) = 0 is called α-
roughly weighted for an α ∈ R≥1 if there are weights w1, . . . , wn ∈ R fulfilling

w(S) ≥ 1 ∀S ⊆ N : f(S) = 1

and
w(S) ≤ α ∀S ⊆ N : f(S) = 0.

We remark that a function f with f(∅) = 1 cannot be α-roughly weighted for any
α ∈ R. In contrast to most definitions of roughly weighted games we allow negative
weights, in the first run, and consider a wider class than simple games in our initial
definition, i.e. Boolean functions with f(∅) = 0. Later on we will focus on subclasses
of Bn, where we can assume that all weights are non-negative. By Tα (instead of Cα
as in Gvozdeva et al. (2012)) we denote the class of all α-roughly weighted Boolean
functions f with f(∅) = 0. If f ∈ Tα but f /∈ Tα′ for all 1 ≤ α′ < α we call α the
critical threshold value µ(f) of f . Given f we can determine the critical threshold
value using the following linear program:

Min α
w(S) ≥ 1 ∀S ⊆ N : f(S) = 1
w(S) ≤ α ∀S ⊆ N : f(S) = 0
α ≥ 1
w1, . . . , wn ∈ R

(1)

We consider it convenient to explicitly add the constraint α ≥ 1 in Definition 1,
in accordance with Gvozdeva et al. (2012), and in the linear program (1). Otherwise
we would obtain the optimal solution α = 0 for the weighted game [2; 1, 1] ∈ B2
or the optimal solution α = 2

3 for the weighted game [3; 2, 2, 1, 1] ∈ B4 using the
weights w1 = w2 = 2

3 and w3 = w4 = 1
3 . Since there are no coalitions with

weights strictly between 2
3 and 1 there are no contradicting implications. Arguably,

2 We remark that usually f(∅) = 1 is possible for Boolean functions too. In our context the notion of
α-roughly weightedness makes sense for f(∅) = 0, so that we generally require this property



On α-roughly weighted games 5

those values lesser than 1 contain more information, but on the other hand makes
notation more complicated. To avoid any misconception we directly require α ≥ 1
(as in Definition 1) to guarantee non-contradicting implications independently from
the possible weights of the coalitions.

At first we remark that the inequality system (1) has at least one feasible solu-
tion given by wi = 1 for all 1 ≤ i ≤ n and α = n. Next we observe that the critical
threshold value is a rational number, as it is the optimum solution of a linear program-
ming problem with rational coefficients, and that we can restrict ourselves to rational
weights wi. For a general Boolean function f : 2N → {0, 1} with f(∅) = 0 negative
weights may be necessary to achieve the critical threshold value. An example is given
by the function f of three variables whose entire set of coalitions S with f(S) = 1 is
given by {{1}, {2}, {1, 2}}. By considering the weights w1 = w2 = 1, w3 = −2 we
see that it is 1-roughly weighted. On the other hand we have the inequalities w1 ≥ 1,
w2 ≥ 1, andw1+w2+w3 ≤ α = 1 from which we concludew3 ≤ −1. Another way
to look at this example is to say that the critical threshold value would be 2 if only
non-negative weights are allowed. (Here n = 3 voters are the smallest possibility, i.e.
for n ≤ 2 there are non-negative realizations for the critical threshold value.)

A quite natural question is to ask for the largest critical threshold value µ(f)
within the class of all Boolean functions f : 2N → {0, 1} with f(∅) = 0, which we
denote by cB(n), i.e. cB(n) = max{µ(f) | f ∈ Bn}.

Lemma 1 cB(n) = n.

Proof By choosing the weights wi = 1 for all 1 ≤ i ≤ n we have 1 ≤ w(S) ≤ n
for all ∅ 6= S ⊆ N . Thus all functions f : 2N → {0, 1} with f(∅) = 0 are n-roughly
weighted. The maximum cB(n) = n is attained for example at the function with
f(N) = 0 and f({i}) = 1 for all 1 ≤ i ≤ n. Since the singletons {i} are winning,
we have wi ≥ 1 for all i ∈ N , so that w(N) ≥ n while N is a losing coalition. �

We would like to remark that if we additionally require f(N) = 1, then the
critical threshold value is at most n− 1, which is tight (the proof of Lemma 1 can be
easily adapted).

More interesting subclasses of Boolean functions with f(∅) = 0 are simple
games, i.e. monotone Boolean functions with f(∅) = 0 and f(N) = 1, where
f(S) ≤ f(T ) for all S ⊆ T . By Tα∩Sn we denote the class of allα-roughly weighted
simple games consisting of n voters and by cS(n) := max{µ(f) | f ∈ Sn} the
largest critical threshold value within the class of simple games consisting of n vot-
ers. For simple games we can restrict ourselves on non-negative weights and can
drop some of the inequalities in the linear program (1). (This is not true for general
Boolean functions as demonstrated in the previous example.)

Lemma 2 All simple games χ ∈ Tα ∩ Sn admit a representation in non-negative
weights.

Proof Let wi ∈ R, for 1 ≤ i ≤ n, be suitable weights. We set w′i := max(wi, 0) ∈
R≥0 for all 1 ≤ i ≤ n. For each winning coalition S ⊆ N we have w′(S) ≥ w(S) ≥
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1. Due to the monotonicity property of simple games for each losing coalition T ⊆ N
the coalition T ′ := {i ∈ T : wi ≥ 0} is also losing. Thus we have w′(T ) ≤
w(T ′) ≤ α. �

We remark that we have not used χ(∅) = 0 or χ(N) = 1 so that the statement
can be slightly generalized.

Definition 2 Given a simple game χ a coalition S ⊆ N is called a minimal winning
coalition if χ(S) = 1 and χ(S′) = 0 for all proper subsets S′ of S. Similarly a
coalition T ⊆ N is called a maximal losing coalition if χ(T ) = 0 and χ(T ′) = 1 for
all T ′ ⊆ N where T is a proper subset of T ′. By W we denote the set of minimal
winning coalitions and by L the set of maximal losing coalitions.

We would like to remark that a simple game can be completely reconstructed
from either the set W of its minimal winning coalitions or the set L of its maximal
losing coalitions, i.e. a coalition S ⊆ N is winning if and only if it contains a subset
S′ ∈ W . Similarly, a coalition T ⊆ N is losing if there is a T ′ ∈ L with T ⊆ T ′.

Proposition 1 The critical threshold value µ(χ) of a simple game χ ∈ Sn is given
by the optimal target value of the following linear program:

Min α
w(S) ≥ 1 ∀S ∈ W
w(S) ≤ α ∀S ∈ L
α ≥ 1
w1, . . . , wn ≥ 0

Proof Due to Lemma 2 we can assume w.l.o.g. that w1, . . . , wn ≥ 0. With this it
suffices to prove that a feasible solution of the stated linear program is also feasible for
the linear program (1). Let S ⊆ N be an arbitrary winning coalition, i.e., χ(S) = 1.
Since there exists an S′ ∈ W with S′ ⊆ S we have

w(S)
wi≥0
≥ w(S′) ≥ 1.

Similarly for each losing coalition T ⊆ N there exists a T ′ ∈ L with T ⊆ T ′ so that
we have

w(T )
wi≥0
≤ w(T ′) ≤ α. �

Again we have not used χ(∅) = 0 or χ(N) = 1 in the proof.

A well studied subclass of simple games (and superclass of weighted voting
games) arises from Isbell’s desirability relation, see Isbell (1958): We write i A j

for two voters i, j ∈ N iff we have χ
(
{i}∪S\{j}

)
≥ χ(S) for all j ∈ S ⊆ N\{i}.

A pair (N,χ) is called a complete simple game if it is a simple game and the bi-
nary relation A is a total preorder. To factor out symmetry we assume i A j for all
1 ≤ i < j ≤ n, i.e. voter i is at least as powerful as voter j, in the following. We
abbreviate i A j, j A i by i � j forming equivalence classes of voters N1, . . . , Nt.
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Let us denote |Ni| = ni for 1 ≤ i ≤ t. We assume that those equivalence classes are
ordered with decreasing influence, i.e. for u ≤ v, i ∈ Nu, j ∈ Nv we have i A j.
A coalition in a complete simple game can be described by the numbers ah of voters
from equivalence class Nh, i.e. by a vector (a1, . . . , at). Note that the same vector
represents

(
n1

a1

)(
n2

a2

)
. . .
(
nt

at

)
coalitions that only differ in equivalent voters.

To carry over the concept of minimal winning coalitions and maximal losing
coalitions to vectors, we need a suitable partial ordering:

Definition 3 For two integer vectors ã = (a1, . . . , at) and b̃ = (b1, . . . , bt) we write

ã � b̃ if we have
k∑
i=1

ai ≤
k∑
i=1

bi for all 1 ≤ k ≤ t. For ã � b̃ and ã 6= b̃ we use ã ≺ b̃

as an abbreviation. If neither ã � b̃ nor b̃ � ã holds we write ã ./ b̃.

In words, we say that ã is smaller than b̃ if ã ≺ b̃ and that ã and b̃ are incomparable if
ã ./ b̃.

With Definition 3 and the representation of coalitions as vectors in Nt at hand, we
can define:

Definition 4 A vector m̃ := (m1, . . . ,mt) in a complete simple game(
(n1, . . . , nt), χ

)
is a shift-minimal winning vector if m̃ is a winning vector and

every vector m̃′ ≺ m̃ is losing. Analogously, a vector m̃ is a shift-maximal losing
vector if m̃ is a losing vector and every vector m̃′ � m̃ is winning.

As an example we consider the complete simple game χ ∈ C4 whose minimal
winning coalitions are given by {1, 2}, {1, 3}, {1, 4}, and {2, 3, 4}. The equivalence
classes of voters are given by N1 = {1} and N2 = {2, 3, 4}. With this the shift-
minimal winning vectors are given by (1, 1) and (0, 3). By W we denote the set of
shift-minimal winning vectors and by L the set of shift-maximal losing vectors. Each
complete simple game can be entirely reconstructed from eitherW or L.

In Carreras and Freixas (1996) there is a very useful parameterization theorem
for complete simple games:

Theorem 1

(a) Let a vector
ñ = (n1, . . . , nt) ∈ Nt>0

and a matrix

M =


m1,1 m1,2 . . . m1,t

m2,1 m2,2 . . . m2,t

...
...

. . .
...

mr,1 mr,2 . . . mr,t

 =


m̃1

m̃2

...
m̃r


be given, which satisfies the following properties:
(i) 0 ≤ mi,j ≤ nj , mi,j ∈ N≥0 for 1 ≤ i ≤ r, 1 ≤ j ≤ t,

(ii) m̃i ./ m̃j for all 1 ≤ i < j ≤ r,
(iii) for each 1 ≤ j < t there is at least one row-index i such that mi,j > 0,

mi,j+1 < nj+1 if t > 1 and m1,1 > 0 if t = 1, and
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(iv) m̃i m m̃i+1 for 1 ≤ i < t (lexicographic order).
Then there exists a complete simple game (N,χ) whose equivalence classes of
voters have cardinalities as in ñ and whose shift-minimal winning vectors coin-
cide with the rows ofM.

(b) Two complete games (ñ1,M1) and (ñ2,M2) are isomorphic, i.e., there exists a
permutation of the voters so that the games are equal, if and only if ñ1 = ñ2 and
M1 =M2.

The rows of M correspond to the shift-minimal winning vectors whose number is
denoted by r. The number of equivalence classes of voters is denoted by t.

By cC(n) := {maxµ(χ) | χ ∈ Cn} we denote the largest critical threshold value
within the class of complete simple games on n voters. As W ⊆ W and L ⊆ L
we want to provide a linear programming formulation for the critical threshold value
µ(χ) of a complete simple game χ ∈ Cn, similar to Proposition 1, based on shift-
minimal winning and shift-maximal losing vectors. At first we show that we can
further restrict the set of weights. To this end we call a feasible solution w of the
inequality system in Proposition 1, where α is given, a representation (with respect
to α).

Lemma 3 All complete simple games χ ∈ Tα ∩ Cn admit a representation with
weights satisfying w1 ≥ · · · ≥ wn ≥ 0.

Proof As χ ∈ Cn ⊆ Sn is a simple game, there exists a representation with weights
w′1, . . . , w

′
n ∈ R≥0 due to Lemma 2. Let (j, h) be the lexicographically smallest

pair such that w′j < w′h and j < h. By τ we denote the transposition (j, h), i.e. the
permutation that swaps j and h, and set wi := w′τ(i).

For a winning coalition S with j ∈ S, h /∈ S we have w(S) ≥ w′(S) ≥ 1. If S is
a winning coalition with j /∈ S, h ∈ S then τ(S) is a winning coalition too and we
have w(S) = w′(τ(S)) ≥ 1. For a losing coalition T with j /∈ T , h ∈ T we have
w(T ) ≤ w′(T ) ≤ α. If T is a losing coalition with j ∈ T , h /∈ T then τ(T ) is a
losing coalition too and we have w(T ) = w′(τ(T )) ≤ α.

By recursively applying this argument we can construct representing weights ful-
filling w1 ≥ · · · ≥ wn ≥ 0. �

We remark that the previous complete simple game with minimal winning coali-
tions {1, 2}, {1, 3}, {1, 4}, and {2, 3, 4} can be represented as a weighted voting
game [4; 3, 2, 1, 1]. Another representation of the same game using equal weights for
equivalent voters would be [3; 2, 1, 1, 1].

Lemma 4 All complete simple games χ ∈ Tα ∩ Cn admit a representation with
weights w1 ≥ · · · ≥ wn ≥ 0 where voters of the same equivalence class have the
same weight.

Proof Let w′1 ≥ · · · ≥ w′n ≥ 0 be a representation of χ and N1, . . . , Nt the set of
equivalence classes of voters. By 1 ≤ j ≤ t we denote the smallest index such that
not all voters in Nj have the same weight and define new weights wi := w′i for all

i ∈ N\Nj andwi :=

∑
h∈Nj

w′h

|Nj | , i.e. the arithmetic mean of the previous weights inNj .
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By recursively applying this construction we obtain a representation with the desired
properties. It remains to show that the new weights wi fulfill the α-conditions.

Let S be a winning coalition with k = |S ∩Nj |. By S′ we denote the union of
S\Nj and the k lightest voters from Nj . Since S′ is a winning coalition too we have
w(S) ≥ w′(S′) ≥ 1. Similarly let T be a losing coalition wit k = |T ∩Nj |: By T ′

we denote the union of T\Nj and the k heaviest voters from Nj . Since T ′ is a losing
coalition too we have w(T ) ≤ w′(T ′) ≤ α. �

Lemma 5 The critical threshold value µ(χ) of a complete simple game χ ∈ Cn with
t equivalence classes of voters is given by the optimal target value of the following
linear program:

Min α
t∑
i=1

aiwi ≥ 1 ∀(a1, · · · , at) ∈ W
t∑
i=1

aiwi ≤ α ∀(a1, · · · , at) ∈ L

α ≥ 1
wi ≥ wi+1 ∀1 ≤ i ≤ t− 1
wt ≥ 0

Proof Due to Lemma 4 we can assume that for the critical threshold value µ(χ) = α
there exists a feasible weighting fulfilling the conditions of the stated linear program.
It remains to show that w(W ) ≥ 1 and w(L) ≤ α holds for all shift-winning vectors
W and all losing vectors L. Therefore we denote by W ′ ∈ W an arbitrary shift-
minimal winning vector with W � W ′ and by L′ ∈ L an arbitrary shift-maximal
losing vector with L � L′. The proof is finished by checking w(L) ≤ w(L′) ≤ α
and w(W ) ≥ w(W ′) ≥ 1. �

So for complete simple games the number of constraints could be further reduced.
In this context we remark that by additionally disregarding the conditions wi ≥ wi+1

from the linear program we would lose the information about the order on equivalence
classes. This effect is demonstrated by the following example. Let us consider the
complete simple game (n1, n2) = (15, 4) with unique shift-minimal winning vector
(7, 2). There are two shift-maximal losing vectors: (8, 0) and (6, 4). Choosing the
special solution w1 = 1

14 , w2 = 1
4 , α = 3

2 would be feasible for

7w1 + 2w2 ≥ 1

8w1 ≤ α
6w1 + 4w2 ≤ α

α ≥ 1

w1, w2 ≥ 0

For the coalition (8, 1) we obtain the weight 8w1 + 1w2 = 23
28 < 1, so that it should

be a losing coalition which is a contradiction to (8, 1) � (7, 2). So we have to use the
ordering on the weights.

At the beginning of this section we have argued that the condition α ≥ 1 is
necessary, since otherwise the optimal target value of the stated linear programming
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formulations will not coincide with µ(χ) in all cases. On the other hand, if z?(χ)
denotes the optimal target value of one of the stated LPs, where we have dropped the
condition α ≥ 1, then we have

µ(χ) = max(z?(χ), 1) .

So, in the following we will drop the condition α ≥ 1 whenever it seems beneficial
for the ease of a shorter presentation while having the just mentioned exact corre-
spondence in mind.

An important solution concept in cooperative game theory is the core, i.e. the
set of all stable imputations, see e.g. Tijs (2011) for an introduction. Since the core
can be empty under certain circumstances, the possibility of external payments was
considered in order to stabilize the outcome, see Bachrach et al. (2009). The external
party quite naturally is interested in minimizing its expenditures. This leads to the
concept of the cost of stability (CoS) of a coalition game. Skipping the relation of
CoS with the core, we directly define the cost of stability CoS(f) of a given Boolean
function f with f(∅) = 0 as the solution of the following linear program:

Min ∆ (2)
∆ ≥ 0 (3)∑

i∈N
pi = f(N) +∆ (4)∑

i∈S
pi ≥ f(S) ∀S ⊆ N (5)

pi ≥ 0 ∀i ∈ N. (6)

The cost of stability is an upper bound for the critical threshold value:

Lemma 6 For a Boolean function f ∈ Bn with f(N) = 1 we have µ(f) ≤ 1 +
CoS(f).

Proof Let p1, . . . , pn, ∆ be an optimal solution for the above linear program for
the cost of stability. If we choose the weights as wi = pi, then we have wi ∈ R
and we have w(S) ≥ 1 for all winning coalitions S due to constraint (5). Applying
constraint (6) and constraint (4) yields

w(S) =
∑
i∈S

pi ≤
∑
i∈N

pi = f(N) +∆ = 1 + CoS(f)

for all coalitions S ⊆ N . Thus every losing coalition has a weight of at most 1 +
CoS(f). �

Due to CoS(f) ≤ n · maxS⊆N f(S) ≤ n, see Theorem 3.4 in Bachrach et al.
(2009), we have CoS(f) ≤ n for all f ∈ Bn, where equality is attained for the
Boolean function with f(S) = 1 for all S 6= ∅. With respect to Lemma 1 we then
mention the relation

cB(n) = max
f∈Bn

µ(f) = max
f∈Bn

CoS(f) = n.



On α-roughly weighted games 11

On the other hand we observe that the ratio between CoS(f) and µ(f) can be
quite large. Theorem 3.3 in Bachrach et al. (2009) states CoS(χ) = n

dqe − 1 for
the weighted voting game χ = [q;w, . . . , w], while we have µ(χ) = 1. Setting
w = q = 1 we see that the ration can become at least as large as n− 1.

By imposing more structure on the set of feasible games, the upper boundCoS(f) ≤
n, for f ∈ Bn, could be reduced significantly. To this end we introduce further nota-
tion:

Definition 5 A Boolean function f ∈ Bn is called super-additive if we have f(S) +
f(T ) ≤ f(S ∪ T ) for all disjoint coalitions S, T ⊆ N . It is called anonymous if we
have f(S) = f(T ) for all coalitions S, T ⊆ N with |S| = |T |, i.e. the outcome only
depends on the cardinality of the coalition.

In our context super-additivity means that each pair of winning coalitions has a non-
empty intersection, which is also called a proper game. These are the most used
voting games for real world institutions.

3 Certificates

In computer science, more precisely in complexity theory, a certificate is a string
that certifies the answer to a membership question (or the optimality of a computed
solution). In our context we e.g. want to know whether a given simple game χ ∈ Sn is
α-roughly weighted. If the answer is yes, we just need to state suitable weights. Given
the weights, the answer then can be checked by testing the validity of the inequalities
in the linear program of Proposition 1. Since bothW and L form antichains, i.e. no
element is contained in another, we can conclude from Sperner’s theorem that at most
2
(

n
bn/2c

)
+n+1 inequalities have to be checked. But also in the other case, where the

answer is no, we would like to have a computational witness that χ is not α-roughly
weighted.

For weighted voting games trading transforms, see e.g. Taylor and Zwicker (1999),
can serve as a certificate for non-weightedness. In Gvozdeva and Slinko (2011) this
concept has been transfered to roughly weighted games and it was proven that for
each non-weighted simple game consisting of n voters there exists a trading trans-
form of length at most

⌊
(n+ 1) · 2 1

2n log2 n
⌋

.
Using the concept of duality in linear programming one can easily construct a

certificate for the fact that a given voting structure χ is not α′-roughly weighed for
all α′ < α, where α ≥ 1 is fixed. To be more precise, we present a certificate for the
inequality µ(χ) ≥ α.

The dual of a general linear program min cTx,Ax ≥ b, x ≥ 0 (called primal) is
given by max bT y,AT y ≤ c, y ≥ 0. The strong duality theorem, see e.g. Vanderbei
(2008), states that if the primal has an optimal solution, x?, then the dual also has
an optimal solution, y?, such that cTx? = bT y?. As mentioned before, the linear
program for the determination of the critical threshold value always has an optimal
solution, so that we can apply the strong duality theorem to obtain a certificate.

Considering only a subset of the winning coalitions for the determination of the
critical threshold value means removing some constraints of the corresponding linear
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program. This enlarges the feasible set so that the optimal solution will eventually
decrease but not increase. For further utilization we state the resulting lower bound
for the critical threshold value of this approach:

Lemma 7 For a given simple game χ ∈ Sn let W ′ be a subset of its winning coali-
tions and L′ be a subset of its losing coalitions. If (u, v) is a feasible solution of the
following linear program with target value α′ then we have µ(χ) ≥ α′.

Max
∑

S∈W ′
uS∑

S∈W ′:i∈S
uS −

∑
T∈L′:i∈T

vT ≤ 0 ∀1 ≤ i ≤ n∑
T∈L′

vT ≤ 1

uS ≥ 0 ∀S ∈W ′
vT ≥ 0 ∀T ∈ L′

Proof The stated linear program is the dual of

Min α∑
i∈S

wi ≥ 1 ∀S ∈W ′

α−
∑
i∈T

wi ≥ 0 ∀T ∈ L′

wi ≥ 0 ∀1 ≤ i ≤ n,

which is a relaxation of the linear program (1) determining the critical threshold
value. �

To briefly motivate the underlying ideas we consider an example. Let the sim-
ple game χ for 5 voters be defined by its set

{
{1, 2}, {2, 4}, {3, 4}, {2, 5}, {3, 5}

}
of minimal winning coalitions. The set of maximal losing coalitions is given by{
{1, 3}, {2, 3}, {1, 4, 5}

}
. For this example the linear program of Proposition 1 to

determine the critical α (after some easy equivalence transformations) reads as

Min α s.t.
w1 + w2 ≥ 1
w2 + w4 ≥ 1
w3 + w4 ≥ 1
w2 + w5 ≥ 1
w3 + w5 ≥ 1
α− w1 − w3 ≥ 0
α− w2 − w3 ≥ 0
α− w1 − w4 − w5 ≥ 0

α ≥ 1
w1 ≥ 0, . . . , w5 ≥ 0

(We have replaced the conditionsw(S) ≤ α for the losing coalitions S byα−w(S) ≥
0.)
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Running a linear program solver yields the optimal solution w1 = w4 = w5 = 2
5 ,

w2 = w3 = 3
5 , and α = 6

5 . By inserting these values in the inequalities of the stated
linear program we can check that χ ∈ T 6

5
∩ S5. Thus the weights form a certificate

for this fact.
To obtain a certificate for the fact that χ /∈ Tα′ for all α′ < 6

5 , i.e. µ(χ) ≥ 6
5 , we

consider the dual problem:

Max y1 + y2 + y3 + y4 + y5 + z s.t.
y1 − y6 − y8 ≤ 0
y1 + y2 + y4 − y7 ≤ 0
y3 + y5 − y7 ≤ 0
y2 + y3 − y8 ≤ 0
y4 + y5 − y8 ≤ 0
y6 + y7 + y8 + z ≤ 1
y1 ≥ 0, . . . , y8, z ≥ 0

An optimal solution is given by y1 = y5 = y8 = 2
5 , y2 = y3 = 1

5 , y7 = 3
5 , and

y4 = y6 = z = 0 with target value 6
5 (as expected using the strong duality theorem).

In combination with the weak duality theorem, see e.g. Vanderbei (2008), the stated
feasible dual solution (y, z) is a certificate for the fact that the critical threshold value
for the simple game χ is larger or equal to 6

5 . In general the optimal solution vector
(y, z) has at most n+ 1 non-zero entries so that we obtain a very short certificate.

We would like to remark that one can use the values of the dual variables as
multipliers for the inequalities in the primal problem to obtain the desired bound on
the critical threshold value. In our case multiplying all inequalities with the respective
values yields

2

5
· (w1 + w2) +

1

5
· (w2 + w4) +

1

5
· (w3 + w4) + 0 · (w2 + w5) +

2

5
· (w3 + w5)

+0 · (α− w1 − w3) +
3

5
· (α− w2 − w3) +

2

5
· (α− w1 − w4 − w5) + 0 · α

≥ 2

5
+

1

5
+

1

5
+ 0 +

2

5
+ 0 =

6

5

which is equivalent to α ≥ 6
5 , i.e. a certificate for the fact that χ /∈ Tα′ ∩ S5 for

α′ < 6
5 .

4 Maximal critical threshold values

In Lemma 1 we have shown that the maximum critical threshold value of a Boolean
function f : 2N → {0, 1} with f(∅) = 0 is given by cB(n) = n. If additionally
f(N) = 1 is required the upper bound drops to n− 1 (which is tight). In this section,
we want to provide bounds for the maximal critical threshold values for simple games
and complete simple games on n voters. By considering a complete simple game
with two types of voters we can derive a lower bound of Ω(

√
n) for cC(n). Apart

from constants, this bound is conjectured to be tight. This will be substantiated by
upper bounds of O(

√
n) for cC(n) for several special subclasses of complete simple
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games. For the general case, we can only obtain the result that cC(n) is asymptotically
smaller than O(n), which is the asymptotic of the maximum critical threshold value
for simple games. Finally, we relate the more sophisticated upper bounds on the cost
of stability from Bachrach et al. (2009) to upper bounds for the critical threshold
value for other special subclasses of Boolean games.

The authors of Gvozdeva et al. (2012) haven proven the bounds 1
2

⌊
n
2

⌋
≤ cS(n) ≤

n−2
2 for n ≥ 4 and determined the exact values cS(1) = cS(2) = cS(3) = cS(4) =

1, cS(5) = 6
5 , cS(6) = 3

2 . By considering null voters we conclude cS(n) ≤ cS(n+1)
and cC(n) ≤ cC(n+ 1) for all n ∈ N.

Proposition 2 For n ≥ 4 we have cS(n) ≥
⌊

n2

4

⌋
n .

Proof For the even integers we took an example from Gvozdeva et al. (2012) and con-
sider for n = 2k the simple game uniquely defined by the minimal winning coalitions
Wi = {2i−1, 2i} for 1 ≤ i ≤ k. Then the two coalitionsL1 = {1, 3, . . . , 2k−1} and
L2 = {2, 4, . . . , 2k} are maximal losing coalitions. Our example given above is of
this type, i.e. k = 4. We apply Lemma 7 with uW1

= · · · = uWk
= vL1

= vL2
= 1

2

to deduce cS(n) ≥
k∑
i=1

1
2 = n

4 . Using a null voter, as done in Gvozdeva et al. (2012),

gives cS(n) ≥ n−1
4 for odd n, where

⌊
n2

4

⌋
n − n−1

4 = n−1
4n .

For odd n = 2k + 1 we consider the simple game uniquely defined by the min-
imal winning coalitions Wi = {i, i + 1} for 1 ≤ i ≤ n − 1. Two maximal losing
coalitions are given by L1 = {1, 3, . . . , 2k + 1} and L2 = {2, 4, . . . , 2k}. Next we

apply Lemma 7 and construct a certificate for cS(n) ≥ (n−1)(n+1)
4n =

⌊
n2

4

⌋
n . We set

uW2i−1 = k+1−i
n , uW2i =

i
n for all 1 ≤ i ≤ k, vL1 = k

n , vL2 = k+1
n and check that

it is a feasible solution. Since
n−1∑
i=1

uWi = k(k+1)
n = (n−1)(n+1)

4n the proposed lower

bound follows. �

So we are only able to slightly improve the previously known lower bound for
cS(n) if the number of voters is odd. One can easily verify that the given examples

have a critical threshold value of

⌊
n2

4

⌋
n .

Conjecture 1 For n ≥ 4 we have cS(n) =

⌊
n2

4

⌋
n .

We would like to remark that the simple game defined in the proof of Proposi-

tion 2 is very far from being the unique one with µ(χ) =

⌊
n2

4

⌋
n . For the proof we

need that L1, L2 are losing coalitions and that the stated subsets of cardinality two
are winning coalitions. We can construct an exponential number of simple games

having a critical α of at least

⌊
n2

4

⌋
n as follows: Let L′1 ( L1 and L′2 ( L2 such that

none of the winning coalitions of size two is contained in L′1∪L′2 and |L′1| , |L′2| ≥ 1.
With this we can specify the coalition L′1 ∪L′2 either as winning or as losing without
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violating the other properties. This fact suggests that it might be hard to exactly solve
the integer linear program for the determination of cS(n) for larger values of n, see
Section 5.

Another concept to measure the deviation of a simple game χ from a weighted
voting game is its dimension, i.e. the smallest number k of weighted voting games
that χ is given by their intersection, see e.g. Deı̆neko and Woeginger (2006). It is
well known that each simple game has a finite dimension (depending on n) Taylor
and Zwicker (1993). Simple games of dimension 1 coincide with weighted voting
games having a critical threshold value of 1. The next possible dimension is two,

where the critical threshold can be as large as the best known lower bound of

⌊
n2

4

⌋
n .

Thus, there is no direct relation between the dimension of a simple game and its
critical threshold value. To construct such examples we split the voters into sets of
cardinality at least

⌊
n
2

⌋
, i.e. as uniformly distributed as possible, and assign weight

vectors (1, 0) to the elements of one such set and (0, 1) to the elements from the other
set. Using a quota vector (1, 1) we obtain a simple game that satisfies the necessary

requirements for a critical α of at least

⌊
n2

4

⌋
n . In other words the dimension of a

simple game is somewhat independent from the critical threshold parameter.

Lemma 8 Let χ be a simple game with n voters and µ(χ) = α. If there exists a
losing coalition of cardinality k then we have α ≤ n− k.

Proof Let S ( N be a losing coalition of cardinality k. We use the weights wi = 0
for all i ∈ S and wi = 1 for all i ∈ N\S. Since w(N) = n − k the weight of each
losing coalition is at most n − k and since each winning coalition must contain at
least one element from N\S their weight is at least 1. �

Lemma 9 Let χ be a simple game with n voters and µ(χ) = α. If the maximum size
of a losing coalition is denoted by k we have α ≤ max

(
1, k2

)
.

Proof We assign a weight of 1 to every voter i where {i} is a winning coalition and a
weight of 1

2 to every other voter. Thus each winning coalition has a weight of at least
1 and each losing coalition a weight of at most k2 . �

Corollary 1 For each integer n ≥ 3 we have cS(n) ≤ n
3 .

Proof Let χ be a simple game with largest losing coalition of size k and consisting
of n voters. If k ≤ 2n

3 then we have µ(χ) ≤ max
(
1, k2

)
≤ n

3 . Otherwise we have
µ(χ) ≤ n− k ≤ n

3 . �

To further improve Corollary 1 some reduction techniques might be useful.

Lemma 10 If a simple game χ on n ≥ 2 voters contains a winning coalition of
cardinality one then we have µ(χ) ≤ cS(n− 1).

Proof W.l.o.g. let {n} be a winning coalition. If {1, . . . , n− 1} is a losing coalition
then χ is roughly weighted using the weights w1 = · · · = wn−1 = 0, wn = 1.
Otherwise we consider the simple game χ′ arising from χ by dropping voter n. Let
w1, . . . , wn−1 be a weighting for χ′ corresponding to a threshold value of at most
cS(n − 1). By choosing wn = 1 we can extend this to a valid weighting for χ since
every coalition which contains voter n is a winning coalition. �
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From now on we consider complete simple games. To provide a lower bound on
cC(n) we consider a special subclass of complete simple games, i.e., complete simple
games with t = 2 types of voters and a unique shift-minimal winning vector (a, b)
(r = 1). So, if a coalition contains at least a voters of the first type and and least a+ b
members in total, then it is winning, otherwise it is losing.

In the following we will derive conditions on the parameters a and b in order to
exclude weighted games, which would lead to a critical threshold value of 1. Since the
shift-maximal losing vectors depend on a certain relation between a and b, we have
to consider two different cases to state the linear program to determine the critical
threshold value.

For a + b − 1 ≤ n1 (case 1) the shift-maximal losing vectors are given by (a +
b− 1, 0), (a− 1, n2) and otherwise (case 2) by (n1, a+ b− 1− n1), (a− 1, n2).

Due to condition (a).(iii) in Theorem 1 we have a > 0. For a = n1 a quota of
q = n1n2 + b and weights w1 = n2 and w2 = 1 testify that the game is weighted.
So we need only to consider 1 ≤ a ≤ n1 − 1, 0 ≤ b ≤ n2 − 1. For b = 0 the games
are weighted via quota q = a and weights w1 = 1, w2 = 0. For b = 1 the games are
weighted via quota q = an2 + 1 and weights w1 = n2, w2 = 1. If b = n2 a quota of
q = a + n2 − 1 + a

n1+n2
and weights of w1 = 1 + 1

n1+n2
, w2 = 1 show that these

games are weighted so that we can assume 2 ≤ b ≤ n2 − 2 and n ≥ 6.
To compute cC(n, r = 1, t = 2) we have to solve the linear program

minα s.t.
aw1 + bw2 ≥ 1 (7)

α− (a+ b− 1)w1 ≥ 0 (8)
α− (a− 1)w1 − n2w2 ≥ 0 (9)

w1 ≥ w2 (10)
w2 ≥ 0 (11)

for case 1 and

minα s.t.
aw1 + bw2 ≥ 1 (12)

α− n1w1 − (a+ b− 1− n1)w2 ≥ 0 (13)
α− (a− 1)w1 − n2w2 ≥ 0 (14)

w1 ≥ w2 (15)
w2 ≥ 0 (16)

for case 2. We would like to remark that we may also include the constraint α ≥ 1.
Once it is tight we have α = 1, so that we assume α > 1 in the following.

The optimal solution of these linear programs is attained at a corner of the cor-
responding polytope which is the solution of a 3-by-3-equation system arising by
combining three of the five inequalities. As notation we use A ⊂ {7, 8, 9, 10, 11}
with |A| = 3. (Some of these solutions may be infeasible.) At first we remark that
w1 = w2 = 0 is infeasible in both cases so that we assume |A ∩ {10, 11}| ≤ 1.
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For case 1 the basic solutions, parameterized by sets of tight inequalities, are
given by:

{7, 8, 9} w1 = n2

an2+b2
, w2 = b

an2+b2
, α = n2(a+b−1)

an2+b2
, always feasible, e.g. we have

n2(b− 1) ≥ b2 due to b ≤ n2 − 2 and b ≥ 2 so that α ≥ 1 holds.

{7, 8, 10} α = a+b−1
a+b < 1, contradiction

{7, 8, 11} w1 = 1
a , w2 = 0, α = a+b−1

a , always feasible

{7, 9, 10} w1 = 1
a+b , w2 = 1

a+b , α = a−1+n2

a+b , always feasible

{7, 9, 11} α = a−1
a < 1, contradiction

{8, 9, 10} α = 0 < 1, contradiction

{8, 9, 11} α = 0 < 1, contradiction

We always have a+b−1
a > a+b−1

a+ b2

n2

= n2(a+b−1)
an2+b2

and

(a+ b) · (an2 + b2) ·
(
a− 1 + n2
a+ b

− n2(a+ b− 1)

an2 + b2

)
= b(n2 − b) + a(n2 − b)2 > 0.

Thus α = n2(a+b−1)
an2+b2

is always the minimum value.

For case 2 the basic solutions are given by:

{12, 13, 14} w1 = n1+n2+1−a−b
−a2−2ab+a+an1+n1b+an2+b

, w2 = n1+1−a
−a2−2ab+a+an1+n1b+an2+b

,

α = n1n2−ab+b−a2+2a+an1−1−n1

−a2−2ab+a+an1+n1b+an2+b
=: α′, where we have w1 ≥ w2. α ≥ 1 is

equivalent to n1n2 + a− 1− n1 ≥ −ab+ n1b+ an2 which can be simplified to
the valid inequality (n1 − a)︸ ︷︷ ︸

≥1

· (n2 − b− 1)︸ ︷︷ ︸
≥1

≥ 1.

{12, 13, 15} α = a+b−1
a+b < 1, contradiction

{12, 13, 16} w1 = 1
a , w2 = 0, α = n1

a , always feasible
{12, 14, 15} w1 = 1

a+b , w2 = 1
a+b , α = a−1+n2

a+b , always feasible
{12, 14, 16} α = a−1

a < 1, contradiction
{13, 14, 15} α = 0 < 1, contradiction
{13, 14, 16} α = 0 < 1, contradiction

α′ ≤ n1

a is equivalent to

(n1 + 1− a) · (a(n1 + 1− a) + b(n1 − a))
a · (a(n1 + n2 + 1− a− b) + b(n1 + 1− a))

≥ 0

and α′ ≤ a−1+n2

a+b is equivalent to

(n2 − b)(a(n2 − b) + b)

(a+ b) ·
(
a(n2 − b) + (a+ b)(n1 + 1− a)

) ≥ 0.

Since in both cases all factors are non-negative the respective inequalities are valid
and the minimum possible α-value is given by α′.
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To answer the question for the maximum possible α in case 1 depending on n we
have to solve the following optimization problem

max
a+ b− 1

a+ b2

n2

s.t.

a+ b− 1 ≤ n1
n1 + n2 = n

n1, n2 ≥ 1

1 ≤ a ≤ n1 − 1

2 ≤ b ≤ n2 − 2,

where all variables have to be integers. For z ≥ 1, x > y > 0 we have z−1+x
z−1+y >

z+x
z+y .

Thus the maximum is taken at the minimum value of a which is 1. (a = 1 also yields
the weakest constraint a+b−1 ≤ n1.) Since 1 ≤ a ≤ n1−1 is equivalent to n1 ≥ 2
which is implied by a+ b− 1 ≤ n1 via b ≥ 2 we can drop this constraint.

If a+ b− 1 < n1 then we could decrease n1 by 1 and increase n2 by 1 yielding
a larger target value. Thus we have a + b − 1 = n1 which is equivalent to b = n1.
Using n1+n2 = n yields n2 = n−b. Inserting then yields the optimization problem

max
b

1 + b2

n−b
, 2 ≤ b ≤ n− 2

2
,

where b, n ∈ N. Relaxing the integrality constraint results in

b =
(√
n− 1

)
· n

n− 1

with optimal value

n5/2 − 2n2 + n3/2

2n2 − 3n3/2 + n1/2
≤
√
n

2

tending to
√
n
2 as n approaches infinity. Since the target function is continuous and

there is only one inner local maximum, the optimal integer solution is either b =⌊
(
√
n− 1) · n

n−1

⌋
or b =

⌈
(
√
n− 1) · n

n−1

⌉
. For n ≥ 9 also the condition 2 ≤

b ≤ n−2
2 is fulfilled. Let us denote the first bound by f1(n) and the second bound by

f1(n). In the following table we compare these bounds with the exact value cC(n),
determined using the methods from Section 5, and

√
n
2 .

n 9 10 11 12 13 14 15 16
f1(n) 1.2727 1.3333 1.3846 1.4286 1.4667 1.5000 1.7143 1.7727

f1(n) 1.2000 1.3125 1.4118 1.5000 1.5789 1.6500 1.6296 1.7143
cC(n) 1.3333 1.4074 1.4667 1.5556 1.6500 1.7344 1.8088 1.8750√

n
2 1.5000 1.5811 1.6583 1.7320 1.8028 1.8708 1.9365 2.0000
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In case 2 we obtain the optimization problem

max
n1n2 − ab+ b− a2 + 2a+ an1 − 1− n1
−a2 − 2ab+ a+ an1 + n1b+ an2 + b

s.t.

a+ b− 1 ≥ n1 + 1

n1 + n2 = n

n1, n2 ≥ 1

1 ≤ a ≤ n1 − 1

2 ≤ b ≤ n2 − 2,

For a > 1 we can check that decreasing a, n1 and increasing b, n2 by 1 does not
decrease the target value. Thus we can assume a = 1 in the optimal solution so
that the target function simplifies to n1n2

n1(b+1)+(n2−b) =
n2

b+1+
n2−b
n1

. Decreasing b by 1

increases this target function so that either a + b − 1 ≥ n1 + 1 or b ≥ 2 is tight. In
the latter case we would have n1 ≤ 1, which contradicts 1 = a ≤ n1 − 1. Thus, we
have a+ b− 1 = n1 +1 in the optimum which is equivalent to b = n1 +1. Inserting
this and n2 = n− n1 yields the target function

n− b+ 1

b+ 1 + n−2b+1
b−1

having the non-negative optimal solution of b = 1+
√
1+n3−2n
n with target value

1

2
·
√
n3 + 1− 2n− (n− 1)

n− 1
≤
√
n

2

tending to
√
n
2 as n approaches infinity. If the other inequalities are fulfilled, then

rounding up or down yields the optimal integral solution (in this case; not in general).
In both cases the conditions 2 ≤ b ≤ n2 − 2, 1 = a ≤ n1 − 1 are fulfilled for n ≥ 9.
We produce a similar table as before:

n 9 10 11 12 13 14 15 16
f2(n) 1.1667 1.2308 1.2857 1.3333 1.3750 1.4118 1.4444 1.6250

f2(n) 1.0588 1.1667 1.2632 1.3500 1.4286 1.5000 1.5652 1.5484
cC(n) 1.3333 1.4074 1.4667 1.5556 1.6500 1.7344 1.8088 1.8750

Conjecture 2
cC(n) ∈ Θ

(√
n
)
.

So far we do not know any examples of complete simple games with a criti-
cal threshold value larger than max

(
1,
√
n
2

)
. We will prove Conjecture 2 for some

special classes of complete simple games. An important class, attained by many real-
world voting systems, is given by the so-called games with consensus, i.e. intersec-
tions of a weighted voting game and a symmetric game [q′; 1, . . . , 1], see e.g. Carreras
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and Freixas (2004); Peleg (1992). The voting procedure for the council of the Euro-
pean Union based on the Treaty of Nice consists of such a consensus, i.e. at least 14
(or 18, if the proposal was not made by the commission) of the countries must agree.
(The two other ingredients are a majority of the voting weights and a majority of the
population.) Concerning the distribution of power in the European Union we refer
the interested read e.g. to Algaba et al. (2007).

Lemma 11 The critical threshold value µ(χ) of a complete simple game χ ∈ Cn
with consensus, given as the intersection of [q;w1, . . . , wn] and [q′; 1, . . . , 1], is at
most

√
n.

Proof If q′ ≥
√
n we take weights of 1√

n
for all voters so that each winning coalition

has a weight of at least one and the grand coalition a weight of
√
n. In the other cases

we take weights wi

q for the voters so that each winning coalition has a weight of at
least 1. W.l.o.g. we assume wi ≤ q so that the new weights are at most 1. A losing
coalition with weight larger than one must fail the criterion of the symmetric game
so that it consists of less than

√
n members. Thus the weight of each losing coalition

is less than
√
n. �

For large consensus q′ the critical threshold value is bounded from above by n
q′ ,

since we can assign weights of 1
q′ to all voters. We remark that complete simple

games ((n1, n2), (m1,m2)) with two equivalence classes of voters and one shift-
minimal winning vector are games with consensus and thus have a dimension of at
most two3. As representation we may use the intersection of [m1 +m2; 1, . . . , 1] and
[m1n2 +m2;n2, . . . , n2, 1, . . . , 1].

Lemma 12 The critical threshold value µ(χ) of a complete simple game χ ∈ Cn
with two types of voters is at most

√
n+ 1.

Proof If χ has only one shift-minimal winning vector we can apply Lemma 11. Since
complete simple games with less than four voters are weighted we can assume n ≥ 4.
So letm1 = (a, b) the shift-minimal winning vector with maximal a andm2 = (c, d)
the shift-minimal winning vector with minimal c. Depending on the values of a and
c we will provide suitable weights w1 and w2 such that each winning coalition has a
weight of at least q > 0 and each losing coalition has a weight of at most q ·(

√
n+1),

i.e. the proposed weights have to be normalized in order to fit into the framework of
a quota q = 1.

If c ≥ 1 we set w1 =
√
n and w2 = 1. Every shift-minimal winning vector

(e, f) 6= (a, b) must fulfill c ≤ e ≤ a due to the definition of a, c and e+f ≥ a+b+1
since otherwise (a, b) would not be a shift-minimal winning vector. With this we have

ew1 + fw2 ≥ ew1 + (a+ b+ 1− e)w2 ≥ c
√
n+ (a+ b+ 1− c).

Similarly we obtain

aw1 + bw2 = c
√
n+ a− c+ b+ (a− c︸ ︷︷ ︸

≥1

) · (
√
n− 1︸ ︷︷ ︸
≥1

) ≥ c
√
n+ (a+ b+ 1− c).

3 Complete simple games with one shift-minimal winning vector and more than two equivalence classes
of voters can have dimensions larger than two and as large as n

4
Freixas and Puente (2008).
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Thus it suffices to show that each losing coalition has a weight of at most(
c
√
n+ (a+ b+ 1− c)

)
·
(√
n+ 1

)
≥ n+ a

√
n+ b

√
n.

Let (g, h) be a losing coalition so that (g, h) � (a, b) and (g, h) � (c, d). If g ≤ c
then h ≤ n2 ≤ n− a and we have

gw1 + hw2 ≤ c
√
n+ n− a ≤ n+ a

√
n.

If g ≥ a then g + h ≤ a+ b− 1 since otherwise (g, h) � (a, b). With this we have

gw1 + hw2 ≤ (a+ b− 1)
√
n ≤ a

√
n+ b

√
n.

If c ≤ g < a then g + h ≤ c + d − 1 since otherwise (g, h) � (c, d). With this we
have

gw1 + hw2 ≤ (a− 1)
√
n+ (c+ d− a) ≤ n+ a

√
n.

If c = 0 we set w1 =
√
d, where d ≥ a+ b+ 1 ≥ 2, and w2 = 1. Let (e, f) be a

winning and (g, h) be a losing coalition. Similarly as before we have e+ f ≥ a+ b
so that

ew1 + fw2 ≥
√
d+ a+ b− 1.

It suffices to show that each losing coalition has a weight of at most(√
d+ a+ b− 1

)
·
(√
n+ 1

)
≥
√
dn−

√
n+
√
d︸ ︷︷ ︸

≥d

+ (a+ b)
√
n+ a+ b− 1︸ ︷︷ ︸

≥0

≥ d+ (a+ b)
√
n.

If g ≥ a then g + h ≤ a+ b− 1, since otherwise (g, h) � (a, b), and we have

gw1 + hw2 ≤ (a+ b− 1)
√
d ≤ (a+ b)

√
n.

If c ≤ g < a then g + h ≤ c+ d− 1, since otherwise (g, h) � (c, d), and we have

gw1 + hw2 ≤ (a− 1)
√
d+ (c+ d− a) ≤ a

√
n+ d. �

We remark that complete simple games with one type of voters are weighted and
thus have a critical threshold value of 1.

Lemma 13 The critical threshold value µ(χ) of a complete simple game χ ∈ Cn
with one shift-minimal winning vector ã is at most

√
n.

Proof By (n1, . . . , nt) we denote the numbers of voters in the t ≥ 2 equivalence
classes of voters and by (a1, . . . , at) the unique shift-minimal winning vector ã.

If
t∑
i=1

ai ≥
√
n we set wi = 1√

n
for all 1 ≤ i ≤ t and have w(ã) ≥ 1. Since with

these weights we have w(N) ≤
√
n, every losing coalition has a weight of at most√

n and we have a critical threshold value of at most
√
n.
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In the remaining cases we have
t∑
i=1

ai ≤
√
n. Due to condition (a)(iii) of Theo-

rem 1 we have a1 ≥ 1. We set w1 = 1 and w2 = · · · = wt = 0 and have w(ã) ≥ 1.

For every losing vector l̃ = (l1, . . . , lt) we have l1 <
t∑
i=1

ai ≤
√
n since otherwise

we would have ã ≺ l̃. Thus each losing coalition has a weight of at most
√
n and the

critical threshold value is bounded from above by
√
n in this case. �

So we have an upper bound of
√
n for the critical threshold value for complete

simple games on n voters in several subcases. For the general case of Conjecture 2
we can provide only a first preliminary bound showing that cC(n) asymptotically
grows slower than cB(n) so that the maximum critical threshold value in some sense
states that complete simple games are nearer to (roughly) weighted voting games
than simple games.

Theorem 2 The critical threshold value µ(χ) of a complete simple game χ ∈ Cn is

in O
(
n·log logn

logn

)
.

Proof As weights we choose a slowly decreasing geometric series wi = qi−1 for all
1 ≤ i ≤ n where q = 1 − logn

n·log logn . With this we have 0 ≤ q < 1 and 1
1−q =

n·log logn
logn . Now let W be a winning coalition with the minimum weight and L be a

losing coalition with the maximum weight. In the following we will show w(L)
w(W ) ≤

n·log logn
logn . To deduce this bound we will compare the weights of a few subsets of

consecutive voters. In order to keep the necessary number of such subsets small we
set W̃ := W\(W ∩ L) and L̃ := L\(W ∩ L), i.e. we technically remove common
voters. We remark that W̃ needs not be a winning coalition. Due to the inequality

x

y
≥ x+ c

y + c

for x ≥ y > 0 and c ≥ 0 it suffices to provide an upper bound for w(L̃)

w(W̃ )
.

At first we consider the case when W is lexicographically larger than L. Let j be
the voter with the minimal index (and so the maximal weight) in W̃ . With this we set
W ′ = {j}, L′ = {j + 1, . . . , n} and have w(W̃ ) ≥ w(W ′), w(L̃) ≤ w(L′) so that
w(L)
w(W ) is upper bounded by

w(L̃)

w(W̃ )
≤ w(L′)

w(W ′)
=
q(1− qn−j)

1− q
≤ 1

1− q
=
n · log log n

log n
.

IfW is lexicographically smaller than L then let j be an index with |W̃ ∩ {1, . . . , j}︸ ︷︷ ︸
=:k1

|

> |L̃ ∩ {1, . . . , j}︸ ︷︷ ︸
=:k2

|. With this we set L′ := {1, . . . , k2} ∪ {j + 1, . . . , n} and W ′ :=
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{j− k1+1, . . . , j} fulfilling w(W̃ ) ≥ w(W ′) and w(L̃) ≤ w(L′). Since k1 ≥ k2 ≥
1,

w(L′) =

k2∑
i=1

qi−1 +

n∑
i=j+1

qi−1 =
1− qk2
1− q

+ qj · 1− q
n−j

1− q

and w(W ′) = qj−k1+1 · 1−q
k1

1−q ≥ q
j−k1+1 we have

w(L)

w(W )
≤ w(L̃)

w(W̃ )
≤ w(L′)

w(W ′)
≤ qk1−j−1+

qj · 1
1−q

qj−k1+1
≤ q−j+ 1

1− q
≤ q−n+ 1

1− q
.

To finish the proof we show q−n ∈ O
(
n·log logn

logn

)
. From x

1+x ≤ log(1 + x) ≤ x for

x > −1 we conclude 2x ≥ x
1−x ≥ − log(1− x) ≥ x for 1

2 ≤ x ≤ 1. Thus for large
enough n we have

log
(
q−n

)
≤ n ·

(
− log

(
1− log n

n · log log n

))
≤ n · 2 log n

n · log log n
≤ 2 log n

log log n

and 2 logn
log logn ≤ log n− log log n+ log log log n = log

(
n·log logn

logn

)
. �

In the context of the conjectured upper bound of O(
√
n) for cC(n) we find it

interesting to mention that the cost of stability CoS(f) of any super-additive, see
Definition 5, Boolean game f ∈ Bn is upper bounded by

√
n − 1, see Bachrach

et al. (2009). If f is additionally anonymous, then the authors have proven the tighter
bound CoS(f) ≤ 2. This coincides with the situation for the critical threshold value.
Here we may consider the super-additive anonymous Boolean game f ∈ Bn, where
coalitions of size

⌈
n+1
2

⌉
are winning and the grand coalition N is losing.

5 An integer linear programming approach to determine the maximal critical
threshold value

In principle it is possible to determine the maximal critical threshold value cS(n) for
a given integer n by simply solving the stated linear program from Proposition 1 for
all simple games χ ∈ Sn. Since for n ≤ 8 there are 1, 4, 18, 166, 7 579, 7 828 352,
2 414 682 040 996, and 56 130 437 228 687 557 907 786 simple games, an exhaustive
search seems to be hopeless even for moderate n (of course theoretical results may
help to reduce the number of simple games which need to be checked). For n = 9
only the lower bound 1042 is known.

So alternatively we will formulate cS(n) as the solution of an optimization prob-
lem in the following to avoid exhaustive enumeration. It is possible to describe the
set of monotone Boolean functions as integer points of a polyhedron, see e.g. Kurz
(2012b): For each subset S ⊆ N we introduce a binary variable xS and use the con-
straints x∅ = 0, xN = 1, and xS\{i} ≤ xS for all ∅ 6= S ⊆ N , i ∈ S to model a
simple game via χ(S) = xS . (We have to remark that this ILP formulation is very
symmetric.) In this framework it is very easy to add additional restrictions. Methods
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how to restrict the underlying games to complete simple games or weighted voting
games are outlined in Kurz (2012b). The restriction to e.g. proper simple games can
be modeled via xS + xN\S ≤ 1 for all S ⊆ N . Similarly, strong simple games can
be modeled by using the constraints xS + xN\S ≥ 1 for all S ⊆ N .

So the problem of determining cS(n) can be stated as the following optimization
problem: Maximize over all simple games with n voters the minimum α of the linear
program (1). Since this is a two-level optimization problem, we have to reformulate
the problem in order to apply integer linear programing techniques.

In order to determine cS(n) we cannot maximize α directly since we have χ ∈
Tλα ∩ Sn for all λ ≥ 1 if χ ∈ Tα ∩ Sn. To specify the minimum value α for a given
simple game χ we can also maximize its corresponding dual linear program of (1)
whose optimal solution is α.

If we drop the restriction α ≥ 1 and assume wi ≥ 0, the dual program for a
simple game χ is given by

Max
∑
S∈W

uS∑
S∈W :i∈S

uS −
∑

S∈L:i∈S
vS ≤ 0 ∀i ∈ N∑

S∈L
vS ≤ 1

uS ≥ 0 ∀S ∈W
vS ≥ 0 ∀S ∈ L,

where W denotes the set of winning coalitions and L denotes the set of losing coali-
tions. As outlined in Section 2 the optimal target value

∑
S∈W

uS might take values

smaller than 1 (but being non-negative) which correspond to a critical threshold value
of µ(χ) = 1.

The next step is to replace the externally given setsW andL by variables such that
the possible sets correspond to simple games. Using our previously defined binary
variables xS this is rather easy:

Max
∑
S⊆N

xS · uS∑
{i}⊆S⊆N

xS · uS −
∑

{i}⊆S⊆N
(1− xS) · vS ≤ 0 ∀i ∈ N∑

S⊆N
(1− xS) · vS ≤ 1

x∅ = 0
xN = 1
xS\{i} ≤ xS ∀∅ 6= S ⊆ N
uS ≥ 0 ∀S ⊆ N
vS ≥ 0 ∀S ⊆ N
xS ∈ {0, 1} ∀S ⊆ N,

.

The problem is a quadratically constrained quadratic program (QCQP) with bi-
nary variables or more generally a mixed-integer quadratically constrained program
(MIQCP). There are solvers, like ILOG CPLEX, that can deal with these problems
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effectively whenever the target function and the constraints are convex. Unfortu-
nately, neither our target function nor the feasibility set is convex. Thus in order
to solve this optimization problem directly, we have to utilize a solver that can deal
with non-convex mixed-integer quadratically constrained programs like SCIP, see
e.g. Berthold et al. (2011a,b)4.

In principle this works but problems become computationally infeasible very
quickly. By disabling preprocessing we can force SCIP to use general MIQCP-tech-
niques. Solving the problem Boolean functions with f(∅) = 0 and n = 3 took
0.07 seconds and 43 b&b-nodes, for n = 4 it took 8.45 seconds and 15770 b&b-
nodes, and for n = 5 we have aborted the solution process after 265 minutes and
1.6 · 106 nodes, where more than 33 GB of memory was necessary.

By enabling preprocessing SCIP is able to automatically find a reformulation
as a binary linear program. This way SCIP can solve the instance for n = 8 in
2.9 seconds in the root node but will take more than 211 minutes, 373000 nodes, and
1.8 GB of memory to solve the instance for n = 9.

Since often binary linear programs are easier to solve than binary quadratic prob-
lems, we want to reformulate our binary quadratic optimization problem into a bi-
nary linear one. There are several papers dealing with reformulations of MIQCPs
into easier problems, see e.g. Letchford and Galli (2011). Here we want to present
a custom-tailored approach based on some techniques that are quite standard in the
mixed integer linear programing community (but we will outline them nevertheless).
Using this formulation, SCIP needed only 18.72 seconds to solve the instance for
n = 15 without applying branch&bound. We would like to remark that CPLEX was
even faster using only 5.61 seconds of computation time.

A quite general technique to get rid of logical implications are so called Big-M
constraints, see e.g. Koch (2004). To explain the underlying concept we consider a
binary variable x ∈ {0, 1}, a real-valued variable y, and a conditional inequality
y ≤ c for a constant c, which only needs to be satisfied if x = 1. The idea is to use
this inequality, but to modify its right-hand side with a constant times (1− x):

y ≤ c+ (1− x) ·M.

For x = 1 this inequality is equivalent to the desired conditional inequality. Other-
wise the new inequality is equivalent to y ≤ c +M , which is satisfied if M is large
enough. Given a known upper bound y ≤ u, where possibly u � c, it suffices to
choose M = u− c.

Now we want to apply this technique in a more sophisticated way, to remove
the non-linear term xS · uS , where xS ∈ {0, 1} and uS ∈ [0, β]. We replace the
term xS · uS by the variable z ≥ 0 using the constraints z ≤ βxS , z ≤ uS , and
z ≥ uS − β (1− xS). If xS = 1 these inequalities state that z = xS · uS = uS must
hold and for xS = 0 they imply z = xS · uS = 0. Thus one extra variable and three
additional inequalities are necessary for each term of the form xS · uS or xS · vS .
The LP relaxation gets worser with increasing β, the so-called big-M constant. Of

4 We have to remark that currently SCIP is not capable of solving the stated problem without further
information because there are some problems if the intermediate LP relaxations are unbounded. So one
has to provide upper and lower bounds for the continuous variables uS and vS .
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course in general it may be hard to come up with a concrete bound β. In our case it
is not too hard to prove uS , vS ≤ 1: If xT = 0 then from vS ≥ 0 for all S ⊆ N and∑
S⊆N

(1− xS) · vS ≤ 1 we conclude vT ≤ 1. Otherwise vT does not occur anywhere

in the optimization problem and vT ≤ 1 is a valid inequality. Similarly if xT = 0
then uT does not appear anywhere and on the other hand for xT = 1 we have

uT ≤
∑

{i}⊆S⊆N

(1− xS) · vS ≤
∑
S⊆N

(1− xS) · vS ≤ 1.

Due to the special structure of our problem we can reformulate our problem with-
out additional variables and fewer additional constraints. The main idea is to use the
term uS instead of xS · uS and to ensure that we have uS = 0 for xS = 0. Simi-
larly we replace the products (1− xS) · vS by vS and ensure that we have vS = 0 if
xS = 1.

max
∑
S⊆N

uS (17)

x∅ = 0 (18)
xN = 1 (19)

xS − xS\{i} ≥ 0 ∀∅ 6= S ⊆ N, i ∈ S (20)∑
{i}⊆S⊆N

uS −
∑

{i}⊆S⊆N

vS ≤ 0 ∀i ∈ N (21)

∑
S⊆N

vS ≤ 1 (22)

uS ≤ xS ∀S ⊆ N (23)

vS ≤ 1− xS∀S ⊆ N (24)
xS ∈ {0, 1} ∀S ⊆ N (25)
uS ≥ 0 ∀S ⊆ N (26)
vS ≥ 0 ∀S ⊆ N (27)

Inequalities (21) and (22) capture the dual linear program to bound α =
∑
S⊆N

uS

from above. Inequality (23) models the implication that uT is zero if xT = 0. In the
other case where xT = 1 the inequality uT ≤ 1 is redundant since we have for an
i ∈ T (x∅ = 0) the inequality

∑
{i}⊆S⊆N

uS −
∑

{i}⊆S⊆N
≤ 0 from which we conclude

xT ≤ 1 using xS ≥ 0 and
∑
S⊆N

vS ≤ 1. Inequalities of that type are called big-M

inequalities, where we have an big-M of 1 in our two cases. (See Inequality (34) for
an example with a big-M constant larger than 1.) Similarly Inequality (24) models
the implication that vT is zero if xT = 1. In the other case where xT = 0 we have
the redundant inequality vT ≤ 1.
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The optimum target value of this ILP is the desired value cS(n) for each integer n.
We have to remark that our modeling of the set of simple games is highly symmetric
and each solution comes with at least n! isomorphic solutions which is a very bad
feature for an ILP model. With the stated ILP model we were able to computationally
prove Conjecture 1 for n ≤ 9 taking less than 37 seconds for n = 7, less than
279 seconds for n = 8 but already 66224 seconds and 161898779 branch&bound
nodes for n = 9. For n = 10 we have computationally obtained the bounds 5

2 ≤
cS(10) ≤ 3 from an aborted ILP solution process. (The LP relaxation gives only the
relatively poor upper bound of n−12 .)

We would like to remark that we can enhance this ILP formulation a bit. Since
we have cS(n + 1) ≥ cS(n) we may apply Lemma 10 and require x{i} = 0 for all
1 ≤ i ≤ n, where n ≥ 2.

If we replace conditions (20) by those for complete simple games we can de-
termine the exact values cC(n) for n ≤ 16: cC(1) = cC(2) = cC(3) = cC(4) =
cC(5) = cC(6) = 1, cC(7) = 8

7 , cC(8) = 26
21 , cC(9) = 4

3 , cC(10) = 38
27 , cC(11) = 22

15 ,
cC(12) =

14
9 , cC(13) = 33

20 , cC(14) = 111
64 , cC(15) = 123

68 , and cC(16) = 15
8 .

We would like to remark that the LP relaxation gives only the poor upper bound
cC(n) ≤ n−1

2 .

6 The spectrum of critical threshold values

In the sections 4 and 5 we have considered the maximum critical threshold value for
several classes of games. By SpecS(n) we denote the entire set of possible critical
threshold values of simple games on n voters. Similarly we define SpecB(n) as the
set of possible critical threshold values for Boolean functions f : 2N → {0, 1} with
f(∅) = 0 and SpecC(n) as the set of possible critical threshold values for complete
simple games on n voters. In this section we will provide a superset for the spectrum
using known information of the set of possible determinants of 0-1 matrices. In order
to compute the exact sets for small values of n we modify the presented integer linear
programming approach for the determination of the maximum critical threshold value
to that end.

By considering null voters we conclude SpecS(n) ⊆ SpecS(n+1), SpecB(n) ⊆
SpecB(n+1), and SpecC(n) ⊆ SpecC(n+1). Due to the inclusion of the classes of
games we obviously have SpecC(n) ⊆ SpecS(n) ⊆ SpecB(n) for all n ∈ N.

Principally it is possible to determine the sets SpecS(n) for small numbers of
voters by exhaustive enumeration of all simple games. As mentioned in the previous
section this approach is very limited due to the quickly increasing number of simple
games. In Gvozdeva et al. (2012) the authors have determined SpecS(n) for all n ≤ 6
by some theoretical reductions and exhaustive enumeration on the restricted set of
possible games.

In this section we want to develop an approach based on integer linear program-
ming to determine the spectrum and to utilize results on Hadamard’s maximum de-
terminant problem to obtain a superset of the spectrum. For the latter let us consider
the linear program (1) determining the critical threshold value of a Boolean function
with f(∅) = 0. Each element of the spectrum SpecB(n) appears as the optimal so-
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lution of this linear program for a certain Boolean function f . If inequality α ≥ 1 is
attained with equality in the optimal solution, the critical threshold value is 1. So we
may drop this inequality and consider only those functions f where the linear pro-
gram (1) without the inequality α ≥ 1 has an optimal solution, which is then attained
in a corner. Thus there are subsets W1, . . . ,Wk ⊆ N , where 0 ≤ k ≤ n + 1, with∑
j∈Wi

wj = 1 and n + 1 − k subsets L1, . . . , Ln+1−k ⊆ N with −α +
∑
j∈Li

wj = 0

such that the entire linear equation system has a unique solution. (We remark that
k = 0 and k = n+ 1 lead to infeasible solutions.)

Writing this equation system in matrix notation A · (w1, . . . , wn, α)
T = b we can

use Cramer’s rule to state

α =
det(Aα)

det(A)
,

where Aα arises from A by replacing the rightmost column by b. Since Aα is a 0/1-
matrix we can use an improved version of Hadamard’s bound and have

|det(Aα)| ≤
(n+ 2)(n+2)/2

2n+1
,

see e.g. Brenner and Cummings (1972). If we multiply the rightmost column of A
by −1, which changes the determinant by a factor of (−1)n+1 then it becomes a
0/1-matrix too and we conclude

|det(A)| ≤ (n+ 2)(n+2)/2

2n+1
.

Lemma 14 For each α ∈ SpecB(n) there are coprime integers 1 ≤ q < p ≤⌊
(n+2)(n+2)/2

2n+1

⌋
with α = p

q .

For specific n the uppers bounds on the determinant of 0/1-matrices can be im-
proved. The exact values for the maximum determinant of a n× n binary matrix for
n ≤ 17 are given by 1, 1, 2, 3, 5, 9, 32, 56, 144, 320, 1458, 3645, 9477, 25515, 131072,
327680, 1114112, see e.g. sequence A003432 in the on-line encyclopedia of integer
sequences and the references therein.

Another restriction on the possible critical threshold values is obviously given
by the maximum values, i.e. µ(χ) ≤ cB(n) (or µ(χ) ≤ cS(n) for simple games,
µ(χ) ≤ cC(n) for complete simple games. Further restrictions come from the possi-
ble spectrum of determinants of binary matrices. For binary n×n-matrices all deter-
minants between zero and the maximal value can be attained. For n ≥ 7 gaps occur,
see e.g. Craigen (1990). The spectrum of the determinants of binary 7 × 7-matrices
was determined in Metropolis (1971) to be {1, . . . , 18} ∪ {20, 24, 32}. Using this
more detailed information we can conclude that the denominator q of the critical
threshold value of a Boolean function with f(∅) = 0 on 6 voters is at most 17. Thus
we are able to compute a finite superset Λ(n) of SpecB(n) for each number n of
voters.

Our next aim is to provide an ILP formulation in order to determine the entire
spectrum for simple games and complete simple games on n voters. Therefore, we
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consider the linear program (1) for the determination of the critical threshold value.
Dropping the constraint α ≥ 1 and assuming wi ≥ 0 we abbreviate the emerging
linear program by min cTx, Ax ≥ b, x ≥ 0. If its optimal value is at least 1 then
it coincides with the critical threshold value. Otherwise the game is weighted. By
the strong duality theorem its dual max bT y AT y ≤ c, y ≥ 0 has the same optimal
solution if both are feasible. This is indeed the case taking the dual solution y = 0
and primal weights of 1 with an α of n. Thus we can read of the critical threshold
value as cTx from each feasible solution of the inequality system Ax ≥ b, AT y ≤
c, cTx = bT y, x, y ≥ 0.

As done in Section 5 we model the underlying simple game by binary variables
xS for the subsets S ⊆ N and use Big-M constraints:

x∅ = 0 (28)
xN = 1 (29)

xS − xS\{i} ≥ 0 ∀∅ 6= S ⊆ N, i ∈ S (30)
xS ∈ {0, 1} ∀S ⊆ N (31)
wi ≤ 1 ∀i ∈ N (32)∑

i∈S
wi ≥ xS ∀S ⊆ N (33)∑

i∈S
wi ≤ α+ |S| · xS ∀S ⊆ N (34)

wn ≥ 0 (35)

∑
{i}⊆S⊆N

uS −
∑

{i}⊆S⊆N

vS ≤ 0 ∀i ∈ N (36)

∑
S⊆N

vS ≤ 1 (37)

uS ≤ xS ∀S ⊆ N (38)
vS ≤ 1− xS∀S ⊆ N (39)
uS ≥ 0 ∀S ⊆ N (40)
vS ≥ 0 ∀S ⊆ N (41)∑

S⊆N

uS = α (42)

Inequalities (28)-(31) model the simple games. The primal program to determine
the critical threshold value is given as inequalities (32)-(35). W.l.o.g. we can restrict
the weights to lie inside [0, 1]. Inequality (33) states that the weight of each winning
coalition is at least 1 and that the weight of each losing coalition is at least zero, which
is a valid inequality. Similarly Inequality (34) is fulfilled for xS = 1 and translates
to w(S) ≤ α for each losing coalition S. The formerly used dual linear program is
stated in inequalities (36)-(41). Finally the coupling of the primal and the dual target
value is enforced in Inequality (42).
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We remark that in order to destroy a bit of the inherent symmetry, i.e. the group
of all permutations on n elements acts on the set of simple games, we might require
w1 ≥ · · · ≥ wn.

Having this inequality system at hand, one may prescribe each element in Λ(n)
as a possible value for α and check whether it is feasible, then α is contained in the
spectrum, or not.

Another possibility to determine the entire spectrum is to solve a sequence of
ILPs, where we add the target function minα and the constraint α ≥ l. As starting
value we choose l = min{v ∈ Λ(n) : v > 1}. If the optimal target value is given by
α′ we choose l = min{v ∈ Λ(n) : v > α′} until the set is empty. We remark that for
larger n the values of Λ(n) might be relatively close to each other so that numerical
problems may occur.

Using the latter approach, we have verified the results SpecS(1) = SpecS(2) =
SpecS(3) = SpecS(4) = {1}, SpecS(5) =

{
1, 65 ,

7
6 ,

8
7 ,

9
8

}
, and SpecS(6) =

SpecS(5)∪
{

3
2 ,

4
3 ,

5
4 ,

9
7 ,

10
9 ,

11
9 ,

11
10 ,

12
11 ,

13
10 ,

13
11 ,

13
12 ,

14
11 ,

14
13 ,

15
13 ,

15
14 ,

16
13 ,

16
15 ,

17
13 ,

17
14 ,

17
15 ,

17
16

}
already given in Gvozdeva et al. (2012). For n = 7 we have newly determined the
smallest non-trivial critical threshold value minSpecS(7)\{1} = 40

39 . 5 For n = 8
we conjecture minSpecS(8)\{1} = 105

104
6.

By dropping the inequalities (29), (30) and permitting negative weights, i.e. wi ∈
R, we can principally determine the entire spectrum for Boolean functions with
f(∅) = 0. For small n, the explicit sets are given by

SpecB(1) = {1}
SpecB(2) = {1, 2}

SpecB(3) =

{
1,

3

2
, 2, 3

}
SpecB(4) =

{
1,

5

4
,
4

3
,
3

2
,
5

3
, 2,

5

2
, 3, 4

}
SpecB(5) =

{
1,

9

8
,
8

7
,
7

6
,
6

5
,
5

4
,
9

7
,
4

3
,
7

5
,
3

2
,
8

5
,
5

3
,
7

4
,
9

5
, 2,

9

4
,
7

3
,
5

2
,
8

3
, 3,

7

2
, 4, 5

}
SpecB(6) =

{
1,

18

17
,
17

16
,
16

15
,
15

14
,
14

13
,
13

12
,
12

11
,
11

10
,
10

9
,
9

8
,
17

15
,
8

7
,
15

13
,
7

6
,
13

11
,
6

5
,
17

14
,
11

9
,

16

13
,
5

4
,
14

11
,
9

7
,
13

10
,
17

13
,
4

3
,
15

11
,
11

8
,
18

13
,
7

5
,
17

12
,
10

7
,
13

9
,
16

11
,
3

2
,
17

11
,
14

9
,
11

7
,

8

5
,
13

8
,
18

11
,
5

3
,
17

10
,
12

7
,
7

4
,
16

9
,
9

5
,
11

6
,
13

7
,
15

8
,
17

9
, 2,

17

8
,
15

7
,
13

6
,
11

5
,
9

4
,

16

7
,
7

3
,
12

5
,
5

2
,
13

5
,
8

3
,
11

4
,
14

5
, 3,

13

4
,
10

3
,
7

2
,
11

3
, 4,

9

2
, 5, 6

}
For complete simple games we simply replace the conditions (28)-(31) by those

for complete simples games. As complete simple games with up to 6 voters are

5 Since the possible spectrum of determinants is given by {0, . . . , 40, 42, 44, 45, 48, 56}, see e.g.
http://www.indiana.edu/∼maxdet/spectrum.html, only 45

44
had to be ruled out.

6 Here the possible spectrum of determinants is given by {0, . . . , 102, 104, 105, 108, 110, 112, 116,
117, 120, 125, 128, 144} so that only 117

116
might be possible.
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roughly weighted, we have SpecC(n) = {1} for n ≤ 6. For n = 7 we have de-
termined min

{
SpecC(7)\{1}

}
= 39

38 .

7 Conclusion

In this paper we have considered the critical threshold values for several subclasses
of binary voting structures. For Boolean games an exact upper bound of µB(n) = n
could be determined. The set of achievable values is strongly related to the spectrum
of determinants of binary matrices, so that Hadamard’s bound comes into play.

We have strengthened the lower and upper bound on the maximum critical thresh-
old value of a simple game on n voters to

⌊
n2

4

⌋
/n ≤ cS(n) ≤ n

3 . It remains to prove
(or to disprove) the conjecture that the lower bound is tight. By introducing an inte-
ger linear programming approach to determine the maximum critical threshold value
we could algorithmically verify this conjecture for all n ≤ 9. On the one hand, this
seems to be a rather small number. On the other hand, regarding the question of the
number of simple games, not much more than a lower bound of 1042 is known. Since
the number of simple games grows doubly exponential, no huge improvements can
be expected from an algorithmic point of view.

For complete simple games the problem to determine cC(n) is considerably harder.
The large gap between the stated upper bound c1n log logn

logn and lower bound c2
√
n de-

serves to be closed or at least to be narrowed. In order to facilitate the conjectured
asymptotics of Θ(

√
n) we have provided a class of examples achieving this bound

and have proven the respective upper bounds for several subclasses of complete sim-
ple games.

So far we have no structural insights on those complete simple games which
achieve cC(n) as their critical threshold value. The given integer linear programming
formulation for cC(n) made it possible to determine exact values for numbers of
voters where even the number of complete simple games is not known. To be more
precise, there are 284 432 730 174 complete simple games for nine voters, see e.g.
Kurz (2012a) or Freixas and Molinero (2010), while exact numbers are unknown for
n ≥ 10. The fact that the exact numbers for the critical threshold values cC(n) for
complete simple games are known up to n = 16, indicates the great potential of our
introduced algorithmic approach. Similar integer linear programming formulations
can possibly be developed for other problems on extremal voting schemes. Applica-
tions to related concepts like, e.g., the nucleolus or the cost of stability seem to be
promising.

In this paper we leave the question for the complexity to determine the criticial
threshold value within a given class of games open, but expect it to be in NP in
general.

Concerning the discriminability of the hierarchy of α-roughly weighted simple
games, it would be nice to prove (if true) that there is a complete simple game χ with
critical threshold value µ(χ) = p

q for all integers p ≥ q. Some first experiments let
us conjecture that there even is a complete simple game with two types of voters and
one shift-minimal winning vector.
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As usual, the relation to other solution concepts from the game theory literature to
the critical threshold value should be studied. We have started this task by considering
the cost of stability. Is turns out that the critical threshold value is upper bounded by
the cost of stability. From that we could deduce an upper bound of

√
n for super-

additive games. For Boolean games the asymptotic extremal values coincide, while
they can differ to a large extend for concrete games.

The maximum critical threshold value can discriminate between the classes of
simple games, complete simple games, and weighted voting games, while the cost of
stability can not. The concept of a dimension of a simple game is not directly related
to the critical threshold value.

The concept of α-weightedness seems very interesting. More research should be
done in that direction. A quite natural idea is to transfer the concept to ternary voting
games, see e.g. Felsenthal and Machover (1997) and Freixas and Zwicker (2003),
or graph based games like e.g. network flow games. Also effectivity functions, see
e.g. Storcken (1997), might be candidates for a generalization of the basic concept.
Last but not least, there are two additional hierarchies of simple games described in
Gvozdeva et al. (2012) which deserve to be analyzed in more detail.

Acknowledgments

We would like to thank Tatyana Gvozdeva and two anonymous referees for their
thoughtful comments that helped very much to improve the presentation of the paper.

References

Algaba, E., Bilbao, J. M., and Fernández, J. R. (2007). The distribution of power in the European Consti-
tution. Eur. J. Oper. Res., 176(3):1752–1766.

Bachrach, Y. (2011). The least-core of threshold network flow games. Murlak, Filip (ed.) et al., Mathe-
matical foundations of computer science 2011. 36th international symposium, MFCS 2011, Warsaw,
Poland, August 22–26, 2011. Proceedings. Berlin: Springer. Lecture Notes in Computer Science 6907,
36-47 (2011).

Bachrach, Y., Elkind, E., Meir, R., Pasechnik, D., Zuckerman, M., Rothe, J., and Rosenschein, J. (2009).
The cost of stability in coalitional games. In Proceedings of the 2nd International Symposium on
Algorithmic Game Theory, SAGT ’09, pages 122–134, Berlin, Heidelberg. Springer-Verlag.

Berthold, T., Gleixner, A. M., Heinz, S., and Vigerske, S. (2011a). On the computational impact of
MIQCP solver components. ZIB-Report 11-01, Zuse Institute Berlin. http://vs24.kobv.de/
opus4-zib/frontdoor/index/index/docId/1199/.

Berthold, T., Heinz, S., and Vigerske, S. (2011b). Extending a CIP framework to solve MIQCPs. In Lee,
J. and Leyffer, S., editors, Mixed-integer nonlinear optimization: Algorithmic advances and applica-
tions, IMA volumes in Mathematics and its Applications. Springer. to appear.

Brenner, J. and Cummings, L. (1972). The Hadamard maximum determinant problem. Am. Math. Mon.,
79:626–630.

Carreras, F. and Freixas, J. (1996). Complete simple games. Math. Soc. Sci., 32:139–155.
Carreras, F. and Freixas, J. (2004). A power analysis of linear games with consensus. Math. Soc. Sci.,

48(2):207–221.
Craigen, R. (1990). The range of the determinant function on the set of n × n (0,1)- matrices. J. Comb.

Math. Comb. Comput., 8:161–171.
Deı̆neko, V. G. and Woeginger, G. J. (2006). On the dimension of simple monotonic games. Eur. J. Oper.

Res., 170(1):315–318.

http://vs24.kobv.de/opus4-zib/frontdoor/index/index/docId/1199/
http://vs24.kobv.de/opus4-zib/frontdoor/index/index/docId/1199/


On α-roughly weighted games 33

Diakonikolas, I. and Servedio, R. (2012). Improved approximation of linear threshold functions. Compu-
tational Complexity, page 33 p. to appear, available at http://arxiv.org/abs/0910.3719.

Felsenthal, D. S. and Machover, M. (1997). Ternary voting games. Int. J. Game Theory, 26:335–351.
Freixas, J. and Molinero, X. (2010). Weighted games without a unique minimal representation in integers.

Optim. Methods Softw., 25:203–215.
Freixas, J. and Puente, M. A. (2008). Dimension of complete simple games with minimum. Eur. J. Oper.

Res., 188(2):555–568.
Freixas, J. and Zwicker, W. (2003). Weighted voting, abstention, and multiple levels of approval. Soc.

Choice Welfare, 21(3):399–431.
Granot, D. and Granot, F. (1992). On some network flow games. Math. Oper. Res., 17(4):792–841.
Gvozdeva, T., Hemaspaandra, L. A., and Slinko, A. (2012). Three hierarchies of simple games parame-

terized by “resource“ parameters. Int. J. Game Theory, page 17 p. to appear, DOI: 10.1007/s00182-
011-0308-4.

Gvozdeva, T. and Slinko, A. (2011). Weighted and roughly weighted simple games. Math. Social Sci.,
61(1):20–30.

Isbell, J. (1958). A class of simple games. Duke Math. J., 25:423–439.
Kalai, E. and Zemel, E. (1982). Totally balanced games and games of flow. Math. Oper. Res., 7:476–478.
Koch, T. (2004). Rapid Mathematical Programming. PhD thesis, Technische Universität Berlin.
Kurz, S. (2012a). On minimum sum representations for weighted voting games. Ann. Oper. Res.,

196(1):361–369.
Kurz, S. (2012b). On the inverse power index problem. Optimization, 16(8):989–1011.
Letchford, A. N. and Galli, L. (2011). Reformulating mixed-integer quadratically constrained

quadratic programs. SIAM J. Opt. 23 pages, submitted, available at http://www.optimization-
online.org/DB HTML/2011/02/2919.html.

Metropolis, N. (1971). Spectra of determinant values in (0,1) matrices. Computers in Number Theory,
Proc. Atlas Sympos. No.2, Oxford 1969, 271–276.

Peleg, B. (1992). Voting by count and account. Selten, Reinhard (ed.), Rational interaction. Essays in
honor of John C. Harsanyi. Berlin: Springer-Verlag. 45–51.

Resnick, E., Bachrach, Y.and Meir, R., and Rosenschein, J. (2009). The cost of stability in network flow
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