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Abstract

A novel model-order reduction technique for the solution of the fine-scale
equilibrium problem appearing in computational homogenization is presented.
The reduced set of empirical shape functions is obtained using a partitioned
version —that accounts for the elastic/inelastic character of the solution—
of the Proper Orthogonal Decomposition (POD). On the other hand, it is
shown that the standard approach of replacing the nonaffine term by an
interpolant constructed using only POD modes leads to ill-posed formula-
tions. We demonstrate that this ill-posedness can be avoided by enriching
the approximation space with the span of the gradient of the empirical shape
functions. Furthermore, interpolation points are chosen guided, not only by
accuracy requirements, but also by stability considerations. The approach is
assessed in the homogenization of a highly complex porous metal material.
Computed results show that computational complexity is independent of the
size and geometrical complexity of the representative volume element. The
speedup factor is over three orders of magnitude —as compared with finite
element analysis— whereas the maximum error in stresses is less than 10%.
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1. Introduction

1.1. Motivation and goal

The major challenge in the macro-scale continuum description of het-
erogeneous materials such as composites and polycrystalline metals (that
exhibit a clear heterogeneous composition at the the micro-, or meso-, scale,
but that can be regarded, for practical purposes, as homogeneous at the the
macro-scale) lies in the determination of a constitutive connection, between
macro-stresses and macro-strains, that accurately reflects the properties and
geometrical arrangement of the distinct phases at the finer scale. It is well-
known [34] that, under the hypotheses of either periodicity or statistical ho-
mogeneity, on the one hand; and scale separation, on the other hand, this
constitutive link can be systematically established by solving, for each point
at the coarse scale, a boundary value problem (BVP) on a certain represen-
tative microscopic subdomain. In a strain-driven formulation of this BVP,
the macro-strain at a given point acts as “loading parameter”, in the form
of appropriate essential boundary conditions, whereas the associated macro-
stress is obtained through volume averaging —i.e., homogenization— of the
corresponding micro-stress field.

Methods dealing with the solution of this BVP range from purely ana-
lytical approaches to direct computational methods, such as the two-level, Fi-
nite Element (FE?) method [29]. Analytical approaches are computationally
inexpensive, but only valid for certain types of geometrically and constitu-
tively simple micro-structures. By contrast, direct computational methods
have no other limitation in scope than the imposed by the aforementioned
hypotheses of statistical homogeneity and scale separation —in these meth-
ods, the microscopic BVP at each coarse-scale point is attacked using no
other approximation than the spatial discretization of the pertinent solution
strategy, thus, circumventing the need for introducing ad-hoc, simplifying as-
sumptions regarding the topological arrangement of the micro-phases and/or
their collective constitutive behavior. Needless to say, the versatility of di-
rect computational homogenization comes at a significant price: its enormous
computational cost.



Between these two extremes (purely analytical and direct computational
methods), there are homogenization strategies that can be termed semi-
analytical, since they combine analytical results with numerical computa-
tions. Such is the case of the Transformation Field Analysis (TFA) [25]
and variants thereof [49, |50, |56, 130], which are based on the pre-computation
of certain characteristic operators (strain localization and influence tensors)
using the information obtained from solving a carefully chosen battery of
fine-scale BPVs. Although these methods have notably widen the scope
of classical analytical approaches —while maintaining their low computa-
tional cost—, they are still predicated, to a lesser or greater extent, on
ad-hoc assumptions connected with the constitutive description of the in-
volved phases. Consideration of new materials with unstudied compositions
using semi-analytical approaches, thus, requires additional research efforts
by specialists in the field and eventual modifications of the corresponding
mathematical and numerical formulations —in contrast to direct computa-
tional homogenization approaches, such as the FE? method, in which the
formulation is “material-independent”, and hence more versatile.

The current state of affairs in the field of two-scale homogenization seems
to call, thus, for a unified homogenization approach that combines some-
what the advantages of direct computational homogenization and analytical
and semi-analytical techniques. It would be desirable to have a homogeniza-
tion method with a computational cost virtually independent of the geomet-
ric complexity of the considered representative volume, as in analytical and
semi-analytical techniques. At the same time, it would be also interesting to
arrive at a method whose mathematical formulation dispenses with ad-hoc,
simplifying assumptions related with the composition of the heterogeneous
material; i.e, one enjoying the versatility, unrestricted applicability and “user-
friendliness” —insofar as it would totally relieve the modeler from the often
exceedingly difficult task of visualizing such assumptions — of direct compu-
tational homogenization methods. The goal of the present paper is to show
that these desirable attributes can be achieved, for arbitrarily complex het-
erogeneous materials well into the inelastic range, by using the so-called [47]
Reduced-Basis (RB) approzimation in the solution of the fine-scale BVPs.

1.2. The reduced-basis method

Generally speaking, the reduced-basis approximation is a class of Galerkin
approximation procedure that employs, as opposed to the FE method, but



similarly to classical Rayleigh-Ritz solution techniques [19], globally sup-
ported basis functions. The main difference with respect to classical Rayleigh-
Ritz schemes is that these basis functions or modes are not constructed from
either polynomials or transcendental functions (sines, cosines ...), but rather
are determined from a larger set of previously computed —using the finite
element (FE) method or other classical solution techniques— solutions of
the BVP at appropriately selected values of the input of interest. These
functions are commonly termed empirical basis functions [41], the qualifier
empirical meaning “derived from computational experiments”.

1.2.1. Dimensionality reduction

As noted earlier, the input of interest or “loading” parameter in the fine-
scale problem is the macro-scale strain tensor. Accordingly, the starting
point for constructing the basis functions consists in solving, using the FE
method, a battery of BVPs for various, representative macro-strain histories.
The outcome of these FE calculations is a data set comprising an ensemble of
hundred or even thousand (depending on the number of time steps into which
the strain histories are discretized) displacement field solutions (also called
snapshots). Were all these snapshots barely correlated with each other, the
dimension of the manifold spanned by them would prove overly high, render-
ing the entire approach impractical —it would no longer qualify as a truly
reduced basis method. Fortunately, as we show in the present paper, in gen-
eral, most of these snapshots do display strong linear correlations between
each other —i.e., they have redundant information—, and, in addition, con-
tain deformation modes that are irrelevant to the quality of coarse-scale
predictions. All that is required to obtain a much lower dimensional repre-
sentation of the solution data set, and therewith the desired reduced basis, is
an automatic means to identify and remove this redundant and irrelevant in-
formation, while preserving, as much as possible, its essential features. The
problem of removing unnecessary complexity from huge data sets so as to
uncover dominant patterns is the central concern of disciplines such as dig-
ital image compression [60] and patter recognition [8], to name but a few,
and thereby many efficient dimensionality reduction (or data compression,
in more common parlance) algorithms already exist to deal with it. In the
present work, we employ one of the simplest and most popular of these di-



mensionality reduction algorithms: the Proper Orthogonal Decompositio
(POD).

It may be inferred from the above that the proposed homogenization
method, like analytical and semi-analytical strategies, does introduce sim-
plifications in solving the fine-scale BVP. However, as opposed to analytical,
and to a lesser extent, semi-analytical procedures, these simplifications are
not introduced by the modeler, but rather are automatically carried out by
the abovementioned dimensionality reduction methods (in an offline stage,
prior to the overall multiscale analysis). In other words, in the proposed
method, the task of discerning what is essential and what is no is entirely
delegated to the computer itself, and hence, its success does not depend upon
the depth of insight, experience, and knowledge base of the modeler —only
some discretion is to be exercised in choosing appropriate strain paths for
the offline FE analyses. This feature naturally confers the advantages of
versatility and “user-friendliness” enjoyed by direct computational methods.

1.2.2. Numerical integration

Once the global shape functions have been determined, the next step
is to introduce an efficient method for numerically evaluating the integrals
appearing in the weak form of the cell BVP. Of course one can simply use
the same Gauss quadrature formulae and the same sampling points (a total
number of n, = O(n), n being the number of mesh nodes) as the underlying
finite element model. But this would be akin to integrating, say, a third-
order polynomial function using thousand of sampling points—a profligate
waste of computational resources. Since displacement solutions for the cell
BVP are constrained to lie in a reduced-order space of dimension n, << n,
it is reasonable to expect that the corresponding stresses, internal forces
and Jacobians will also reside in reduced-order spaces of dimensions of order
O(n,), and consequently, only p = O(n,) << n, sampling points would
suffice in principle to accurately evaluate the corresponding integrals. The
challenging questions that have to be confronted are where to locate these
p sampling points and, loosely speaking, how to determine their associated

!By constraining the cell to deform only into the deformation modes determined by
the POD, one automatically obtains a genuine reduced-order model (ROM) of the cell.

’Discerning what is essential and what is not is, according to M.Ashby [4], the key
to any successful computational model (i.e., one that strikes the right balance between
accuracy and simplicity)



weighting functions so that maximum accuracy in the integration is attained.

Approaches found in the model reduction literature that, directly or indi-
rectly, deal with these fundamental questions can be broadly classified either
as interpolatory methods [7,133, 154, [18, 5] or Gauss-type quadrature strategies
[3,139]. In both types of approaches, the integrand or part of the integrand is
approximated by a linear combination of a reduced set of empirical modes.
In interpolatory approaches, the coefficients in this approximation are ob-
tained by interpolation at a set of pre-selected sampling points; the criterion
for choosing the location of such points is the minimization of the interpo-
lation error over the finite element snapshots. In Gauss-type quadrature
procedures, on the other hand, the selection of sampling points and the cal-
culation of the accompanying weighting factors are simultaneously carried
out, guided by a criterion of minimum integration error over the snapshots.

In the BVP under consideration, the output of interest is the volume av-
erage of the stresses over the cell domain and, therefore, accuracy is required
not only in the integration of the equilibrium equation, but also on the ap-
proximation of the stresses themselves. This is the reason why attention is
focused here on interpolatory integration strategies, the variable subject to
spatial interpolation being precisely the stresses.

1.3. Originality of this work

The idea of exploiting the synergistic combination of multiscale model-
ing and reduced basis approximation is admittedly not new. In the specific
context of two-scale homogenization, it has been recently explored by Boy-
aval [10], Yvonnet et al. [62], and Monteiro et al. [51]. Traces of this idea
can also be found in articles dealing with more general hierarchical multi-
scale techniques —that do not presuppose either scale separation or peri-
odicity /statistical homogeneity, or both—, namely, in the multiscale finite
element method |53, 26, 27|, in the heterogeneous multiscale method [2, 1],
and in multiscale approaches based on the Proper Generalized Decomposi-
tion (PGD)[21]. However, it should be noted that none of the above cited
papers confronts the previously described, crucial question of how to effi-
ciently integrate the resulting reduced-order equations, simply because, in
most of them [10, 53, 126, 127, 2, [1], integration is not an issue — the fine-scale
BVPs addressed in these works bear an affine relation with the corresponding
coarse-scale, input parameter, as in linear elasticity, and, consequently, all
integrals can be pre-computed, i.e., evaluated offline, with no impact in the
online computational cost. Thus, the development of reduced-order models



endowed with efficient, mesh-size independent integration schemes —able to
handle any material composition— is a research area that, to the best of the
authors’ knowledge, still remains uncharted.

1.8.1. Main original contributions

The theory underlying reduced-order models (ROMs) that incorporate
efficient interpolatory integration schemes is still at its embryonic stage of
development —the first general proposal for parametrized BVPs dates back
to 2004 |7]— and many fundamental issues remain to be addressed. Fore-
most among these is the crucial question of well-posedness of the resulting
system of algebraic equations: does the replacement of the integrand, or non-
affine term in the integrand, by a reduced-order interpolant always lead to
a well-posed, discrete problem ? Examination of the reduced basis literature
indicates that apparently no researcher has so far been confronted with ill-
posed reduced-order equations, a fact that might certainly promote the view
that uniqueness of solution can be taken for granted whenever the full-order
model is well-posed. Unfortunately, this is not always so: we demonstrate in
this paper that the choice of the reduced-order space in which the interpolant
of the integrand resides has a profound impact on the well-posedness of the
discrete problem. In particular, we show that, in the case of the fine-scale
boundary-value problem, the widely adopted [33] approach of determining
the basis functions for this space from (converged) FE snapshots leads in-
variably to ill-posed, discrete formulations. The main original contribution
of the present work to the field of reduced-order modeling is the development
of an interpolatory integration method that safely overcomes this type of ill-
posedness. The gist of the method is to expand the interpolation space so
that it embraces, aside from the span of the POD stress basis functions,
the space generated —and herein lies the novelty— by the gradient of the
(reduced-order) shape functions. Furthermore, it is shown that, in contrast
to the situation encountered when using standard interpolatory schemes in
other parametrized BVPs [33], in the BVP under consideration, the number
and particular placement of sampling points within the integration domain
influence notably the spectral properties (positive definiteness) of the Jaco-
bian matrix of the governing equation, and therefore, the convergence charac-
teristics of the accompanying Newton-Raphson solution algorithm. Another
innovative ingredient of the present paper is a points selection algorithm that
does acknowledge this peculiarity and chooses the desired sampling points
guided, not only by accuracy requirements (minimization of the interpolation



error over the FE stress snapshot), but also by stability considerations.

2. RVE equilibrium problem

In this section, we present the variational statement and finite element
discretization of the fine-scale equilibrium problem, which, recall, is the pa-
rameterized BVP we wish to efficiently solve using the reduced-basis approx-
imation.

2.1. Preliminaries

Let Q C R4(d = 2,3) be a subvolume of characteristic length | << Iy,
( Iy is the characteristic length of the macro-continuum €, see Figure [I))
that is representative of the heterogeneous material as a whole. In micro-
structures that exhibit statistical homogeneity, this domain receives the name
of Representative Volume Element (RVE), whereas in micro-structures that
display periodicity, it is commonly known as repeating unit cell (RUC), or

simply wnit cell [24]. In the sequel, the acronym RVE will be used to refer
to €.

I <<y,

Em e
Macro-strains (input)

" RVE or “cell (9]

Cell equilibrium
problem

6, = % [o(x)d0
Q

Macro-stresses (output)
Figure 1: First-order homogenization.

In the homogenization approach adopted in this work —commonly known
as first-order homogenization [32, 40]—, the strain field €(x) at any point
x € (2 is assumed to be decomposed into macroscopic and fluctuating contri-
butions; under the hypothesis of infinitesimal deformations, this decomposi-
tion can be written as:

€(x) = epr + Viu(x). (1)

8



Here, eps standdd for the macroscopic strain tensor (the input parameter in
the problem) and V*u denotes the symmetric gradient of the displacement
fluctuation field (this field is, in turn, the basic unknown of the problem).

Implicit in the scale separation assumption is the fact that fine-scale de-
formations only influence coarse-scale behavior through its volume average
over the RVE. It can be shown (see, for instance, Ref. [22]) that this im-
plies that the boundary conditions (BCs) prescribed on the RVE must be
homogeneous (i.e., Agu = 0 on 0f2, Ay being a certain linear operator).
The natural choice for a repeating unit cell is to employ periodic boundary
conditions (See Refs. [9, 48] for more details on how to prescribe this type of
BCs). In statistically homogeneous micro-structures, by contrast, there is a
certain latitude in the choice of boundary conditions (vanishing fluctuations,
uniform tractions, quasi-periodic conditions ...). In the examples shown
later, vanishing boundary conditions are used (v = 0 on 09).

2.2. Variational formulation

2.2.1. Trial and test spaces
The trial space, i.e., the set of kinematically admaissible displacement fluc-
tuation fields, is defined formally as

Vo={ue H' ()] Agu=0, on 90}, (2)

where H'(Q)¢ stands for the Sobolev space of functions possessing square
integrable derivatives over €). Note that this set forms a vector space. Since
the test functions n appearing in the variational statement shown in the
following are kinematically admissible variations (n:=u—v, u,v € V),
V., having structure of vector space implies that, in the RVE equilibrium
problem, the spaces of trial and test functions coincide.

2.2.2. Formal statement

Consider a time discretization of the interval of interest [to, t¢] = J 2 [t,,, tns1]-
The current value of the microscopic stress tensor o, .1 at each x € () is pre-
sumed to be entirely determined by, on the one hand, the current value of the

3Macroscopic variables will be identified by appending a subscript “M”, while variables
associated to the fine scale will be designated by bare symbols. For instance, we shall
write eps and €(x) to denote the macroscopic strain tensor and the fine-scale strain field,
respectively.



microscopic strain tensor €,41(x) = €nr,p1 + VoUpy1(X), and, on the other
hand, a set of microscopic internal variables &, ,; —that encapsulate the his-
tory of microscopic deformations. The relationship between these variables
is established by (phenomenological) rate constitutive equations; these equa-
tions may vary from point to point within the RVE (multiphase materials).
Likewise, the considered RVE may contain also voids distributed all over the
domain. The (incremental) RVE equilibrium problem at time t¢,.; can be
stated as follows (see Ref. [22]): given the initial data {u,(x), €prp, €,(X)}
and the prescribed macroscopic strain tensor €ps,q, find uw,+; € V, such
that

/ VSTI O0nt1 (eMn—l—l + vsun-i-l? én—i—l) d§Qd = 07 (3>
Q

for all n € V,. The actual output of interest in this fine-scale BVP is not
the displacement fluctuation field per se, but rather the macroscopic stress
tensor oazl,,,, which is defined as the volume average over the RVE of the
microscopic stresses:

1
O'M|n+1 = V/QO'nH ds2, (4)

where V' stands for the volume of the RVE. In order to keep the notation
uncluttered, the superindex “n+1” will be hereafter dropped out and all
quantities will be assumed to be evaluated at time ¢, 1; only when confusion
is apt to show up, the pertinent distinction will be introduced.

2.3. Finite element formulation

Let Q = [Jl<, Q° be a finite element discretization of the RVE. It will
be assumed that this discretization is fine enough to consider the exact and
FE approximated solutions indistinguishable at the accuracy level of inter-
est. Let {Ny(x), Nao(x)...N,(x)} (n denotes the number of nodes of the
discretization) be a set of shape functions associated to this discretization.
Now we approximate u € V,, and n € V, as

u(X; epr) ~ (x; €nr) ZNI YU 1(€nr), (5)

n(x) ~ n™(x ZNI x)n;, (6)
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where U; € R? and np; € R? (I = 1,2...n) denote the nodal values of the
displacement fluctuations and test functions, respectively. Inserting these
approximations in Eq.(3)), and exploiting the arbitrariness of coefficients n;
(I =1,2...n), one arrives at the following set of discrete equilibrium equa-
tions (repeated indices implies summation):

ON;

87%(61\4+vm<h>,5)d9:o (i=1...d; I=1...n). (7
Q J

Introducing Voigt’s notationH, the above equation can be expressed in matrix
format as:

/ B'o(ep + BU, &) dQ = 0, (8)
Q

As usual, numerical evaluation of the integral in Eq.(R]) is carried out by
Gaussian quadrature:

/ BlodQ ~ ngBT(xg)a(xg, ;) =0. 9)
Q e

Here, n, = O(n) stands for the total number of Gauss points of the mesh;
w, denotes the weight associated to the g — th Gauss point x, (this weight
includes both the gquadrature weight itself and the corresponding Jacobian
determinant.); and B(x,) and o (x,, ;) stand for the B-matrix and the stress
vector at Gauss point x,, respectively.

3. Computation of reduced basis

A basic, intuitive picture of the strategy for computing the reduced basis
onto which to project the RVE equilibrium equation () was already given
in the introductory section. In the following, we put the idea behind this
strategy on a more rigorous footing. We begin by noting that, from a func-
tional analysis standpoint, the term model reduction is conceptually akin

4Here, it is convenient to use the so-called modified Voigt’s notation rather than the
standard one. In the modified Voigt’s notation, both stress o and strain € tensors are
represented as column vectors ({o} and {e€}, respectively ) in which the shear components
are multiplied by v/2. The advantage of this notation over the conventional, engineering
Voigt’s notation is the equivalence between norms; viz., ||| = o : o0 = ||[{o}] =

\/{o}" {o}. The reader is urged to consult [20] for further details on this notation.
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to the more common term model discretization, since both connote transi-
tions from higher-dimensional to lower-dimensional solution spaces. Whereas
model discretization is used to refer to the (classical) passage from the infinite
dimensional space V, to the finite element subspace V" C V,,, model reduction
denotes a transition from this finite dimensional space V" to a significantly
smaller manifold V* C V" —the reduced-order space. This latter transition
is not carried out directly, but in two sequential steps, namely, sampling of
the input parameter space and dimensionality reduction.

3.1. Sampling of the input parameter space

In constructing the finite element space of kinematically admissible func-
tions V", the only restrictions placed on the motion of the mesh nodes are
those imposed at the boundaries. The finite element solution space, thus,
does not presuppose any constraint on the motion of the interior nodes of
the mesh.

However, in actuality, interior nodes cannot fluctuate freely, indepen-
dently from each other, but they rather move according to deformational
patterns dictated by the constitutive laws that govern the mechanical behav-
ior of the distinct phases in the RVH]. This means that the solution of the
finite element equilibrium equation (B]) for given values of the macro-strain
tensor €ps actually lives in a smaller subspace VS C V! (in the parlance
of model reduction [47, 57], V¢ is the manifold induced by the parametric
dependence of the BVP on the input variables).

Yet, in general, this subspace cannot be precisely determined; one has to
be content to construct an approximation of it as the span of the displace-
ment fluctuation solutions obtained for a judiciously chosen set of n;g input
strain histories {‘eas!, tens?, ... teps™t}. Suppose, for simplicity, that each
of these strain histories is discretized into equal number of steps ng,, and let

u(x) = u(x; ‘enr;’), k= (i— L)npg +J (10)

denote the displacement fluctuation solution at the j — th time step of the
i — th strain history (i = 1,2...nps, j = 1,2...n4,). The approximating
space for V¢, henceforth called the snapshots space, is then defined as:

°As noted by Lubliner [45], constitutive laws can be regarded as internal restrictions
on the kinds of deformation a body can suffer
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Vir? = span {u'(x), u?(x), ... u"m(x)} C VL, (11)

Nsnp = NstpNhst Deing the total number of snapshots. The matrix containing,
in columns, the nodal values of these displacement fluctuations solutions:

X,=[U" U* - U™ e R (12)

will correspondingly be termed the (displacement fluctuations) snapshot ma-
triz.

3.2. Dimensionality reduction

The next and definitive step in the transition from the high-dimensional
finite element space V" to the desired reduced-order space V* —in which
the fine-scale BVP is to be finally posed— is the dimensionality reduction
process, in which, as pointed out in the introductory section, the dominant
deformational patterns of the RVE response are identified and unveiled by
washing out the “inessentials”. To accomplish this central task, we employ
here a partitioned version of the Proper Orthogonal Decompositiond.

3.2.1. Elastic/Inelastic reduced basis functions

The Proper Orthogonal Decomposition is nothing but a multidimensional
data fitting procedure intended to obtain a sequence of orthogonal basis func-
tions whose span best approximate the space of snapshots. As such, the POD
is a purely data-driven process —it is “agnostic” to the physical origin of the
data. For instance, for POD basis construction purposes, it is completely
immaterial whether a given snapshot corresponds to a purely linear elastic
solution or to a solution well into the inelastic regime. The task of discrimi-
nating which features of the RVE response are essential and which are not is
exclusively guided by statistical considerations: if the elastic response hap-
pens to be poorly represented within the snapshot ensemble, the POD may
regard as unimportant the contribution of these snapshots, and, as a conse-
quence, the basis functions with largest associated singular values —i.e., the
essential modes— would hardly contain any information of this range. To
accurately replicate the apparently trivial linear elastic behavior, thus, one
may be forced to take a relatively large number of basis functions, and this

6See Appendix [Al for a brief description of the POD.
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may translate into a significant increase in the overall online computational
cost. This fact certainly places the POD-based reduced basis approach at
a competitive disadvantage compared with semi-analytical homogenization
approaches such as the Nonlinear Transformation Field Analysis [50], which
do capture exactly (and effortlessly) the linear elastic response of the RVE.

To eliminate this shortcoming, we propose here a slightly different strat-
egy for constructing the reduced basis. The essence of the proposal is to
partition the space of snapshots V" into elastic (V') and inelastic (V, ;)
subspaces:

=yt e vy (13)

u,el sinel?

(& symbolizes direct sum of subspaces [55]) and then obtain the reduced
basis as the union of the bases for both subspaces. Below, we describe this
strategy more in detail.

The first step is to determine an orthogonal basis for V. One can do this
by simply performing m. independent, linear elastic finite element analysis
of the RVE (m, = 6 for 3D problemd, and m, = 3 for plane strain), and
then orthonormalizing the resulting displacement fluctuation fields. These
m, elastic modes will be considered as the first m, basis functions of the
reduced basis:

span{ @y, Py, ..., Py} = Vo). (14)

Once we have at our disposal this set of elastic basis functions, we compute
the (orthogonal) projection of each snapshot u* onto the orthogonal comple-

ment of V" (which is precisely the aforementioned inelastic space V, ' ;):
ub = b =Y ( Bty o B k=120 g, (15)
i=1

It is now on this ensemble of inelastic snapshots {uf ,},>"7 that the pre-
viously described POD is applied to obtain the remaining n, — m,. basis
functions. Thus, we finally have:

Elastic modes “Essential” Inelastic modes
N\ 7\

~

VE=V" gV = span{Py, B,,..., Bs, br,..., P, ). (16)

u u,el Jjinel

"Strictly speaking, the proposed decomposition is only valid for materials governed by
rate-independent constitutive equations.

14



for 3D problems, and

Elastic modes “Essential” inelastic modes
7\
~

Vi =span{®,, By, B3, by,.... P, }. (17)

for plane strain. In placing the m, elastic modes within the first m, posi-
tions, the reduced-order model is guaranteed to deliver linear elastic solutions
with the same accuracy as the underlying (full-order) finite element model
(obviously, provided that n, > m,).

Further details concerning the numerical implementation of this appar-
ently novel —to the best of the authors’ knowledge— basis construction
strategy can be found in Appendix

4. Galerkin projection onto the reduced subspace

We now seek to pose the boundary-value problem represented by Eq.(3]) in
the reduced-order space V¥ C V" spanned by the basis functions {®,, @, ..., D, }.
To this end, we approximate both test n € V), and trial u € V, functions by
the following linear expansions:

u(x;en) ~u*(x;€ep) = i@i(x)Ui*(eM), (18)
nx) = 7 (x) = Y @b (19)

u*(x) and n*(x) being the low-dimensional approximations of trial and test
functions, respectively (hereafter, asterisked symbols will be used to denote
low-dimensional approximations of the associated variables). Inserting Egs.
(I8) and ([19) into Eq.(3), and exploiting the arbitrariness of coefficients 7
(1=1,2...n,), we arrive at the following set of n,, equilibrium equations:

/ Vid,(x):o(x;epr + ViU, £)dr=0, i=1,2...n,. (20)
0

Expressing now the reduced basis functions in the above equation in terms of
finite element shape functions (through expression @;(x) = >_7_; N;(x)®p;),

we get (in Voigt’s notation):

/BZT(X)O'(x; e +BU"£)d2=0, i=1,2...n, (21)
Q
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or more compactly:
/ B*(x)o(x;ep + B*U*, £€)dQ) = 0. (22)
Q
Here, U" = [Uf vy --- U;u]T € R™ denotes the vector containing the
reduced displacement fluctuations —the basic unknowns of the reduced-order
problem— and B* : 2 — R**™ stands for the reduced “B-matrix”, defined

' B*(x) = B(x)®. (23)

This matrix connects the gradient of the displacement fluctuation field with
the vector of reduced displacement fluctuations:

Vou'=> BU;=[B; B; ... B,]| (24)
=1

=B'U" = B®U".

For implementational purposes, it is more expedient to express Eq.([23) in
terms of elemental B—matrices. To this end, we write:

B(x) =

{ Bf(x), ifxeQe (25)

0, otherwise

where B¢ € R¥*4" denotes the local B-matrix of element Q¢ (7., in turn, is
the number of nodes in 2¢). Thus,

B*(x) = B(x)® = B*(x)®". (26)

In the above equation, ®¢ € R¥<*"u represents the block matrix of @ corre-
sponding to the 7, nodes of finite element Q¢ (e =1,2...n,).

5. Stress approximation space

To arrive at an efficient, mesh-size independent integration scheme, two
crucial questions have to be addressed, namely, the determination of the
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vector space (hereafter denoted by V") in which the low-dimensional ap-
proximation of the stress ﬁeldﬁ should lie in order to obtain an accurate and
at the same time well-posed ROM; and the calculation of the optimal loca-
tion of the sampling or integration points. Attention here and in the next
section is confined to the aspect related to the stress approximation space;
the issue related to the selection of sampling points, on the other hand, is
examined in Section [7}

5.1. The reduced-order subspace of statically admissible stresses (V)

At first sight, the problem of constructing a O(n,)-dimensional repre-
sentation of the stress field seems quite similar to the problem addressed in
Section [3] concerning the reduced basis for the displacement fluctuations: we
have to find a set of orthogonal basis functions {¥;(x),¥y(x)... ¥, (x)}
(ny = O(n,)) such that its span accurately approximates the set of all possi-
ble stress solutions —that is, the set of all statically admissible stresses. Ac-
cordingly, following the procedure described in Section [ we first compute
finite element, stress distributions over the RVE for representative macro-
strain historieSEl. Then, the elastic/inelastic dimensionality reduction process
set forth in Section B.2.1] is applied to the resulting ensemble of stress solu-
tions {o!(x),0?(x) ... o™ (x)}, in order to identify both the elastic and the
essential inelastic stress modes. The space spanned by these modes will be
denoted hereafter by V; and termed the reduced-order subspace of statically
admissible stresses:

Elastic stress modes “Essential”, inelastic stress modes
7\ o\
7 N 7 )
Vi =span{¥(x), ¥2(x), ..., Y. (X), . +1(X); o 12(X), ..., ¥p, (x) }.

(27)

81t was mentioned in the introductory section that the central idea of efficient inter-
polatory approaches for numerical integration of reduced-order BVPs is to replace the
nonaffine term in the the integrand by low-dimensional interpolants. In our case, a glance
at the reduced-order equilibrium equation (2I) readily reveals that such “offending”, non-
affine term is the stress field —the reduced B-matrix B* = B*(x) is independent of the
input parameter eps and hence need not be subject to approximation.

9The most practical and somehow consistent choice regarding these strain trajectories
is to use the same as in the computation of the displacement fluctuations snapshots
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5.2. Ill-posedness of the HP-ROM

Let us now try to construct the low-dimensional approximation of the
stress field, denoted by@ o, as a linear combination of the above described
stress reduced basis— hence making V&#" = V*—; i.e.,

o(x;ep, U") = 0" (x;€p, U") = Z!I/i(x)ci(eM, U, (28)

where ¢; € R (i = 1,2...n,). This strategy of approximating the offend-
ing, nonaffine term in the BVP by a linear combination of pre-computed
basis functions —obtained, in turn, from samples of the nonaffine term eval-
uated at the solution— has been successfully applied by several authors, with
no apparent —or at least not reported— computational pitfalls, to a wide
gamut of problems: nonlinear monotonic elliptic and nonlinear parabolic
BPVs [46, 133], nonlinear miscible viscous fingering in porous media [17, 18],
uncertainty quantification in inverse problems [31], and nonlinear heat con-
duction problems |4, 6], to cite but a few.

However, a closer examination of the the RVE equilibrium problem reveals
that, in this case, this “standard” strategy proves completely fruitless, for it
leads to patently ill-posed reduced-order equations. To show this, let us first
substitute approximation (28)) into Eq.(21I]):

/B*T(X)U(X;GM,U*)CZQ%/B*T(X)O'*(X;EM,U*):
0 Q

> ([ BT 0w alenn.U7) =0

i=1

(29)

By virtue of Eq.(23]), the bracketed integral in the preceding equation can be
rephrased as:

/Q B (x)%;(x) dQ:<I>T< /Q BT (x)W:(x) dQ), i=1,2. n,.  (30)

Each basis function ¥;(x) (i = 1,2...n,) is, by construction, a linear com-
bination of the stress snapshots collected during the offline, finite element

ONotice that, in keeping with the notational convention introduced in Section H] the
low-dimensional approximation of the stress field is represented by attaching an asterisk
to the stress symbol.
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analysis; thus, we can write ¥; = > 7"V f;07 (i =1,2...n,), B;; € R being
the corresponding coefficients in the linear combination. Inserting the above
equation into Eq.(30) and considering that o7 (j = 1,2...n4,,) are finite
element stress solutions —and therefore fulfill the finite element equilibrium

equation (§)—, we finally arrive at:
=0

-
7 N\

Nsnp

") " By (/ BTade) =0, i=1,2...n,, (31)
j=1 @

that is, the integral (B0) appearing in the equilibrium equation (29]), and
hence, the left-hand side of the equation itself, vanishes identically regardless
of the value of the modal coefficients ¢; € R (i = 1,2...n,), and therefore,
regardless of the value of the reduced displacement fluctuations U*—hence
the ill-posedness.

5.3. Proposed remedy: the expanded space approach

It is clear from the foregoing discussion that the root cause of the ill-
posedness lies in the fact that the set of all admissible stress fields (V)
forms a wvector space, and, consequently, the POD stress modes ¥; € V,
(t=1,2...n,) —and any linear combination of them— turn out to be self-
equilibrated fields. Thus, for the reduced-order problem to be well-posed,
the approximation space V2" cannot be only formed by statically admissible
stresses, but it must also include statically inadmissible fields —i.e. stress
functions that do not satisfy the reduced-order equilibrium equation (21I).

One plausible route for determining a low-dimensional approximation
space that embraces both statically admissible and statically inadmissible
stresses might be to collect, during the offline finite element calculations, not
only converged stresses, but also the unconverged ones —i.e., those gener-
ated during the corresponding iterative algorithm—, and then perform the
POD-based dimensionality reduction over the whole ensemble of snapshots.
In the present work, however, we pursue an approach that precludes the ne-
cessity of undertaking this computationally laborious and in some aspects
objectionable —there is no guarantee that the span of selected, unconverged
stress snapshots covers the entire space of statically inadmissible stresses—
process. The idea behind the employed approach was originally conceived,
but not fully developed, by the authors in a recent monograph [35]. Here,
the theory underlying such an idea is further elaborated and cast into the
formalisms of functional analysis.

19



5.3.1. Continuum formulation

To originate our considerations from a general standpoint, it proves con-
venient first to rephrase the left-hand side of the reduced-order equilibrium
equation Eq.(2]]) as the action of a certain linear operator G : Ly(2)* — R™
on the stress field over the RVE:

/B:To.dQ = (B},0),,0 = (Go]); i=12..n, (32)
Q

Invoking now the orthogonal decomposition of Ly(€2)* induced by this oper-
ator, one obtains:

Ly(Q)* = N(G) ® span{ B}, , (33)

where N/ (G) stands for the nullspace of G. Since the RVE equilibrium equa-
tion has a vanishing right-hand side term, it follows that N (G) is actually
the space of statically admissible stress fields. Its orthogonal complement,
span{ B}, can be therefore construed as the abovementioned space of
statically inadmaissible stresses. The key fact here is that such a space is
inherently n,-dimensional and, thus, there is no need to perform any dimen-
stonality reduction whatsoever over unconverged snapshots to arrive at the
desired basis: the strain-displacement functions {B}, B;... By, } themselves
are linearly independent (albeit not orthogonal) and can thereby serve this
Very purpose.

According to the preceding decomposition, any o € Ls(£2)* can be re-
solved as (see Figure [2)):

o=0"+o" with (", o-i”>L2(Q) =0, (34)

where 0% € N'(G) and o™ € span{ B}, stand for the statically admissible
and statically inadmissible components of o, respectively. Following the
standard approach, the statically admissible component %@ —i.e., the stress
solution we wish to calculate for a given input €y;— is forced to lie in the span
of the POD modes ¥; (i = 1,2...n,) obtained from converged snapshots:

oot =) Wi (35)
=1

¢ eR (i=1,2...n,) being the corresponding modal coefficients. The non-
equilibrated component o, on the other hand, resides naturally in the span
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of the reduced strain-displacement functions, so we can directly write—i.e.,
without introducing further approximations—:

Ny

o =) Bl (36)
i=1
with ¢ € R (i = 1,2...n,). The low-dimensional approximation re-

quired in the proposed integration method, denoted in what follows by o®**
(the appended superscript “ex” means “stress approximated in the expanded
space” ), is finally obtained as the sum of Eq.(35) and Eq.(36) :

o = i W+ i B (37)
i=1 Jj=1

Substituting the above approximation into the equilibrium equation, one

span(B;, B;...BZu )
(Space of statically
inadmissible stresses)

N(G)
(Space of statically
admissible stresses)

T span(¥,¥,..¥,)

(POD stress modes)

Figure 2: Expanded space approach. The stress approximation space is expanded so that
it embraces, not only the span of the stress POD modes, but also the span of the reduced
strain-displacement functions { B}, B5... B}, }. The reduced-order RVE equilibrium prob-
lem boils down to find the reduced displacement fluctuations vector U™ that makes the
non-equilibrated component o™ to vanish (o™(U*,epr) =0 ).

gets:

/QBQ*TG‘””* => (/Q B;‘TB;dQ) r=0, i=12...n, (38)

j=1

Since { B}, B;. .. B,, } are linearly independent functions, it becomes imme-
diately clear that the above equations holds only if:

Men, U =0, j=1,2...n,, (39)
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i.e., if the n, coefficients multiplying B} € Ly(2)® (i =1,2...n,) are identi-
cally zero. In adopting the proposed integration approach, thus, the reduced-
order RVE equilibrium problem (2]]) is transformed into the problem of find-
ing, for a given input macroscopic strain tensor €y, the reduced displacement
fluctuations vector U* € R™ that makes the non-equilibrated component o
(defined in Eq.(36])) to vanish.

In a nutshell, the ill-posedness exhibited by the discrete problem when
adopting the standard approach of using only POD modes is eliminated by
expanding the stress approximation space so that it embraces also the span of
the reduced strain-displacement functions (or strain mode) B} e Ly(2)*
(1=1,2...ny):

ne stress modes Ny, strain modes

V" = Vi @ span{B}}"", = span{W,,¥,... ¥, B; Bj;...B:}. (40)

5.8.2. Discrete formulation

In typical finite element implementations, both stresses and gradients
of shape functions are only calculated and stored at the Gauss points of
the underlying spatial discretization. For practical reasons, thus, it proves
imperative to reformulate the above explained expanded space strategy and
treat both magnitudes as spatially discrete variables, defined only at such
Gauss points.

The discrete counterparts of the continuously defined fields o € Lo(2)*
and B} € Ly(Q)* (i = 1,2...n,) will be denoted by & € R™* and B* =
[BI B; .- B;u} € R" ™ and termed the global stress wvector, and
the global matrix of strain modes, respectively. The global stress vector 8
is constructed by stacking the stress vectors o(x,;-) € R®* (¢ =1,2...n,) at
the Gauss points of the finite element grid into a single column vector:

§:i=[oT(xi) o (xair) - 0T (x,)] (41)
Similarly, the global matrix of strain modes B* is constructed as:

B = [B"(x;) B (xy) --- B7(x,)] . (42)

1 Indeed, functions B} € Ly(2)* (i = 1,2...n,) can be viewed as fluctuating strain
modes, since they are the symmetric gradient of the displacement fluctuation modes, see

Eq.
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Having definitions (4Il) and (42]) at hand, the approximation of Eq.(22)
by Gauss quadrature can be written as:

/ B/ (x)o(x;) d2~ Y w,B;{(x,)o(x,) =0
Q g=1

=B'WS=0, i=12..n,

(43)

where W' is a diagonal matrix containing the weights at each Gauss point:

wlI 0 0 --- 0
0 woI 0 --- 0
W=\ . S . (44)

0 0 0 0 w,I
(here, I denotes the sxs identity matrix). Assuming that w, > 0 (g =

1,2...n,) —Gauss quadrature rules with negative weights are excluded from

our considerations—, and using the Cholesky decomposition of W (W =
WY2W12) one can reexpress Eq.([@3) as

B"WS = (B"WYH)(W'28) = 0. (45)

Defining now the weighted global stress vector and weighted matrix of strain
modes as

= WS = (Vo (ki) it (k) o e (%,:0)]
(46)
and
B* — W1/2B* _ [\/w_lB*T(Xl) \/w_QB*T(X2> L \/w—ngB*T(XngﬂT
(47)

respectively, and inserting these definitions into Eq.(4Il), one finally arrives
at:
B*'Y =0, (48)

or equivalently,
B’ =0, i=1,2...n,, (49)

which shows that any statically admissible weighted stress vector is orthog-
onal, in the sense of the standard euclidean inner product, to the weighted
strain modes B” (i = 1,2...n,).
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Comparing Eq.@8) with Eq.[32), it becomes clear that B*’ plays the
same role as operator G in Eq.(32). In analogy with Eq.(33), thus, we can
write

R"* = N'(B*") @ Range(B*) (50)

where A (B*") and Range(B*) denote the null space and the range (or column
space) of B*T and B*, respectively, and consequently decompose any X €
R™% as

¥ =34 3in (51)
with 2% ¢ N (B*7) and ™ € Range(B*). As in the continuous case (see
Eq.([35), the statically admissible component 3%? is now approzimated by

a linear combination of POD basis vectors obtained from converged stress
snapshot:

Rl B =) @ = W (52)
i=1
where ¥ = [¥; ¥, ... W, | denotes the (weighted) stress basis matrix

and ¢ € R" stands for the vector of modal coefficients associated to such
a basis matrix. Likewise, since the non-equilibrated component X" pertains
to the column space of B*, we can directly write

3" =B (53)

where ¢™ € R™. The low-dimensional (weighted) stress vector X" required
in the proposed integration method is finally obtained as the sum of Eq.(53))

and Eq.(52]). '
3~ Eem* — lI,Cad —I—B*Cln, (54)

or in a more compact format:
3 = W, (55)

where
P = [lIl IB%*} , (56)

12The methodology for obtaining these modes using the SVD is similar to that explained
in Section for the displacement fluctuation modes.
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and 4
c[l
. L"} , (57)

The matrix ¥ € R s> (u+n0) defined by Eq.(56) will be hereafter called
the erpanded basis matrix for the (weighted) stresses, whereas ¢ € R" "
will be correspondingly termed the expanded vector of modal coefficients.
Inserting approximation (54)) into Eq.(@S), and considering that B*"¥ = 0
and that B*T is a full rank matrix, one finally arrives at the same equilibrium
condition derived in the continuum case (see Eq. B9):

c™"(U* en) = 0. (58)

Once the above equation is solved for U*, the desired equilibrated stress
vector X" is obtained by evaluating Eq.(52]):

¥ =W (U* en). (59)

6. The High-Performance ROM

The next step in the development of the proposed integration scheme is to
deduce closed-form expressions for the vectors of modal coefficients ¢** € R"
and ¢™ € R™ in terms of the stress values computed at a set of p = O(n,,)
pre-specified sampling points (to be chosen among the set of Gauss points of
the underlying finite element mesh). To this end, we need first to introduce
some notation and terminology.

6.1. Gappy vectors

Let Z ={Z;,Z,...Z,} C {1,2---n,} denote the set of indices of sampling
points. Notationally, we write 37y € RP® to designate the subvector of X
containing the rows associated to these sampling points; viz.:

~ T
Y1) = [Vuno'(xg,) Juno!(xg,:) - JuLo! (Xg,,-)] (60)

(When confusion is not apt to arise, the parenthetical subscript indicating
the set of sampling indices will be dropped, and we shall simply write ﬁ])
It proves conceptually advantageous to regard this restricted or “gappy” —
a terminology that goes back to the work of Everson et al. [28]— stress
vector f](z) as the result of the application of a certain boolean operator
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Py : R"* — RP® over the full vector X (i.e., > = PonX). We call Pq
the selection operator associated to sampling indices Z. This operator can
be of course applied to any Y € R"s5*% (2 € N). For instance, the restricted
matrix of weighted strain modes is defined as B* = PB*. Furthermore, it
is straighforward to show that

'P(Z)'P{Z) =1, (61)
(here I is the (ng - s)x(n, - s) identity matrix) and that
Py (AY) = (P)AP 1) (Po)Y) (62)

for any A € R"5*"eS and Y € R7e5*2,

6.2. Least-squares fit

In the spirit of classical polynomial quadrature, such as Newton-Cotes
formulae 36], the modal coefficients ¢* € R" and ¢™ € R™ are determined
by fitting the low-dimensional approximation (54) to the weighted stresses
calculated at the pre-specified sampling points. It should be noticed that,
the variable subject to approximation —the stress— being a vector-valued
function, the total number of discrete points to be fitted does not coincide
with the number of spatial sampling points (p), but rather is equal to the
product of such a number times the number of stress components (s). The
well-posedness of the fitting problem, thus, demands that p-s > n, +n,,, i.e.,
the number of discrete points must be equal or greater than the number of
parameters to be adjusted. For the equality to hold, both n, +n, and p have
to be multiple of s; thus, an exact fit is in general not possible for arbitrary
values of n, and n,, and recourse to an approximate fit is to be made. In
this respect, we follow here the standard approach of using a least-squares,
best-fit criterion, i.e., minimization of the squares of the deviations between
“observed” () and fitted (57 = Wa + B*b) values (in our context, “ob-
served” signifies “calculated through the pertinent constitutive equation”).
This minimization problem can be stated as:

ad ~ a ~
c= {cn} —arg min |5 -— <\Ila + B*b) [ (63)
C acR"o beR™u
where || - || stands for the standard euclidean norm. Let ¥ = P ¥ =

[\i’ Iﬁ%*] be the gappy expanded basis matrix, and suppose that the sampling
indices Z have been chosen so that ¥é® has full rank, i.e.:

rank(¥°®) = rank([¥ B*)) = n, + n,. (64)

26



Then, it can be shown (see, for instance, Ref. [23]) that the solution of
this standard, least-squares problem is provided by the following vector of
coefficients:

ad ezt A
c= {cn} — 5“5, (65)
C
where
M71
——t
= (el ey e’ (66)

is the so-called pseudo-inverse of matrix We.

Recall that our ultimate aim is to derive closed-form expressions for ¢
and ¢ as functions of 3. Thus, it remains to extricate these two sub-
vectors from expression (65). This can be done by first partitioning both

~ A~ Ta ~ T I
M = ¥ ¥ and ¥** in terms of the gappy stress basis matrix ¥ and
the gappy matrix of strain modes B*:
-1 T
[]};T] 3. (67)

Invoking the blockwise inverse formula for 2x2 block symmetric matrices [11],
and upon tedious algebra —that has been relegated to Appendix [CH— one
finally arrives at the following expressions for ¢ and ¢

o H - [@T@ &' B
C

" T BT B

" = \ilT(ﬁ) —B*e), (68)
in 17T Sl s
¢ — SR (I—\II\II)E, (69)
where \ilT denotes the pseudoinverse of the gappy stress basis matrix U
St

&' = ()" (70)

and S := B*" (I — \il\ilT) (note that S is invertible by virtue of the hypothesis
represented by Eq.(64))).

6.2.1. Reconstruction matrix
Let us first examine expression (68) for the modal coefficients ¢ —those
that multiply the statically admissible component of the global stress vector.
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Since, at the solution, ¢ = 0, we have that:
=0
ft o PN ot 71
=4S B ) = b (71)

(Notice that this result can also be obtained by directly solving minimization
problem (63) with b = 0). Substitution of this equation into Eq.(59) yields:

R
AT A~ A~
=¥ =9V ¥ =R, (72)
where i o L
R=9V =¥ (¥ &) ¥ . (73)

Inspection of Eq.(72) reveals that the matrix R € R"s**P¢ defined above is
the operator that allows one to reconstruct the (weighted) statically admissi-
ble stress vector £* € R using only the (weighted) stress values (3 € R?*)
calculated at the pre-selected sampling points Z. For this reason, we shall use
the term weighted reconstruction matriz (or simply reconstruction matrix)
to refer to this operator. It must be emphasized here that this matrix only
depends on the POD stress basis matrix W and on the selected sampling
indices Z —i.e., it is independent of the input parameter, the macro-strain
en—and, therefore, it can be pre-computed offiine.

6.3. “Hyperreduced” RVE equilibrium equation

As for the expression for the set of “statically inadmissible” coefficients
c™ € R™, we know that, at the solution, these coefficients must vanish; thus,

from Eq.([69), we have
"(U*, err) = STUB" (I - \iniﬁ) SI(U*, ear) = 0. (74)
Since S is a nonsingular matrix, the above condition is equivalent to
B (I . \iniﬁ) S(U*, ear) = 0. (75)

Furthermore, examination of Eq.([3) and Eq.(75) readily shows that the

bracketed term O in Eq.(3) is nothing but the submatrix of the recon-
struction matrix R formed by the rows associated to sampling points Z, i.e.:

A~

' =Py (@b =P R=R. (76)
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Substitution of expression ([76]) into Eq.(75) finally leads to:
B (I — R)X(U*, epr) = 0. (77)

As previously noted (see Figure 2)), the purpose of enforcing condition
c™(U*,epr) = 0 is to ensure that the stress solution lies entirely in the
space of equilibrated stresses. Equation (77) can be viewed, thus, as the
“hyperreduced” form of the original RVE equilibrium equation.

Observation 6.1. The “hyperreduced” qualifier —coined by D. Ryckelynck
158, 159]— is used here to indicate that Eq.(77) is the result of two subsequent
steps of complexity reduction: firstly, in the number of degrees of freedom
(when passing from the finite element model to the ROM that employs stan-
dard Gauss quadrature), and, secondly, in the number of integration points
(when passing from this standard ROM to what we have baptize “High-
Performance” ROM ). This double complexity reduction can be better appre-
ciated by rephrasing both Eq.(77) and the FE equation (3) in a format similar

to that of Eq.({4{§), viz.:

T

B**
— . . .
B* (I-R)X=B" X=0, (78)
and
g
> wyBla,)o(x,,;) =B'S =0, (79)
g=1

respectively (here, B € R X" js the finite element counterpart of B*, de-
fined in Eq.{{3)). With Eq.(79), Eq.{48) and Eq.(78) at our disposal, the
abovementioned process of complexity reduction can be symbolically repre-
sented as

FEM 1%t reduc. Stand. ROM  2™%reduc. HP-ROM
N ndone oY 0P e o
B7S =0 — BY =0 B*"S =0, (80)

13 The term High-Performance, Reduced-Order Model (HP-ROM) is used to highlight
the tremendous gains in performance that affords this model over the standard ROM, let
alone over the full-order, finite model. In the numerical example shown in Section [ we
report speedup factors of above three order of magnitudes.
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the relation between B € Rrosxmd B* € Riosxmu gnd B** ¢ RPsxnu being
B* = B® and R R
B :=(I—-R)B"=(I-R)PB", (81)

with p = O(n,) << ng = O(n). It is interesting to see how the reduction
i complexity of the RVE equilibrium equation is reflected in the gradual
reduction of the dimensions of the “B” operators that act on the weighted
vector of stresses.

6.3.1. Physical interpretation

Aside from a “compressed” version of the original, full-order cell condi-
tion, the hyperreduced equation (77) can be alternatively interpreted as a
balance between “observed” and “fitted” internal forces at the selected sam-
pling points. Such an interpretation becomes readily identifiable by realizing
that the product R3 appearing in Eq.() is but the (weighted) vector of
fitted stresses at the selected sampling points. Indeed, by virtue of Eq.(72)
and, considering the properties of the selection operator P (z), we have that

Ak

RY = 'P(z)(Rﬁ)) =PopX =3 (82)

*

A
3., or, re-

Using the above equality, Eq.(77) is expressible as B*'Y = B*
verting to the original, summation notation as

Y wB x)o(x;;) = Y w; B (x;)0" (x5 ). (83)
jeT jET
Note that both sides of the above equation represent the same physical
quantity, namely, the sum of internal forces, in reduced coordinates, at the
sampling Gauss points {xz,,Xz, ---xz,}. The difference lies in the stresses
employed for computing these internal forces. In the left-hand side, they are
calculated using “observed” stresses o —stresses that arises directly from
evaluating the corresponding constitutive equation—, whereas, in the right-
hand side, “fitted” stresses o* are used —that is, stresses obtained from
fitting the approximation constructed using the POD stress basis functions
W, W,... ¥, to the observed data. Thus, the HP-ROM equilibrium con-
dition (83)) is telling us that, at the solution, the sum of internal forces —at
the pre-selected sampling points— computed using either observed or fitted
stresse must coincide.

14Tt should be mentioned in this respect that, in general, o (x;;-) # o(x;;-) since the
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6.4. Jacobian matrix

Needless to say, the dependence of the stresses on the reduced vector of
reduced displacement fluctuations U™ is in general non-linear, and, thereby,
an iterative method is required for solving Eq. (7). Here we employ the stan-
dard Newton-Raphson procedure. The iterative scheme corresponding to this
procedure is given by the following expression (the parenthetical superscript
indicates iteration number):

U — k) _ K*(k)_lF*(k)7 (84)
where R o
F*® =B (I - R) S(ep, U*™) (85)
and
K*® = B(I - R) C(ep, U ™) B*. (86)

In the above equation, C € Rrs*Ps denotes a block diagonal matrix contain-
ing the algorithmic, constitutive tangent matrices at each sampling point:

C(xz;) 0 0 -~ 0
. 0 Clxgz;-) 0 -~ 0
¢ .= : (:I ) L : . (87)
0 0 0 0 Cl(xz;)

6.4.1. Positive definiteness

Because of its relevance in the overall robustness of the proposed method,
it is worthwhile at this point to digress and discuss thoroughly the spectral
properties of the Jacobian matrix represented by Eq.(86]). In particular, it
would be interesting to ascertain whether positive definiteness of the algorith-
mic tangent matrices C(xz,;-), C(xz,; ), - - C(xz,) at the selected sampling
points, and thus of matrix C, ensures positive definiteness of the Jacobian
matrix K™ —as it occurs when using classical Gauss quadrature rules with
positive weights—, and, if not, which remedies can be applied to obtain such
desirable property.

number of data items to be fitted (p-s) is always greater than the number of stress modes
(ny). Observed and fitted stresses coincide only when the stress vector ¥ one wishes to
approximate pertains to the column space of the stress basis matrix ¥
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Positive definiteness of the Jacobian matrix (86]) requires that the function
defined as

F(U) = UTK*U = (B*'U)T(I - R) C(B*U) (88)

be positive for all non-zero U € R™. Since B* is a full rank matrix —by
virtue of Eq.(64)—, condition F'(U) > 0 is equivalent to:

GV)=VII-R)CV>0 (89)

for all non-zero V € Range(B*).

To go further, we need to demonstrate that R € Ros%n9s __recall that
R is the matrix that maps the vector of “observed” stresses 3 to the vector
of fitted stresses ) Jp— actually represents an orthogonal pmjectio onto
the column space of the gappy stress basis matrix . This can be shown by
simply noting that R is, on the one hand, symmetric:

R =@ &) =9 &) T =R (90)
and, on the other hand, idempotent:
f{
R = (B8 = & () (8T = b = R
With this property at hand, we can decompose any V € Range(]ﬁ%*) as oy
v=vlivt (92)

where VII=RV e Rangeg\il) —the component of V along the column space
of ¥— and V*+ = (I — R)V —the component of V along the orthogonal

complement of Range(W¥). Introducing the above decomposition into Eq.(89),
we arrive at

G=Vvevtvitevl, (93)

While the first term V- CV* in the preceding equation is, in virtue of
the positive definiteness of C, eminently positive for all nonzero V+ € RP*,
nothing can be said in principle about the second term VT eV numerical
experience shows that the sign and relative magnitude of this term depends
further on the chosen set of sampling indices I.

15 R is the so-called “hat” matrix of linear regression models [52].
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Remark 6.1. From the above observation, it follows that the positive defi-
niteness of the Jacobian matriz K* is determined, not only by the spectral
properties of C, but —not surprisingly— also by the number and the location
within the RVE of the sampling points employed in the integration.

The foregoing remark naturally leads to wonder whether it is possible
to select the sampling indices Z so as to ensure the positive definiteness of
K™ (assuming, obviously, that @ enjoys this property). To shed light on this
question, let us first divide Eq.(@3]) by viev (notice that hypothesis (64])
precludes the possibility of V+ being zero)

_ G viievl
G= =l ——r—. (94)
viTeve viTeve

Suppose now, for the sake of argument, that C is also symmetric. Such being
the case, the above equation can be legitimately rewritten as:

_ V| -
G =1+ cos(V*, VI ||||VL <, (95)
¢
where
vi VII>A
Loy, (V+, ¢
cos(V=, Ve = VIVl (96)

In the above equation, (-, -)s symbolizes the inner product defined by C (ie.,
(x,y)e = xTCy), whereas || - || denotes the norm associated to such an
inner product (||x ?ﬁ = (x,%)z). From Eq.([@4)), it can be deduced that a
sufficient (yet not necessary) condition for G > 0, and thus for K™ to be
positive definite, is that

||VH
V4

C 1 (97)

¢
for all nonzero V € Range(B*), or equivalently (setting V = B*U):
| RB*U||¢

I(I — R)B*U

¢

for all nonzero U € R™u,
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Useful guidelines on how to choose Z so as to make positive definite the
Jacobian matrix K* can be inferred from inequality (O8)). Firstly, given a
fixed number of sampling points p, expression (O8] indicates that such points
should be selected so that the columns of the gappy strain basis matrix B* =
PoB* = BB .. I@%;ju] are, loosely speaking, “as orthogonal as possible” to

Range(R) = Range(W) —the column space of the gappy stress basis matrix
¥ =P )¥P. In so doing, the factor defined as

> IIRB; 1%
fo = === , (99)
> I - R)B;

=1

2
¢

would diminish, and so would, consequently, the left-hand side of inequality
Eq.([@8). In practice, however, factor fs cannot be used as a criterion for
guiding the selection of sampling points, simply because it is defined in terms
of the norm induced by C, and this matrix virtually changes at every time
step and iteration. One has to be content to estimate this factor using other

norm; for instance, employing the standard euclidean norm || - ||, one gets
> IR .
for fri=——= = o (100)
- I(I — R)B*

> I - BB
i=1

where || - | r stands for the Frobenius norm.

Aside from seeking orthogonality between B* and R, expression @9) sug-
gests that another way of lowering factor fr may be to reduce the ratio
defined as R

Bp = 7HRHAF .

I = R||F

Since R and, consequently, I — R are matrices representing orthogonal projec-

tions, we have that || R||z = \/rank(R) = \/n, and |[I— Rz = \/p- 5 — no.

Therefore,
Ne
Br=\|——. (102)
P-s—"g

(101)



Observation 6.2. From the above expression, thus, one can conclude that
increasing the number of sampling points p while keeping the number of
stress modes n, constant also contributes to reduce factor fr in Eq.(98),
and, hence, to improve the spectral properties (positive defineteness) of the
Jacobian matriz K*. Notice that this property is totally consistent with the
fact that, in the limiting case of taking all Gauss points (p = ng), the reduced
matrices R and B* degenerate into their full order counterparts R and B*, for
which the condition RB* = 0 holds —they span subspaces that are mutually
orthogonal—, hence making fr = fa = 0.

7. Selection of sampling points

The last theoretical issue to be discussed in the present work is the se-
lection —among the full set of Gauss points of the underlying finite element
mesh— of appropriate sampling or interpolation points. At the very least,
the set of sampling indices Z = {4y, i3 . . .4, } must be chosen so that the gappy
expanded basis matrix has full rank (see section [6.2]):

rank(\il?;)) = rank([¥(q) ]ﬁ%’(})]) = Ng + Ny (103)

Any set of sampling indices fulfilling this necessary condition is said to be
admissible.

7.1. Optimality criteria

7.1.1. Accuracy

As in any other model reduction problem, the overriding concern when
choosing the sampling points is the accuracy of the approximation: we would
like to position such points so that maximum similarity between the “high-
fidelity”, finite element solution and its reduced-order counterpart is ob-
tained. More specifically, since the output of interest in our BVP is the
macroscopic stress response, the aim is to find the set of sampling points Z
that minimizes the following error estimate:

Nsnp
Erno(¥,2) = | Y llom' — o (2, T)|I2, (104)
i=1
where on' = oa(tenr)’) denotes the finite element, macroscopic stress

response corresponding to the the k —th (k =1,2...ny,) time step of the
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“training” strain trajectory ‘eps? (j = 1,2...1npus); and oa* (P, 7) its
low-dimensional approximation.

Using the Cauchy-Schwarz inequality, and approximating the pertinent
integrals by Gauss quadrature, we can write

1 Nsnp . '
Buo’ <Y [ o)~ o 0. D
i=1 /0

Nsnp Ng

1 ) ®1
~ = DD IV () — /e (s LT (105)
i=1 g=1
1 Nsnp

= _I¥ =S D)P2 = IX - X" (¥, D)%
1=1

where X = [X' £? ... ¥™w] and X*(¥,Z) = Riz)(P1)X). The error
estimate for the macroscopic stresses defined in Eq.(I04]) is, thus, bounded
above by the Frobenius norm of the difference between the (weighted) stress
snapshot matrix X and its oblique projection, X*, onto Range(¥). This
bound, hereafter designated by e,, admits the following decompositio

1 * 1 * *
e’ = SIX = XH@)E+ | X ) - X (@ D), (106)

X** being the orthogonal projection of X onto the range of ¥, ie., X*+ =
WPTX. Note that the first term of the right-hand side of Eq.(I08) only
depends on the stress basis matrix, but not on the employed sampling indices;
it provides, thus, an estimate of the stress truncation error. The term that
actually measures the quality, in terms of accuracy, of a given set of admissible
sampling points is the second one—it provides an (a priori) estimate of the
stress reconstruction error. We shall denote this term by e’

o -

1
eree = VHX*L(\II) — X*(¥,7)|p. (107)

[

For this reason —and also because the cost of evaluating expression Eq.(I07)

16The term “training”, which, incidentally, is borrowed from the neural network litera-
ture [38], is used throughout the text to refer to the offline generation of snapshots.

1"This decomposition follows easily from the Pythagorean theorem (just notice that
(X - X)) =0).
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is independent of the number of Gauss points@, and therefore significantly
lower than in the case of the original error estimate Ejs,—, we shall use
in what follows e as error estimator for guiding the selection of sampling
points.

7.1.2. Spectral properties
Yet the optimality of a given set of sampling points cannot be measured
only in terms of accuracy of the approximation. As demonstrated in Sec-
tion [6.4], the number and particular placement of such points influence also
the spectral properties (positive definiteness) of the Jacobian matrix of the
equilibrium equation, and therefore, the convergence characteristics of the
accompanying Newton-Raphson algorithm. We saw that, to preserve the
positive definiteness of the full-order Jacobian matrix, one should strive to
choose the sampling indices Z so as to make the factor —defined previously
in Eq.(I00)—:
1B B |l 7

-fF(‘I’>B*>I) = ~ ~
(I — Rz)) B lIr

(108)

as small as possible.

7.2. Optimization approach: basic and stabilizing sampling points

Unfortunately, the minimization of the approximation error represented
by expression Eq.(I07)) and the minimization of Eq.(I08]) are in general con-
flicting goals. For instance, numerical experiments show that when the selec-
tion is driven exclusively by accuracy considerations, the resulting Jacobian
matrix becomes indefinite at certain states of deformation —especially when
inelastic deformations are severe—, leading occasionally to convergence fail-
ures. These goals must be therefore balanced in order to arrive at an accurate
and at the same time robust solution scheme.

To accomodate these conflicting requirements, we propose here a heuristic
strategy that basically consists in treating the minimization of Eq.(I07) and

18Tndeed, since ¥ is column-wise orthogonal, minimizing Eq.(I07) is equivalent to min-
imizing the difference between the coefficients of the respective projections. The number
of coeflicients is equal to the number of snapshots, which is normally much lower than the
number of Gauss points.
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Eq.(I08)) as two separated, sequential problems —in the spirit of the so-
called “greedy” optimization algorithmd™ [44]. The set of sampling points is
assumed to be divided into two disjoint subsets Z, and Zg:

T=7,UTp. (109)

The first subset Z, = {41, 42, - - i, } is obtained as the minimizer of the error
estimation given in Eq.(I07), viz.:

I, =arg min e (¥, K). (110)

KC{1,2...ng}

Once the set Z,, is determined, the remaining sampling indices Zg = {j1, j2 - - - Jps }
(ps + p = p) are calculated as

Ip = arg ’Cg{r{%{lﬂg} fr(¥,B*,Z, UK). (111)

Remark 7.1. It must be noted here that the minimization problem repre-
sented by Eq.(I10) is in essence the same problem addressed in (standard)
interpolatory-based, model reduction approaches for determining, given a set
of empirical basis functions, the optimal location of associated interpolations
points. For this reason, we shall refer to the set of points arising from solving
this minimization problem as the standard or basic sampling points —these
are the Best Interpolation Points of Nguyen et al. [54], or the “magic points”
of Maday et al. [46].. By contrast, the necessity of introducing points that
attempt to solve problem (I11l) is a consequence of expanding the stress ap-
prozimation space in the first place —the main innovative feature of our
approach—, and it is therefore not present in other model reduction strate-
gies. We shall call {z,1), Tr,02) - Ty} the set of stabilizing sampling
points.

The number of basic sampling points must satisfy the necessary condition
Do > ny/s. In general, taking p, = n, suffices to ensure highly satisfactory
approximations. How many, on the other hand, stabilizing sampling points
have to be added to safely render positive definite the Jacobian matrix —
for at least a representative range of macroscopic state deformations— is a

YA greedy method is any algorithm that solves the problem by making the locally
optimal choice at each step with the hope of finding the global optimum.
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question that can only be answered empirically. In the examples presented
in the next section, it has been found that a conservative answer is to use as
many stabilizing sampling points as displacement basis modes (pg = ny,).
To deal with the discrete minimization problem (II0), we have used here
the Hierarchical Interpolation Points (HPI) method proposed by Nguyen et
al. [54]. The essence of this method is to construct, in a greedy fashion, the set
of indices by solving a sequence of one-dimensional minimization problems.
The minimization problem (I11]) is also addressed using a heuristic based
on the greedy paradigm. In particular, the k —th (k = 1,2...pp) index is
selected by solving the following, one-dimensional minimization problem:

Ip(k) = arg o foin }fF(‘I’,B*JC(j)) (112a)
K =717, U{Zs(1),Zp(2) - - Tp(k — 1), j}. (112b)

8. Summary

Lastly, for the reader’s convenience and easy reference, the online reduced-
order problem, along with the offline steps that leads to the the hyperreduced
operators appearing in the online problem, are summarized in Boxes Bl and

9. Numerical results

This section is intended to illustrate the performance and assess the effi-
ciency of the proposed model reduction strategy in solving the fine scale BVP
corresponding to a porous metal material under plane strain conditions.

9.1. Microstructure description

The voids are elliptical in shape (with eccentricity equal to 0.3), randomly
distributed (with porosity equal to 0.3), and have aligned major axes ranging
in length —according to the cumulative probability distribution displayed in
figure[Blb— from 0.2 to 1.5 mm. The mechanical behavior of the metal matrix
is modeled by a rate-independent, Von Mises elastoplastic model endowed
with the following non-linear, isotropic hardening saturation law (consult
Ref. [61] for details on the implementation of this elastoplastic model):

ou(a) =09+ Ha + (05 — 00)(1 — exp(—ad)). (118)
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1. Compute FE displacement fluctuations and stress snaphots for repre-
sentative, input macro-strain histories. Apply —see Appendix Bl the
elastic/inelastic POD to the resulting snapshot matrices to obtain the
displacement fluctuation and stress basis matrices (® € R™%*" and
W € R"*"  respectively).

2. Calculate the weighted matrix of fluctuating strain modes B* €
R™s %" using Eqs. (206) and (4T).

3. Select a set Z of sampling indices optimal for the basis matrices ¥ and
B* following the procedure sketched in Section [7}

4. Finally, using ¥, B* and Z, construct the hyperreduced-order matrices
B € RPs*mu and T € R**Ps: the expressions for these matrices read:

B*=(I-RB =(I-PxnR)(PxB) (113)

and

’H‘::%[\/w_lI Vel - oI R (114)

where R = \Il(\ilT\il)_l\ilT and ¥ = P ).

Box 8.1: Offline stage. Pre-computation of reduced basis and hyperreduced
operators.

Here, o, stands for the yield stress, & > 0 denotes the equivalent plastic
strain; and oy = 75.0 M Pa, 05 = 100.0 M Pa, § = 2500.0 and H = 5000
M Pa are material constants. The Young’s modulus and Poisson’s coefficient,
on the other hand, are equal to F,, = 75 GPa and v,, = 0.3, respectively
(these material constants corresponds approximately to Aluminum).

9.2. RVE and finite element discretization

The size of the RVE was determined by conducting finite element anal-
yses on square domains of increasing size subject to vanishing displacement
fluctuations boundary conditions. It was found that the macroscopic stress
responses calculated under representative macroscopic strain paths (stretch-
ing along the longitudinal and transversal directions, and shearing) of all
samples above 20x20 mm? were practically indistinguishable. This fact indi-
cates that any subvolume of 20x20 mm? (or greater) can be considered as a
Representative Volume Element (RVE) of the porous material under study.
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1. Initial data: U, € R™ (reduced vector of displacement fluc-
tuations at t¢,), €pr, (macroscopic strain vector at t¢,), and
{&(x1,),&,(x1,),...§(xz,)} (internal variables at t, at the selected
sampling points).

2. Input data: €pr,,1 (macroscopic strain vector at t,41)

3. Given the above initial and input data, find U, , € R™ such that

E**Tﬁ(eMn+lu U.i1) =0, (115)

where

~

S = [Vino (xs,,") iR (xz,,) - wgol(xz,)]  (116)

(here, o(xz,, ) denotes the stress vector evaluated at the i—th sampling
point through the corresponding constitutive equation).

4. Output data: Once Eq.(II6) has been solved for U;,,,, update the
macroscopic stress vector as

0M|n+l =T ZA)(GJ\/In—i-la U;+1)- (117)

Box 8.2: Online stage (solution of the hyperreduced-order RVE equilibrium
problem for given macroscopic strains).

The finite element discretization corresponding to the particular 20x20
mm? RVE employed in the ensuing simulations is shown in figure Bla. The
number of (four-node bilinear) elements is n, = 9746, and the number of
nodes n = 11825. The employed quadrature formula, on the other hand,
is the standard 2x2 Gauss rule, the total number of Gauss points amount-
ing thus to n, = 4n. = 38984. To overcome incompressibility issues while
maintaining the displacement-based formulation presented in the preceding
sections, the commonly known as “B-bar” approach is adopted@. The con-
stitutive differential equations are integrated in time using the classical (fully

20This means that, in this case, the reduced “B-matrix” B*(x) appearing in the for-
mulation of the HP-ROM is not constructed using the gradients of the shape functions,
as indicated by Eq.(23), but rather using the modified “B-matrix” emanating from the
three-field Hu-Washizu variational principle [61]
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Figure 3: a) Finite element mesh of the RVE corresponding to the porous metal material.
b) Cumulative probability distribution followed by the length of the pore major axes.

implicit) backward-Euler scheme.

9.3. Sampling of parameter space
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Figure 4: Macro-strain trajectories used for generating the displacement and stress snap-
shots.
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The first step in the process of constructing the reduced basis is the
sampling of the input parameter space; we saw in Section [3.1] that, in the
fine-scale BVP, this process amounts to select representative macroscopic
strain histories. The three macroscopic strain histories (nns; = 3) used in the
case under study are depicted in figure [l In each of these strain trajectories,
one of the (independent) strain components follows a linear ascending path
while the magnitude of the other two components is set to zero. The time
domain for each strain history is discretized into ng, = 50 equally spaced
steps, resulting in a total number of ng,, = nxs - sy = 150 snapshots.

Remark 9.1. The task of sampling the input parameter space is somehow
akin to the experimental process whereby material parameters of standard
phenomenological models are calibrated in a laboratory. In this analogy, the
RVE plays the role of the corresponding experimental specimen, whereas the
macro-strain training trajectories represent the loading paths of the pertinent
calibration tests. Hindsight and elementary physical considerations can there-
fore aid in restricting the number of strain histories (and hence of snapshots)
necessary to characterize the response. For instance, if the behavior of the
materials that compose the RVE is governed by rate-independent constitutive
models (as in the case at hand), we know beforehand that it is not necessary
to study the response under varying rates of deformation.

Strategies for efficiently sampling the input parameter space in general
model reduction contexts can be found in Refs. (12,113, 15, 142].

9.4. Dimensionality reduction: a priori error analysis

The finite element displacement fluctuation and stress fields computed at
each time step of the input strain trajectories shown above are multiplied
by their corresponding weighting matrices (M and w/ ?) and stored, in
the snapshot matrices X, € R (n.d = 11825 -2 = 23650) and
X € R (n, - s = 38984 - 4 = 155936), respectively. Then, these
matrices are subjected to the SVD-based, elastic/inelastic dimensionality
reduction process sketched in Section B.2.1]—and described more in detail in
Appendix B in order to generate an optimal set of basis vectors for both
the displacements fluctuation and stress solution spaces.

To elucidate which of these basis vectors constitute the “essential” modes
of the response, we plot in Figure [l the dimensionless POD truncation error
estimates defined, for the displacement fluctuations, as:
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Figure 5: POD truncation error estimates &, (for the displacement fluctuations, see
Eq.(I19)) and é““" (for the stresses, see Eq.(I20)) versus number of basis vectors em-
ployed in the approximation (n, and n,, respectively). The portion between 6 and 11
modes is shown in magnified form.

1X — X (n) ||

Eu(ny) == - , (119)
1 X ullr
and for the stresses:
X — X" (n,)lr
erin(n,) = H SEA L (120)
| X ||

X (n,) and X**+(n,) being the orthogonal projection of X, and X onto
the span of the first n, and n, basis vectors, respectively. It can be ob-
served in Figure [0l that both error measures decrease monotonically with
increasing order of truncation —this is a mere consequence of the optimality
properties of the SVD—, and at approximately the same rate; the decay is
more pronounced from 1 to 6 modes, and becomes more gradual thereafter,
tending asymptotically to zero as the number of modes increases. The trun-
cation error for both stresses and displacement fluctuations at n, = n, = 6
is around 5%. In terms of dimensionality reduction, this means that the
data contained in the snapshot matrices can be “compressed” to a factor of
(Ny/Nsnp) - 100 = (6/150) - 100 = 4% and still retain 95% of the informa-
tion —the essential information. The first 6 basis functions (3 elastic and
3 inelastic) for both stresses and displacement fluctuations, therefore, are
to be regarded as essential modes in the characterization of the mechanical
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a) 1st basis

d) 4th basis i f) 6th basis

Figure 6: Contour plots of the euclidean norm of the first 6 displacement fluctuations
modes (||P;]|, i =1,2...5). Deformed shapes are scaled up by a factor of 15.

response of the concerned RVE. By way of illustration, we plot in Figure
the contour plots of the euclidean norm of such 6 essential displacement
fluctuations modes (||@;||, i =1,2...6).

9.5. Sampling points

9.5.1. Basic sampling points

Once the stress and displacement fluctuation basis vectors have been de-
termined, the next offline step consists in the selection —among the full set
of finite element Gauss points—of an optimal set of sampling points. Fol-
lowing the strategy described in Section [[.2] we carry out such a selection
by first computing the location of what we have called basic sampling points
{xz,1),X2,(2) - - - X7, (p,)}- To assess the efficiency of the employed Hierar-
chical Interpolation Points Method, abbreviated HIPM, we plot in Figure [1
the estimates for both the POD truncation (shown previously in Figure [)
and total stress error versus the number of stress modes n, (in using this
algorithm, it is assumed that p, = n,). The total stress error estimate is
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Figure 7: Estimates for the POD truncation (2", see Eq.(I20)) and total (é,, see
Eq.([ZI))) stress error versus number of basis vectors employed in the approximation (n,).
The total error estimate is computed using only the set of basic sampling points (é, =
€s(Noy L), with p, = n,). The portion between 6 and 11 modes is shown in magnified
form.

defined as

| X — X" (o, L5)|

_ ]
ol L) =%,

(121)

where X *(n,,Z,) denotes the oblique projection (calculated using sampling
points Z,;) of X onto the span of the first n, basis vectors (¥, Wy... ¥, ).
It can be appreciated in Figure [7] that both the total error and the trun-
cation error curves are practically coincident, a fact that indicates that the
contribution of the reconstruction error:

* L o *
égec — \/W — ||X (nU)||X)|T (nJ’IU)HF (122>
F

( the error introduced as a result of using only p, sampling points instead of
the entire set of finite element Gauss points, see Section [[.1.1]) is negligible
in comparison to the discrepancies due to truncation of the POD basis. For
ne = p, = 6, for instance, the reconstruction error is less than 3% of the
total stress error. In view of these results, it becomes clear that further
refinements in the algorithm for selecting the basic sampling points are in
principle not necessary: the employed HIPM optimization algorithm, however
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heuristic, satisfactorily fulfills this purpose. If one wishes to lower the stress
approximation error, it is far more effective to simply increase the level of
truncation.

9.5.2. Stabilizing sampling points

K
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Figure 8: a) Factor fr (defined in Eq.(@9)) versus number of stabilizing sampling points
pp for varying numbers of basic sampling points p, (with p, = n, = n,). b) Minimum
eigenvalue pX. ~(over all time steps and iterations for each p,) of the symmetric part of
the reduced-order Jacobian matrix K™ versus number of stabilizing sampling points pg.

Concerning what we have termed “stabilizing sampling points”, Figure
Sl.a contains the graphs, for varying levels of truncation, of factor fr defined
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in Eq.(I00) as a function of the number of stabilizing sampling points pp.
To study the influence of including such points on the spectral properties —
positive defineteness— of the stiffness matrix, these graphs are accompanied,
see figureBlb, by the plots of the minimum eigenvalue 1%, = (over all time steps
and iterations for each case) of the symmetric part of the reduced-order Ja-
cobian matrix K™ versus pg. It can be seen that fr decreases monotonically
as the number of stabilizing sampling points increases, and such a decrease is
reflected, as theoretically anticipated in Section [6.4.1], in the improvement of
the spectral properties of the reduced-order Jacobian matrix (higher %, as
pp raises). For clarity, the minimum number of stabilizing sampling points
required, for each level of truncation, to render positive definite K™ is plot-
ted in Figure [@ From this plot, it can be gleaned that, roughly, the higher

No. of stab. samp. points

o =2 N W > 0 o N
f T

\ \ \ \ \ |
8 9 10 1"

S
[6)]
(o]
~

Level of truncation (7, )

Figure 9: Minimum number of stabilizing sampling points required to make the Jacobian
matrix K™ definite positive for each level of truncation n, = n, = p, (deduced from

Figure ).

the level of truncation (and thus the number of basic sampling points), the
more stabilizing sampling points appear to be needed to ensure the positive
definiteness of K*. For n, = p, = 6, adding just one stabilizing sampling
points suffices, while for n, = p, = 11, 7 points are required.

Observation 9.1. The values shown in Figurel[d correspond to the minimum
pp that leads to positive definite K* when the prescribed strain path coincides
with any of the “training” strain trajectory (displayed in Figure[]] ). Unfor-
tunately, there is no guarantee that the Jacobian matriz will also exhibit this
desirable property for prescribed strain histories different from the training
ones. Thus, in view of such uncertainty, and in the interest of robustness,
it is preferable to stay on the side of “caution” in this regard and use more
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Figure 10: Location within the RVE of the finite elements (marked in red) that contains
the first p, = pp = 6 basic and stabilizing sampling points.

stabilizing sampling points that the minimum number indicated by the analy-
sis based on the training strain trajectories. It is the authors’ experience that
a “safe” estimate for pg is to simply take pg = p, —that is, equal number
of basic and stabilizing sampling points. In adopting such a rule, the au-
thors have not observed any convergence failures whatsoever, neither in the
example under consideration nor in other cases not shown here.

The location of the first p, = 6 basic sampling points and the correspond-
ing pp = 6 stabilizing sampling points is depicted in Figure [I0

9.6. A posteriori errors: consistency analysis

The error measures displayed previously in Figures Bl and [7 only depend
on the outcome of the SVD of the snapshot matrices; they can be calculated,
thus, before actually constructing the reduced-order model. Error analyses
based on such measures serve the useful purpose of providing a first hint
of how many stress and displacement fluctuations modes are needed to sat-
isfactorily replicate the full-order, finite element solution, and thereby, of
prospectively evaluating the wviability of the reduced basis approach itself.

However, these a priori error estimates do not tell the whole story. Ex-
pression ([I2I]) for the stress approximation error presumes that the stress
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solution at the chosen sampling points is the one provided by the finite ele-
ment model, thus ignoring the fact that, actually, in the reduced-order model,
and for the general case of nonlinear, dissipative materials, the stress infor-
mation at such points at a given time step is already polluted by truncation
(in displacement fluctuations and stresses) and reconstruction (in stresses)
errors originated in previous time steps. To quantify the extent to which
this amalgam of accumulated errors affects the predictions furnished by the
HP-ROM, it is necessary to perform a consistency analysis.

Generally speaking, a reduced basis approximation is said to be consistent
if, in the limit of no truncation, it introduces no additional error in the
solution of the same problem for which the data used in constructing the
basis functions were acquired [14]. In the BVP under consideration, thus,
consistency implies that, when using as input macro-strain paths the same
trajectories employed in the “training” process, results obtained with the
HP-ROM should converge, as n, and n, increase, to the solution furnished
by the full-order, finite element model. This condition can be checked by
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Figure 11: Comparison of the evolution of a priori and a posteriori error measures versus

the level of truncation (using n, = n, = p, = pp). a) Displacement fluctuations (see Egs.

and [[23). b) Stresses (see Eqs. 2] and [124])

studying the evolution of the error measures defined as

e o *ROM
Xu - X U» aaI
eROM (1, 1y, T) = | « (o, Dllr (123)
1 Xl
for the displacement fluctuations, and
o *ROM
grort (o 7y IX Z X (e o)l (124)

1 X[ ’
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Figure 12: Ratio é29M /¢, between the a posteriori and a priori measures for the stress

approximation error against the level of truncation (using n, = n, = p, = pn)-

for the stresses. ( The superscript “ROM” is appended to highlight that,
unlike X and X* in Eqs. (I19) and (I21), X ZROM and X *#OM are matrices
of displacement fluctuation and stress snapshots computed using the HP-
ROM). Figures [[Tla and [[Ilb contain the graphs of these a posteriori error
measures, along with their respective a priori counterparts €, (Eq. [[19) and
¢, (Eq. [M2I)), versus the level of truncation. It becomes clear from these
graphs that consistency, in the sense given above, is observed in terms of
both displacement fluctuations and stresses: the a posteriori error measures
eROM and eFOM mimic essentially the decreasing tendency of their a priori
counterparts e, and é,, respectively. It can be seen also that the a priori
error estimations €, and é, constitute (rather tight) lower bounds for their
a posteriori counterparts éFOM and eFOM | respectively. This can be better
appreciated, for the stresses, in Figure [2, where the ratio ¢£9M /¢, versus
the level of truncation is plotted.

The degree of approximation that can be achieved using the proposed
HP-ROM is quantified in a more “engineering” fashion in Figure [[3, where
we plot, for the case of the first training strain history (stretching in the
longitudinal direction), the longitudinal, macroscopic stress-strain curves
computed using the FE model, on the one hand, and the HP-ROM with
n, = n, = 6,7,8 modes, on the other hand. Observe that the maximum de-
viation from the FE response when using 6 modes (3 elastic and 3 inelastic)
takes place at the onset of plastic yielding and is below 8%; remarkably, as
deformation continues, this deviation gradually diminishes, being practically
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Figure 13: Longitudinal macroscopic stress versus longitudinal macroscopic strain com-
puted using FEM and HP-ROM with n, = n, = 6,7, 8.
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Figure 14: Contour plot of transversal stresses computed at the end of the first “training”
strain history using a) FEM (b) HP-ROM with n, = n, = 6. Deformed shapes are
exaggerated (by a factor of 20).

negligible at the end of the process. Furthermore, by just increasing the or-
der of truncation to n, = n, = 8, differences between the HP-ROM and the
FEM responses become virtually imperceptible at all levels of deformation.
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Resemblance between HP-ROM and FEM results can also be appreciated in
terms of stress distribution in the contour plots shown in Figure[I4l Visually,
there are no discernible differences between the two contour plots.

9.7. “Training” errors

The studies presented in the preceding subsections were aimed at exam-
ining the errors incurred in approximating the snapshot solution space V;"?
by the reduced-order subspace V; € V:"" spanned by the POD basis vectors
—in the terminology of Section 3.1}, and to check that when V! — V2" the
solution provided by the HP-ROM converges to that obtained with the FEM.
But recall that the snapshot space V3" is but a (presumably representative)
subspace of V¢, the manifold of V" induced by the parametric dependence
of the fine-scale BVP on the prescribed macroscopic strain history. Conse-
quently, in general —for an arbitrary input strain trajectory— the HP-ROM
solution will not converge to the solution provided by the FEM. To complete
the error assessment analysis, thus, it is necessary to estimate also the errors
inherent to the sampling of the parameter space —we call them training er-
rors— and judge whether the selected training strain trajectories generate
a snapshot subspace that is indeed representative of such a solution Spac
Ve.

Ideally, one should carry out this error assessment by picking up, guided
by some sound, statistically-based procedure, a sufficiently large set of strain
paths and by comparing the solutions computed by the FEM and HP-ROM
under such input strain paths for varying levels of truncation. Such a degree
of rigor, however, is beyond the scope of the present work. Here, we limit
ourselves here to analyze the quality of the HP-ROM approximation obtained
for two different input strain histories, namely, a uniazial compression test,
and a biazial loading/unloading test.

21To put it in less mathematical terms —by appealing to the the analogy, introduced
in Remark 0.1 between the training of the RVE reduced-order model and the calibra-
tion of standard phenomenological models— we have “calibrated” our HP-ROM using the
training tests displayed previously in Figure dl and we have shown that the model is able
to ezactly replicate the behavior of the RVE in these tests when n, = n, is sufficiently
large. Similarly to the situation encountered when dealing with standard phenomenolog-
ical models, it remains now to assess the capability of the proposed HP-ROM to predict
the behavior of the RVE under conditions different from those used in the “calibration”
(training) process.
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Figure 15: a) First strain trajectory employed for assessing training errors. b) Plot of the

macroscopic error estimator Eﬁg\)/[M (see Eq.([I23))) corresponding to this testing trajectory
versus level of truncation (n, = n,,)

9.7.1. Umiazial compression

The first strain path employed for the assessment is displayed in Figure
[[5la; it represents a monotonic compression in the transversal direction (the
model, see Figureld] was trained using only stretching and shear, but not com-
pression, tests). For purposes of evaluating the quality of the HP-ROM ap-
proximation, it is convenient to introduce the following macroscopi stress
error estimate:

nt ; i, ROM
ront | St lloar' = 03O (ng,n, T 125)
oM T ngtp 5 )
>t lloar||
where o' and a’}}}"ROM denote the macroscopic stress at the ¢ —th time step

computed by the FEM and the HP-ROM, respectively. This error estimate
is plotted in Figure [[Alb versus the level of truncation n, = n,. Observe
that the error goes to zero as the number of employed modes increase. In
this particular case, thus, there is no additional error due to sampling of the

22Recall that the output of interest in solving the fine-scale BVP is the macroscopic
stress tensor; thus, the error estimate defined in Eq.([I25]) (Eﬁg\)/[M ) provides a more mean-
ingful indication of the quality of the approximation than the stress error measure defined
previously in Eq.([[24) (€29M). The latter is more suited for examining convergence prop-
erties of the HP-ROM approximation, since the minimization problem that underlies the
SVD is posed in terms of the Frobenis norm.
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parameter space.

Remark 9.2. This simple ezample fittingly illustrates one of the acclaimed
advantages of POD /Galerkin reduced-order approaches over “black box” meth-
ods such as artificial neural networks —that are also based on the partitioned
offtine-online computational paradigm—: POD/Galerkin reduced-order ap-
proaches preserve the “physics” of the problem one wishes to model and, as a
consequence, are able to make physically-based extrapolations. For instance,
in this case, the reduced-order model is able to exactly replicate (for suffi-
ciently large n, = n,) the macroscopic compressive behavior of the RVE, even
though no information regarding this deformational state has been supplied
to the model in the calibration (training) phase; the HP-ROM is “aware”,
figuratively speaking, that the matrix material in the RVE exhibits similar
behavior in tension and compression (J2 plasticity).

9.7.2. Biazil loading/unloading test

x10°
4— R —
(em),
pu
3+ R S (8m),
y2 A Y
2F ,, \\ (SM),\'y —_ =

Macroscopic strain

% 20 40 60 80 100 120 140 160 180 200
Time step

Figure 16: Second strain trajectory employed for assessing training errors.

A more severe test for assessing errors associated to the training process is
provided by the strain trajectory shown in Figure[I6l Indeed, while the train-
ing strain histories of Figure [4] only included monotonic, uniaxial stretching,
the strain history displayed in Figure [16] consists of a cycle of biazial, load-
ing/unloading stretching (time steps 1 to 100) and biaxial loading/unloading
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Figure 17: a) Macroscopic error estimator Eﬁg\)/[M (see Eq.([I27])) versus level of truncation
(ny, = ny) for the case of testing trajectory shown in Figure[I6. b) Local speedup factor
Sioc (defined in Eq.([I20)) reported for this case versus level of truncation. This plot is
accompanied by the graph of the ratio ny/p, where n, = 38984 is the total number of
Gauss points of the finite element mesh, and p = 2n, the number of sampling points
employed for numerically integrating the HP-ROM.

compression (time steps 101 to 200). The graph of the macroscopic error esti-
mator (I25) corresponding to this input strain path as a function of the level
of truncation is represented in Figure [[7a. It can be readily perceived that,
in this case, and in contrast to the situation encountered in the previously
discussed input strain trajectory, the macroscopic stress does not go to zero
as the number of POD modes included in the basis increases. Rather, the
graph drops sharply from 24% to approximately 5% at n, = n, = 5 (second
inelastic mode), and then fluctuates erratically, with no apparent trend, be-
tween 3% and 10% —a level of accuracy that, nevertheless, may be deemed
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Figure 18: Longitudinal and transversal macroscopic stress versus longitudinal macro-
scopic strain computed using the FEM and the HP-ROM with n, = n, = 6 (for the case
of the testing trajectory shown in Figure [T6)

more than acceptable in most practical applications. A more clear picture
of the accuracy of the approximation for the particular case of n, =n, =6
can be obtained from the stress-strain diagrams shown in figure [I8l

9.8. Speedup analysis

Lastly, we turn our attention to one of the main concerns of the present
work: the issue of computational efficiency. For a given error level, how
many times can the proposed HP-ROM speed up the calculation of the RVE
response with respect to the reference finite element model? Let us define
the local speedup factor as the ratio

tFE(n, ng)
trom (Ngs My, D)’

Sloe = (126)
where trp and troy denote the CPU times required to compute the FE
and HP-ROM macro-stress responses, respectively, induced by a given input
strain histor In Figure [I7b, we show the graph of the speedup factor

2The computational cost associated to the offline stage —generation of snapshots plus
the comparatively negligible expenses of applying the POD and selecting the sampling
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reported in the the case of the input strain path of Figure [16] as a function
of the number of POD modes included in the analysis (recall in this respect
that n, = n, = p/2). We plot also in Figure [7b the ratio n,/p, i.e., the
relation between the total number of integration points in the finite element
model ( n, = 38984) and in the reduced order model (p). It can be gleaned
from Figure [I7.b that the reported speedup factors are of the same order of
magnitude as the ratio n,/p; i.e.:
Ny g

Sloe ~ — = ——, 127
! P 2N, ( )

(this indicates that the evaluation of the stresses at the integration points
dominates the total computational cost). Although these results are no doubt
influenced and biased by the particular programming language and coding
style employed —we use an in-house, non-vectorized Matlab program operat-
ing in a Linux platform—, and, consequently, this trend may not be exactly
observed when using other programming languages and/or platforms, they
serve to provide an idea of the tremendous gains in performance that can be
achieved using the proposed ROM; for n, = p = 6 modes, for instance, the
computational cost is reduced by a factor above 3600, while still capturing
95% of the full-order, high-fidelity information —the essential information.

10. Concluding remarks

One of the the most striking features of the proposed reduced-order model
is perhaps the conceptual simplicity of the RVE equilibrium equation in its
hyperreduced-order form: the sum of (reduced) internal forces at the pre-
selected sampling points must give identical result either calculated using
observed stresses or fitted stresses. Although this condition appears, in hind-
sight, rather reasonable, even obvious —it ensures maximum resemblance
between reduced-order and full-order responses at the sampling points— it
seems difficult to arrive at it without the benefit of the integration procedure
—based on the notion of expanded approximation space— advocated in the
present paper.

points—has been deliberately ruled out from this speedup analysis because, in two-scale
homogenization contexts, the RVE equilibrium problem is to be solved a sheer number of
times and, consequently, this overhead cost is quickly amortized.
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The hyperreduced form of the RVE equilibrium equation excels not only
in its conceptual simplicity; the corresponding solution scheme is also very
simple to implement. Taking as departure point an existing FE code, one
only has to replace the typical loop over elements in the FE code by a loop
over the pre-selected sampling points {Xz,,Xz,,...xz,}. The stress vectors
and corresponding constitutive tangent matrices obtained at each stage of the
loop are stored in the gappy weighted vector 3 and the matrix C, respec-
tlvely, and, then the residual vector and the Jacobian matrix are computed as
B*"3 and B** C]B%* respectively. Notice that no assembly process is needed,
nor has one to worry about imposing boundary conditions. Once convergence
is achieved, the macroscopic stress value is simply calculated as oy = TS.
It should be emphasized again that the operation count in both solving this
hyperreduced RVE equation and updating the macroscopic stress vector de-
pends exclusively on the reduced dimensions n, and p (number of fluctuation
modes and number of sampling points, respectively). Likewise, storage of
history data (internal variables) is only required at the pre-selected sampling
points. Computational savings accrue, thus, not only in terms of number of
operations, but also in terms of memory requirements.

The success of the proposed homogenization strategy is predicated on the
assumption that displacement and stress fields induced by the parametric
dependence on the input macroscopic strain can be approximated by (rela-
tively) low-dimensional functions. Numerical results shown in the preceding
section seem to suggest that, in general, this assumption may be expected
to hold in the case of materials governed by strain hardening laws in the
small strain regime —regardless of the geometrical complexity, number and
distribution of heterogeneities within the RVE. However, it is by no means
apparent that this conclusion can be easily extended to more (kinematically
and phenomenologically) complex scenarios, involving large deformations,
strain localization, decohesion, etc. For instance, can the deformational be-
havior of an RVE affected by multiple propagating cracks be represented
also in a parsimonious manner, as in the case of strain hardening? Or will
the number of modes necessary to accurately replicate its response combi-
natorially increase with the number of potential crack paths (i.e., with the
geometrical complexity of the RVE)? Undoubtedly, in these complex, non-
linear scenarios, the task of sampling the parameter space —i.e., of choosing
the macro-strain histories at which to obtain the snapshots— will become
quite complicated, due to the richness of possible deformational patterns
(void closure, propagating discontinuities ...), and thus difficult to carry out
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on intuitive basis (as it has been done in the present paper). Therefore, it
would be desirable to systematize this crucial task, as well as to provide some
statistical means to certify, so to speak, the representativeness of the chosen
snapshots. Likewise, topological variations caused by these phenomena may
render POD-based compression algorithms inappropriate for collapsing the
dimensions of the snapshots space; in such cases, nonlinear dimensionality
reduction methods such as the Isomap algorithm [43] may be more suitable.
Research in these fronts is currently in progress and will be reported in forth-
coming publications.
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A. Proper Orthogonal Decomposition

The formal statement of the POD problem goes as follows: given the
ensemble of snapshots {u!,u?, ... u™}, find a set of n, < ng,, orthogonal
basis functions {®1, P, ... P, } (P; € V") such that the error defined as

Nsnp

eu(Ny) = Z ||Uk - P*ukH%Q(Q) (128)
k=1

is minimized. Here, P*u"* represents the projection of u* onto the subspace
spanned by the basis functions {®;};™,, and ||-|| 1, (@) symbolizes the L, norm.
We shall denote by ®; (i = 1,2...n,) the column vector containing the
values of basis function @; at the nodes of the underlying finite element mesh.
Likewise, the matrix formed by such vectors, ® = [<I>1 b, --. } € Rvdxnu,
will be hereafter called the reduced basis matriz.

The reduced basis matrix ® can be computed from the snapshot matrix
X, by means of the Singular Value Decomposition (SVD) as follows (see
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Ref. [16] for more details). We first define the matrix?
MIJ I:/NI(X)NJ(X)dQ [,J:1,27’L (129)
Q

Let M = M'M be the Cholesky decomposition of M, and let X, denote
the matrix defined as: ~ B
X, =MX,. (130)

Then, we compute the reduced SVD [37] of X, that is, the factorization
X,=U08V", (131)

where V' € R™mw*" (r is the rank of X,) and U € R™®" stand for the
matrices of right and left singular vectors, respectively; and § € R™" is a
diagonal matrix containing the singular values of X ,. The ¢ — th column of
the reduced basis matrix @ is finally related to the i —th left singular vector
of X, through expression

U, i=12...n, (132)

B. Elastic/Inelastic reduced basis matrix

This appendix is devoted to provide further details concerning the actual
numerical implementation of the elastic/inelastic partitioned strategy, pre-
sented in Section B.2.1] for the computation of the reduced basis matrices ®
(displacement fluctuations). The steps to arrive at the desired matrix basis
® are summarized in the following.

1. Compute finite element stress solutions for representative, input macro-
strain histories.

2. Store the displacement fluctuation solutions computed at each time
step of these macro-strain trajectories in the displacement fluctuations
snapshot matriz X, € Rv@xnsnmw;

X,=[U'" U* ... U™ (133)

24 Note that, except for the density factor, this matrix M is similar to the “mass matrix”
appearing in finite element implementations of dynamical problems. For implementational
purposes, one can simply use a lumped version of such a matrix.
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. Pick up from X, a minimum of m, (m. = 6 for 3D problems, and
m, = 3 for plane strain) linearly independent columns corresponding
to purely elastic solutions. Store these columns in a matrix Z¢.
. Perform the reduced singular value decomposition (SVD) of the matrix
defined as

z¢ =Mz (134)
where M is the matrix of the Cholesky factorization of M ( M
1\7IT1\7I). A basis matrix for Range(Z%) is finally obtained as

D =M 'D* (135)
D € Rrdxme being the matrix of left singular vectors arising from the
SVD of Zzl. In principle, D® may be used as the desired elastic basis
matrix ®¢. However, D% does not enjoy any optimality property with
respect to X ,—it is only optimal with respect to the matrix ZZl of
chosen elastic snapshots.
. For consistency in the approximation, thus, it is preferable to derive ®¢
from the the “elastic component” of X, —the orthogonal projection
of X, onto Range(D)—; the expression for this projection reads:

X< = pY(D"MX,) (136)
The elastic basis matrix can be finally calculated from X¢ as:
o =M . (137)

where & is the matrix of left singular vectors emerging from the re-
€ v, . - C F €l ~Ely € T

duced SVD of X% := MX% i.e X7 = 787V

. Calculate the “inelastic component” X of the snapshot matrix X,

as: '

Xn=Xx,-X° (138)

that is, X" is the orthogonal projection of X, onto the orthogonal
complement, in Range(X,), of Range(®).
. It is now on this inelastic snapshot matrix X" that we apply the POD
in order to identify and unveil the essential or most “energetic” inelastic
fluctuation modes. This is done by first carrying out the reduced SVD
of X" = MX'™

oin = in mzin—inl

X, =D S, vV, . (139)
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The i — th POD basis vector of X" is then given by:

" =M "'D", i=12...n,—me.. (140)
8. The desired basis matrix ® € R" %"« adopts finally the form:
Elastic modes Essential inelastic modes

\

B = [0 &™) = [0 B .. DY BT B ... BT (141)

me]

C. Block matrix pseudoinverse of the expanded basis matrix

The inverse of a 2x2 symmetric block matrix is given by the following
expression (see, for instance, Ref. [11]):

~ A B]' [A1+AIBS!BTA-! _A-'BS-!
M = {BT C} = [ _S-1BTA-1 g-1 (142)
where
S=C-BTA'B (143)

is the so-called Schur complement of A in M. This formula can be used
to derive closed-form expressions for the modal coefficients ¢ and ¢ (see
Section [6.2]). The departure point is equation Eq.(67):

ad A R 2 T = ATA*

-1r 7
E;’*T > (144)

Y

czn E*T\il B*TB*

where ([ B*])" designates the pseudo-inverse of the gappy expanded basis
matrix. By setting:

A=9"9 B=9"B, C=B"B, (145)
and by inserting Eq.(I42) into Eq.(I44]), one obtains upon expansion:
¢ =g (—BTA‘I\iIT + IE%*T) > (146)
and

¢! = (A +ABSBTA ) &'~ ATBS BT B

T 7 - ~ 147
—A WS+ A IBS ! (—BTA‘llIIT n B*T) $ (147)
— A TS 4+ A IBE,



By substituting back Eq.(I45]) into the above equation, and taking into ac-
count that:

&' = ()1 (148)
one finally gets:
" = \ilT(ﬁ) — B*e™), (149)
¢ =SB+ (I - \iniﬁ) s, (150)
where A o
S =B"(I-¥¥"B (151)
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