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ABSTRACT: In this paper, Perzyna-type viscoplastic rate equations are integrated for a time step by con-
sidering the step as stress-driven. Depending on how the increment is imposed (constant, linear etc.), different
strategies arise. The secant compliance is obtained by truncated expansion of the yield function. The viscoplas-
tic model can be applied to materials exhibiting rate-dependent behavior, but it can also be used to recover an
inviscid elastoplasticity solution when stationary conditions are reached. Within this framework, a viscoplastic
relaxation iterative strategy is developed, relating the iterations with the fictitious time steps. Some examples
of application are presented in the context of the Finite Element Method with zero-thickness interface elements
for slope and stability problems with discontinuities.

1 INTRODUCTION

Viscoplasticity has been widely used for engineer-
ing materials with (physical) time-dependent be-
haviour over a treshold stress level (Cormeau, 1975,
Zienkiewicz and Cormeau, 1974), or in the context
of viscoplastic relaxation strategies to obtain the sta-
tionary solution of an inviscid problem via a ficti-
tious (non-physical) pseudo-time (Underwood, 1983,
Zhang and Yu, 1989). In either case, the rate-type
infinitesimal viscoplastic formulation requires a time
integration strategy to a) discretize time in increments
b) evaluate a linearized relation between stress and
strain increments for each time step and, possibly,
some residual force calculation and iterative strategy.
Typically, the algorithms are based on the initial stress
scheme used in FEs, in which the strain increments
are prescribed to the constitutive equations. A variety
of such algorithms has been proposed since the orig-
inal constant stiffness and constant stress procedures
(Hughes and Taylor, 1978, Peirce et al., 1984, Peric,
1993, Simo, 1991) to more recent and sophisticated
contributions (Alfano et al., 2001, Betegon et al.,
2006, Lorefice et al., 2008, Ponthot, 2002). In con-
trast, stress driven schemes are not that common (Ca-
ballero et al., 2009, Zienkiewicz and Cormeau, 1974).
Their implementation can be numerically advanta-
geous (explicit integration of the constitutive equa-
tions and simple coding) but their stability is strongly
related to the size of the time step and, as a conse-
quence, if a small time step is required an enormous

amount of iterations are required.
From the viewpoint of the type of viscoplastic for-

mulation there are also differences. While for Duvaut-
Lions formulations a good compromise between com-
plexity and cost has been reached via quasi-linear ex-
ponential algorithms and the formulation of a consis-
tent viscoplastic tangent operator (Simo and Hughes,
1998, Simo et al., 1988), for Perzyna-type viscoplas-
ticty there seems to be no equivalent approach.

In Rock Mechanics, time-dependency was incorpo-
rated in the analysis procedures relatively early, for
the overall homogenized behavior of rock masses, and
also associated to creep phenomena or salt formations
(Winkel et al., 1972, Zienkiewicz and Pande, 1977).
In this paper, the continuum is considered as linear-
elastic, and the non-linearities are restricted to vis-
coplastic behavior of the rock discontinuities, which
are explicitly modeled using zero-thickness interface
elements.

2 CLASSICAL PERZYNA-TYPE
VISCOPLASTICITY

Within the classical framework of small strain
Perzyna viscoplasticity Perzyna (1966), total strain
can be additively split into the elastic and the vis-
coplastic:

εij = εelij + εvpij (1)



The elastic strain tensor is obtained by considering
isotropic linear elasticity:

εelij = C0 ijklσkl , C0 ijkl = D−1
0 ijkl (2)

where D0 is a elasticity stiffness matrix, symmetric
and positive definite. D−1

0 denotes its inverse, i.e. the
elasticity compliance matrix, which will be referred
to as C0, and σij is the Cauchy stress tensor.

The stress loading function F (σij) is defined to
distinguish between elastic states (F ≤ 0) and vis-
coplastic states (F > 0). In the latter case, the clas-
sical Perzyna viscoplastic strain rate is considered:

ε̇vpij =
1

η

〈
ψ

(
F (σ)

F0

)〉
∂Q

∂σij
(3)

where η is the viscosity of the material, F0 is a refer-
ence value of the yield function for normalization, and
Q the viscoplastic potential typical of non-associated
formulations.

Finally, the accumulated viscoplastic strain εvpij in
(1) can be obtained by integrating in time the vis-
coplastic strain rate:

εvpij =

∫ t

0

˙εij
vpdt =

∫ t

0

1

η

〈(
F (σ)

F0

)〉
∂Q

∂σij
dt (4)

3 STRESS-DRIVEN NUMERICAL SCHEMES
FOR VISCOPLASTIC TIME-INTEGRATION

As the main difference to traditional elastoplasticity,
in viscoplasticity stress states are allowed outside the
loading surface. The proposed scheme takes advan-
tage of this fact to obtain a simple but effective al-
gorithm for the integration of Perzyna viscoplasticity.
The main distinctive feature of the proposed scheme
is that it is stress-driven, in contrast to traditional
strain-prescribed procedures for elastoplasticity.

The main advantage of a stress-prescribed scheme
is that the integration of the constitutive relation can
be reduced to the numerical calculation of the inte-
gral expression (4), which becomes relatively simple.
In this expression, all the terms are computed in ad-
vance, in order to update the current value of the vis-
coplastic strain, instead of the usual implicit proce-
dures resulting from strain-prescribed schemes.

The integration of the expression (4) can be done
via the trapezoid rule in the interval ∆tn+1 = tn+1 −
tn. Depending on the assumption of the stress incre-
ment within the interval the following expression for
the viscoplastic strain increment can be obtained:

∆εvpn+1 =
∆tn+1

ηF0

((1 − θ)F (σ) + θF (σ + ∆σ))m (5)

where θ is a fixed parameter with value between 0
and 1 and m is the flow rule. For θ = 0 the original
viscoplastic algorithm of Zienkiewicz and Cormeau

Zienkiewicz and Cormeau (1974) with constant stiff-
ness is recovered. For other values of θ greater than
zero, the calculation of ∆εvpn+1 involves ∆σn+1, and
therefore it is required to iterate within the time step
until the viscoplastic strain estimates satisfy the pre-
scribed stress increment.

In the implementation developed, a first order ex-
pansion of the yield function and the plastic poten-
tial is proposed to evaluate the expression above,
which leads to a linearized form of ∆εn+1 in terms of
∆σn+1, as described in more detail in Aliguer et al.
(2013).

4 VISCOPLASTIC RELAXATION

If a time-dependent problem exhibits stationary con-
ditions, those are characterized by no change in
strains. In terms of stress and for the problem at hand,
this can be interpreted as stress states evolving from
the viscoplastic region (F (σij) > 0) to the yield sur-
face/elastic region (F (σij) ≤ 0 or stationary state).
The viscoplastic relaxation technique takes advantage
of this concept, in order to reach the solution of the
inviscid problem as the stationary solution of a ficti-
tious viscoplastic problem.

The resulting scheme can be summarized as fol-
lows: in the iteration, the viscoplastic strain increment
is calculated using only the value of the stress at the
beginning of the increment, σi

n and the secant stiff-
ness is calculated if the value of θ is different than
0. Once the system of equations is solved for δui

n+1,
the increment of stress for the iteration (∆σi

n+1) can
be obtained. The iterative procedure reaches conver-
gence when the stress state is sufficiently close to the
yield surface, so that the value of residual stress is in-
ferior than a tolerance value.

5 CONSTITUTIVE MODEL FOR INTERFACES

The above schemes for viscoplasticity and viscoplas-
tic relaxation have been applied to the simplified ver-
sion of an existing zero-thickness interface constitu-
tive model, which was previously developed within
the context of quasi-static elastoplasticity Caballero
et al. (2008) .

The frictional hyperbolic loading function for the
interface is defined in terms of normal and shear
stresses (σ,τ1,τ2) and the strength parameters cohe-
sion and friction angle (c,φ)

F = − tanφ(a− σ) +
√
τ 21 + τ 22 + a2 tan2 φ (6)

where a = c/ tanφ.
The flow rule considered in this model is non-

associative and depends on whether normal stress
state is tension or compression. In the case of the ten-
sion, the flow rule is radial towards a point near the



origin, while in compression, only shear viscoplastic
strains are generated :

mtens =

(
∂Q/∂σ
∂Q/∂τ1
∂Q/∂τ2

)
=

(
2(σ− σcut)

2τ1
2τ2

)
(7)

mcompr =

(
0

2τ1
2τ2

)
(8)

where σcut is a value of small compressive stress
which acts as the center for the radial flow rule in ten-
sion.

6 NUMERICAL EXAMPLES

6.1 Relaxation test at constitutive level

The first example of application consists of a relax-
ation test at constitutive level. Normal stresses are ap-
plied first, followed by prescribed shear relative dis-
placement (at constant normal stress). Then time is
allowed to pass, and shear stress starts decreasing to
the limit value dictated by the yield surface (Fig. 1).
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Figure 1: Shear stress path in σ - τ space and shear stress evolu-
tion through time

First, the case without cohesion is considered (c =
0 in equation 6). For this particular case, it is possible
to find a closed-form expression for the decay of the
shear stress with time τ = f(t) :

(
τ − τY
τ0 − τY

)
= exp

(
−KT

ηF0

t

)
(9)

where τ0 is the value of shear stress at time t0, τY
is the shear yield threshold value, and KT is the

transversal stiffness modulus of the interface. Expres-
sion (9) indicates that, at the limit of infinite time, the
value τ − τY tends to zero, that is, the shear stress
tends to the shear stress yield limit value τY , and
the elastoplastic solution is recovered. The resulting
curve has been represented in Fig. 2, together with
the numerical results for the same case obtained with
a ∆t = 1s, and three different values of parameter θ
equal to 0, 1 and 1/2.
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Figure 2: Analytical and numerical results for the evolution of
the shear stress with time for ∆t = 1s

In the numerical calculations, the load has been
applied in two steps: 1) ∆u = −2 · 10−6 m and
∆v = 6 · 10−6 m with ∆t = 0 s to generate the initial
stress state beyond the yield surface. 2) ∆u= ∆v = 0
and ∆t > 0. The second step has been subdivided in
10 increments to reach the final time of tf = 10 s
(∆t = 1s). Material parameters used for this exam-
ple are: KN = KT = 107 kN/m; c = 0.0 kN/m2;
tanφ = 0.577; η = 106kPa s.

The figure shows that the strategy with θ = 1/2
yields a much better approximation than θ = 0 or
θ = 1. A measure of the overall error has been estab-
lished as the difference of the area under the curves
to the one corresponding to the analytical solution,
as the total amount of viscoplastic strain will be ap-
proximately proportional to that area (equation 3).
The results obtained give an error lower than 1% for
the strategy with θ = 1/2, and 14.1% and 14.0% for
θ = 0 or θ = 1 respectively. As it would be expected,
assuming constant stress for the increment equal to
the initial value (forward scheme with θ = 0), leads
to an over-prediction of the viscoplastic strain, and
therefore, stress decreases faster. However, assuming
θ = 1, that is, a backward scheme taking stress at
the end of the increment, normally lower, leads to an
under-prediction of the viscoplastic strain.

A second calculation has been run with c =
10.0 kN/m2. In this case the analytical solution is not
straightforward, and the numerical solution obtained
for very small steps of ∆t = 0.001s which leads to



practically the same results for any θ, is taken as the
”exact” solution. This ”exact” solution is represented
in Fig. 3 together with the numerical results obtained
with θ = 0, θ = 1/2 and θ = 1, first for ∆t = 1s (left
diagram), and then for ∆t= 2.0s and ∆t= 0.5s (right
diagram).
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Figure 3: Numerical results for the evolution of the shear stress
with time for ∆t = 1s (upper) and ∆t = 0.5s and ∆t = 2s
(lower).

Fig. 3 (left) shows a similar trend as Fig. 2. Fig. 3
(right) shows some additional features of the integra-
tion schemes, confirming the better performance of
θ = 1/2 and showing that for larger time increments
(∆t= 2s) convergence is not even obtained for θ = 0.
The overall error of the three solutions in terms of area
under the curves for ∆t= 0.5s are: less than 0.1% for
θ= 1/2 in front of 4.4% and 4.3% for θ= 0 and θ= 1,
respectively. Additionally, calculations have been also
run for ∆t = 0.2s with errors of 1.7% for both θ = 0
and θ = 1. And one has to decrease ∆t to the value
of ∆t = 0.05s to obtain errors of less than 1% for
those values of θ. This means that for those strategies
(θ = 0 and θ = 1) one requires about 20 times more
time steps to obtain similar accuracy as for θ = 1/2.
Also remarkable is the observation that the backward

scheme θ = 1 (usually assumed to be more accurate)
leads to similar errors as the forward scheme with
θ = 0.

6.2 Rock slope stability with zero-thickness
interface elements

The main objective of this example is to evaluate the
performance of the viscoplastic relaxation iterative
procedure for a classic rock slope analysis (Fig. 4).
The following geometry has been considered: L =
100 m, H = 80 m, ∆p = 1.0 kPa/m, β1 = 55.1◦ and
β2 = 55.7◦. For the inclined interfaces the strength pa-
rameters used are c = 75 kPa, tanφ = 1.0 and η =
106 kPa s, while for vertical interfaces c = 1.0 kPa,
tanφ = 1.4 and η = 106 kPa s . Rock mass is as-
sumed linear elastic with E = 2 GPa and ν = 0.2.

First, the initial stress state due to gravity with
K0 = 0.8 was generated using the viscoplastic relax-
ation scheme and θ = 1/2. Then, the distributed load
∆p was applied incrementally using a viscoplastic re-
laxation iterative scheme (also with θ = 1/2) until the
failure was reached.

As it can be observed in Fig. 4 different compat-
ible failure mechanisms exist and it is not trivial to
determine a priori which is the most unfavorable one.
Failure was reached after a total of 103 increments of
∆p = 1.0 kPa/m , and the failure mechanism was
found to be a combination of the first vertical and the
lowest inclined joints.

7 CONCLUDING REMARKS

An efficient integration procedure for Perzyna-type
viscoplasticity with a stress-prescribed scheme has
been presented, which can be used for a physical (real
time) time-dependent problems or as a basis for a vis-
coplastic relaxation procedure (fictitious time). The
latter allows to recover the elastoplastic solution as
a limit inviscid case.

The viscoplastic scheme is successfully imple-
mented for a zero-thickness interface model origi-
nally conceived for time-independent representations
of rock discontinuities

A constitutive example shows that different val-
ues of the parameter θ lead to different decay curves
of shear stress with time, and subsequently also
to different total values of accumulated viscoplastic
strain. While for θ = 0 viscoplastic strains are under-
estimated, for θ = 1 an over-estimation is produced.
Best results compared to ”exact” solution are obtained
with θ = 1/2.

In the context of the Finite Elements calculation
of a rock slope stability problem, the proposed vis-
coplastic relaxation method is shown capable of de-
tecting the non-trivial failure mechanisms in fractured
rock masses.



Figure 4: Original geometry and boundary conditions and de-
formed mesh (x100).
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