A Parametric Approach for Smaller and Better
Encodings of Cardinality Constraints

Ignasi Aljo!, Robert Nieuwenhufs Albert Oliverag, Enric Rodiguez-Carbonéll

! Theoretical Computer Science, TU Dresden, Germany
2 Technical University of Catalonia, Barcelona

Abstract. Adequate encodings for high-level constraints are a key ingredient fo
the application of SAT technology. In particulagrdinality constraintstate that

at most (at least, or exactlik)out of n propositional variables can be true. They
are crucial in many applications.

Although sophisticated encodings for cardinality constraints exist, it is wella
that for smalh andk straightforward encodings without auxiliary variables some-
times behave better, and that the choice of the right traleetween minimizing
either the number of variables or the number of clauses is highly applieation
dependent.

Here we build upon previous work on Cardinality Networks to get the best o
several worlds: we develop an arc-consistent encoding that, bysieely de-
composing the constraint into smaller ones, allows one to decide whicliegco

to apply to each sub-constraint. This process minimizes a fung¢tionmvars+
numclausesbeingA a parameter that can be tuned by the user. Our careful ex-
perimental evaluation shows that (e.g., foe 5) this new technique produces
much smaller encodings in variablasd clauses, and indeed strongly improves
SAT solvers’ performance.

1 Introduction

This paper presents a new encoding into SATcafdinality constraintsthat is, con-
straints of the fornk, + - - - + X, # k, wherek is a natural number, thg are proposi-
tional variables, and the relation operator # belongsto, <, >, =}. Cardinality con-
straints are present in many practical SAT applicationsh®s cumulative scheduling
[SESWO09] or timetablind [AAN12]. They also arise as compdaer some SAT-based
techniques, e.g., for MaxSAT [FM06].

Here we are interested in encoding a cardinality const@intth a clause seb
(possibly with auxiliary variables) that is not only equiséiable, but als@rc-consistent
given a partial assignme#, if x; is true (false) in every extension éfsatisfyingC,
then unit propagatiné on S setsx; to true (falsﬂ. Enforcing arc-consistency by unit
propagation in this way has of course an important positipact on the practical
efficiency of SAT solvers.

A straightforward encoding of a cardinality constrakat+ - - - + X, < K is to state,
for each subseét of {x,, ..., x,} with |Y| = k + 1, that at least one variable ¥fmust be

! Sometimes this notion is callegneralized arc-consistency

false. This can be done by assertif§,) clauses of the formx; v ... v X;. This kind
of construction frequently works well, although it is of ¢ea not reasonable for large
n andk. Therefore, successively more sophisticated encodirigg asxiliary variables
have been defined that require fewer clauses (see SEttiBntAtill, for smalln andk
the straightforward encodings may behave better in pachin additional issue is that,
for the dficiency of the SAT solver, the choice of the right trad&between minimizing
either the number of auxiliary variables or the number ofisks is highly application-
dependent.

Here we build upon and improve previous work on encodinginaltity constraints
with Cardinality Network§ ANORCO9,ANORC1 1], which u€¥nlog? k) variables and
clauses (see Sectibh 3). The idea is to get the best of sevands: we develop a hybrid
arc-consistent encoding that, by recursively decompotiiegconstraint into smaller
ones, allows one to decide whether to apply a recursive (seto8[4) or a direct
(see Section]5) encoding to each sub-constraint. This gsoggnimizes a function
A-numvarstnumclausesbeingi a parameter that can be tuned by the user (see Section
[6). Our experimental evaluation shows that (e.g.Afer5) this new technique produces
much smaller encodings in variablaad clauses, and indeed strongly improves the
performance of SAT solvers (see Secfidon 7).

2 Related Work

Because of their practical importance, encodings of califynconstraints into SAT
have been thoroughly studied over the last few years. Irstition we review some of
the most important works in the literature.

In [War98], Warners considered the more general pseuddeBo@ase, where con-
straints are of the formy x; +. . . + anX, < k, being theg;’s and thek integer coéicients
and thex;’s Boolean variables. The encoding is based on using addensuimbers
represented in binary. For cardinality constraints theodimg use<O(n) clauses and
variables, but does not preserve arc consistency.

Bailleux and Boufkhad presented in [BE03] an arc-consistacoding of cardinal-
ity constraints that use®(nlogn) variables and(n?) clauses. The encoding consists
of atotalizerand acomparator The totalizer can be seen as a binary tree, where the
leaves are thei’s variables. Each inner node is labeled with a numband usess
auxiliary variables to represent, in unary, the sum of tlavéds of the corresponding
subtree. As for the comparator, it is easily encoded thamkise unary representation,
which also allows handling constraints of the fokn< x; + ... + X3 < ko without
splitting.

A more applied work is the one ofiBtner and Rintaner_[uRD5]. Although their
main interest was in planning, they suggested two encodihgardinality constraints.
The first one is based on encoding an injective mapping betteetruex;'s variables
andk elements. It use®(nk) clauses and variables and is not arc-consistent. The other
encoding is a small modification of [BBD3]. Based on the obsstion that counting up
to k+ 1 sufices, they can reduce the number of variables and clausefusach node.
The resulting encoding requir€¥nk) variables an@(nk?) clauses, which improves on
[BBOJ] if kis small enough.

In [SIn08], Sinz proposed two fierent encodings, both based on counters. The
first encoding uses a sequential counter where numbers piresested in unary. It
needsO(nk) clauses and variables and is arc-consistent. The secani$ tmased on a
parallel counter, where numbers are represented in bihagguiresO(n) clauses and
variables, but is not arc-consistent.

Another kind of encoding was used in_ [BBR06a], where a BO{&-ltechnique
was proposed for pseudo-Boolean constraints. The encilarg-consistent, and uses
O(n?) clauses and variables when applied to cardinality coimé¢ralhe idea is as fol-
lows: given a pseudo-Boolean constra@k; + ... + a,Xn < Kk, the root of the BDD
is labeled with variabld,y, expressing that the sum of the firsterms is at mosk.
The two corresponding children abBg,_1x andDy_1x-4,, indicating the two cases that
correspond to setting, to false and true, respectively. Then the necessary clauses
added to express the relationship between the variabléstrizial cases are treated
accordingly.

The same authors presented(in [BBR09] a polynomial and @msistent encoding
of pseudo-Boolean constraints. When restricted to caitinabnstraints it is similar
to [BBO3], but the latter is better in terms of size.

Yet another approach for encoding cardinality constraimts suggested ih [AG09].
The authors revisit the idea of using totalizers, and reatmat totalizers require two
parameters: the encoding used (unary or binary) and thelveatptalizers are grouped
(e.g. @+b)+(c+d)or(((a+b)+c)+d)). Athorough experimentation is performed,
to which they add two extra aspects: lfow to order the variables; ani)(the use of
encodings in parallel, hoping the SAT solver will focus oa thost appropriate one for
each problem.

Finally, Eén and 8rensson[[ES06] presented three encodings for pseud@&wool
constraints. The first encoding is BDD-based, similar to [@B&]. The second one,
based on adder networks, improves that of [War98] in thagesuess adders, but is still
linear and does not preserve arc consistency. Finally; thed encoding useSorting
Networks[Bat68]. A Sorting Network takes input variables, (.. X,) and returns as
outputs ¥; ... yn) the sorted input values in decreasing order. Hence, aubudpiable
yk will become true ff there are at lea¥t true input variables, and falsé there are
at leastn — k + 1 false ones. Now, to express + --- + X, > kK, it suffices to add a
unit clauseyy; similarly, for x; + --- + X, < k one addsj.1, and both are added if
the relation is=. This encoding, when restricted to cardinality constisgipteserves arc
consistency and requir€{nlog? n) clauses and variables. The Cardinality Networks of
[ANORCOY,ANORCT1] reduce this ©(nlog? k), which is important as often > k.

A similar approach uses so-called Pairwise Cardinalitywéeks [CZI10], which
are based on Pairwise Sorting Netwolks [Par92] instead miirfgd\Networks. By means
of partial evaluation, this method also achie@@log?k) variables and clauses. Fi-
nally, we were recently informed that a hybrid approach dasePairwise Cardinality
Networks similar to that presented here was implementetaBEE systeni [MCS13].
However, no detailed description or experimental evatures available. Moreover, our
proposal in this paper is more general, in the sense thdbiwslthe user to tune the
parameter when minimizing the objective functioh- numvars+ numclauses

4
3 Preliminaries

In this work we describe a method for producing cardinalgyworks that generalizes
the construction of [ANORC11]. The core idea of these apgiiea, which dates back
to [Bat68], consists in encoding a circuit that implementrgesort by means of a set
of clauses. The most basic components of these circuitseoenparators.

A 2-comparatoris a sorting network of size 2, i.e., it has 2 input variabbesgnd
X2) and 2 output variables/{ andy,) such thaty; is true if and only if at least one
of the input variables is true, ang is true if and only if both two input variables
are true. In the following, 2-comparators are denotedyayyg) = 2-Compéy, Xo).
As pointed out in[[ANORCI111], for encoding-constraints, only the three clauses on
the first row of Fig[l are needed to guarantee arc-consigtde three clauses on
the second row dfice for >-constraints and all six must be present when encoding
constraints. Note that the usual polarity argumeéent [RG&B6jnot be directly applied
here, as we are interested not only in preserving satisfigltilit also arc-consistency
under unit propagation.

X1 = Y1, X2 =Y, Xt AXp = Yo, Xy —e—N1
XY, X2V A2

Xo —e—Y2

Fig. 1: A 2-comparator: clauses (left) and graphical regmégtion (right).

4 Arbitrary-Sized Recursive Cardinality Networks

In this section we improve the recursive construction ofizality networks given in
[ANORC11] by allowing inputs and outputs of any size, notessarily a power of two.
Not only does this avoid adding dummy variables that are ottadly needed (which,
as will be seen in Sectidn 7, has an impact on performances owit), but also becomes
useful when combining with the direct (non-recursive) ¢orsions of Sectiofl5.

In what follows, we denote byr| and[r] the floor and ceiling functions respec-
tively. Moreover, for simplicity, we will assume that thensiraint to be encoded is a
<-constraint. However, similar constructions for the otbenstraints can be devised.

4.1 Merge Networks

A merge networkakes as input two (decreasingly) ordered sets of sizmsdb and
produces a (decreasingly) ordered set of aizeb. We can build a merge network with
inputs €, ..., %) and 1, ..., X;) in a recursive way as follofds

— If a=b =1, a merge network is a 2-comparator:
Mergefs; x;) := 2-Compky, X3).

2 Notice we use the notation Merg&(X’) instead of Merge{), (X")) for simplicity.

— If a= 0, a merge network returns the second input:
Merge(;xy, X5, . .., Xp) == (X1, X5, - . ., Xp,)-
— If aandb are evena > 0,b > 0 and eithea > 1 orb > 1, let us define
(2.2, ..., 203,201, _ Mergef, Xs, ..., Xa 1;
Zar1: Zar3s - -5 Zarb-1) X, %G ..o Xo 1),

(z2,24,....20-2,20, _ Mergelo, Xa, ..., Xa;
Zas2, Zasds - - - » Zath) X5y Xy -5 Xp),

(Y2,y3) = 2-Compg,, z3),

(Ya+b—2,ya+b—1) = Z'Compea+b—2,za+b—1)~

Then,
Mergefa, Xz, . . ., Xa; X3, Xp, -+ -, Xp) 1= (Z1,¥2, Y3 - - - » Yarb-1, Zasb)-
— If aisevenbis odd,a> 0,b > 0 and eithem > 1 orb > 1, let us define

(71,73, ..., 251, Mergei, X3, . . ., Xa-1;
Zas1,Zas3s - - - » Zath) Xis Xg, .o, Xp)s

(2,24, ..., 20, Zas2, _ Mergefo, Xa, .. ., Xa;
Za44s - - - Za+b—l) X/27 XZp ceey tha—l)’

(V2,¥3) = 2-Compes, z3),

2-Compa b1, Zatb)-

(Va+b-1, Ya+b) =
Then,
Mergeiy, Xz, - . - » Xa; Xis X5 -+, X0) °= (Z1, Y2, ¥3s - - - » Yarb-1, Yasb)-
— If aandb are odda > 0,b > 0 and eithea > 1 orb > 1, let us define

(21.23, ..., Za-2,Z0, _ Mergef, Xs, . . ., Xa;
Zar1: Zae3s - Zavh) X3 Xa o0 X)),

(2,24, ..., 20-3, 201, _ Mergefo, Xa, . . ., Xa-3, Xa-1;
Za+2, Za+4, R} Za+b—1) X’2’ XZJ st Xé_j_)’

(y2,y3) = 2-Compg, z3),
(Yarb-2, Yarb-1) = 2-COMPLarb-2, Zarb-1)-
Then,

Mergei, Xo, . . ., Xa; X1, X5, . . ., Xp) i= (Z1, Y2, Y3, - - -, Yasb-1, Zasb)-

— The remaining cases are defined thanks to the symmetry ofehgerfunction, i.e.,
due to MergeX, X’) = Merge’, X).

X1 — 4 Z
X1 — o Z b\, Z
Xl | ’2\7 z Xo 1 4 y | V%) i 1
2 [»—| 2 X3] || 23 y2
X3 — o Eii y2 X4] Z4 — y3
X B 4 6 HMerg HMerg - Ya
Merge,;| |Merge,; - Ya , %1 %2 = Y5
d - Y5 X1 B Z5 - Y6
Xl — — 25 L ZG X/ —1— —|
Xp —fs = | 2 Z - Y7
Z Xy || - z
Xl — — »Zl\
Xo | 4 .| Z -7
X |] zt— Y2
X4 | o Z RE
X5 || e @* 54
- Y5
Merge,;| |Merge;, Ve
S 0 1mlw
2] Z - 28

Fig. 2: Different examples of merge networks.

The base cases do not require any explanation. As regardsdhisive ones, first
notice that the set of values, Xo, . .., Xa, X, X5, . . ., X, is always preserved. Further, the
output bits are sorted, @ > Zyi1), Zoi = Zos1)rls 2+l = ZoGr1) ANAZoi41 = Zogr1)e1
imply that mingui, zi.1) > max@1y, z2+1)+1)- Figure[2 shows examples of some of
these recursive cases.

The number of auxiliary variables and clauses of a mergear&tdefined in this
way can be recursively computed. A merge network with inpiitsize (1 1) needs 2
variables and 3 clauses. A merge network with inputs of izk) (heeds no variables
and clauses. A merge network with inputs of siaghf with a > 1 orb > 1 needs
Vi + Vs + 2| 221 variables andC; + C; + 3 | 251 | clauses, wher¥; andC; are
the number of variables and clauses in a merge network wittéof size([2], [5]),
andV,, C, are the number of variables and clauses in a merge netwolnkinyitits of

size([3].[3]) -
4.2 Sorting Networks

A sorting networktakes an input of size and sorts it. It can be built in a recursive way
as follows, using the same strategy as in mergesort:

— If n= 1, the output of the sorting network is its input:

Sortingf,) := xg

— If n=2, a sorting network is a single merge (i.e., a 2-comparator)
Sortingfy, Xo) := Mergey; Xo).
— Forn> 2, takel with 1 < | < n: Let us define

(z1,20,...,2) = Sorting(xl, X2, ..., X),
(Z|+l9 z|+2a L) Zn) = SomngQ(Hl’ X|+23 ceey Xn)a
(V1. Y2, ..., Yn) = Merge@. 2,2, 211, . . ., Zy).

Then,

Sortingg, X2, . .., Xn) := (Y1, Y2, - - - » ¥n)-

In this way, we can build sorting networks of any size rexslsi Moreover, one can
choose the size of the two recursive sorting networks. Tieduces a new degree of
freedom that was not available [(n JANORC11], whéreas always chosen to Ing?2.

Again, the number of auxiliary variables and clauses ne@u#tese networks can
be recursively computed. A sorting network of input size Bdgeno variables and
clauses. A sorting network of input size 2 needs 2 variabhes3aclauses. A sorting
network of input sizen composed by a sorting network of sizand a sorting network
of sizen—I needs/; +V,+V3 variables an€; + C,+Cj3 clauses, wheréf, Cs), (V2, Cy)
are the number of variables and clauses used in the sortingrie of sized andn-1,
and {/3, C3) are the number of variables and clauses needed in the metgerk with
inputs of sizesl(n—1).

4.3 Simplified Merge Networks

A simplified mergés a reduced version of a merge, used when we are only inéerst
some of the outputs, but not all. Recall that we want to eneodenstraint of the form

X1 + ...+ X, < k, and hence we are only interested in the first 1 bits of the sorted
output. Thus, in &-simplified merge network, the inputs are two sorted secgeé
variables k1, Xz, . . ., Xa; X1, %5, . . ., X;), and the network produces a sorted output of the
desired sizeg, (Y1,Y2, .. .,Yc). The network satisfies thgt is true if there are at least
true inputs. We can build a recursive simplified merge as¥ait

— lfa=b=c=1,letus add the clauses — y, x; — \i. Then:
SMergg(xq; X;) =Y.
— If a> ¢, we can ignore the last— c bits of the first input (similarly itb > c):
SMerge(Xy, Xz, . . ., Xa; X1, - . ., X)) = SMerge(Xy, Xz, . . ., Xe; X, - - -, Xp)-
— If a+ b < ¢, the simplified merge is a merge:
SMerge(Xi, ..., Xa; X1,, X,) = Mergefy, . .., Xa; X1, . . ., %)

3 Notice that these clauses correspond to the bit of the 2-comparator wigh index. Clause
X1 A Xz — y does not need to be included here following the reasoning given in SEktion

— Ifa,b<c, a+b>candcis even: Let us define
(21,2, ...,241) = SMerge,,1(X1, X3, .. .; X1, X3, - . .),
(22,2, ...,2) = SMerge (X2, X4, ... ; X5, X}, .. .),
(Y2, ¥3) = 2-Compg, z3),
(YC—Z, yc—l) = 2_CompeC*29 ZCfl)'
and add the clauses — Yc, Z.;1 — Yc. Then,

SMerge(Xy, Xo, . - ., Xa; X, X5, - - . X)) 1= (Z1, Y2, Y3, . - -, Vo),
—Ifab<c a+b>candc>1isodd: Letus define

(z1,23,...,2) = SMerge%l(xl, X3, ... X0, X5, ..),
(22,24, ...,2c-1) = SMerge%l(xz, Xy oo Xy Xy o),
(Y2,¥3) = 2-Compg,, z3),

(yc—l,YC) = 2'C0mpec—l, ZC)

Then,
SMerge(Xi, Xz, - - - » Xa; Xps X, - - > X0) 1= (21, Y2, Y3, - - - » Ye)-
X1+ — ;Zl\
Z L 79 z
X2 ——s — 2 Xq - L4 1
AR B S - e B
X4 - % Y3 X3 || L ztfyz
3-SMergeg,| {4-SMergg, 754 X4 | Z 7))//3
X5 ——| e % s p-SMergg,| [3-SMergg, 4
Zg Yo X -Ys
X6 ——9 -l 51 e Z
X7—— — Z7 X6*H

Fig. 3: Two examples of simplified merge networks.

Figurd3 shows two examples of simplified merges: The firsstiogvs a 6-simplified
merge with inputs of sizes 3 and 4. The second one correspords-simplified merge
with inputs of sizes 2 and 4.

We can recursively compute the auxiliary variables andsdaueeded in simplified
merge networks. In the recursive case, we néedV, + c— 1 variables an€; + C, +
C; clauses, wherevy, Cs), (V2, C,) are the number of clauses and variables needed in
simplified merge networks of siz¢$2], [5], S| +1). (|2].]3].[5]).and

3c-3 i i
Cs= > |.fc!s odd,
242 ifciseven.

4.4 m-Cardinality Networks

An m-cardinality networkakes an input of sizeand outputs the firsh sorted bits. Re-
cursively, amtm-cardinality network with inpuky, X, . . ., X, can be defined as follows:

— If n < m, a cardinality network is a sorting network:
Cardn(Xq, X2, . - ., Xn) := Sortingy, Xz, . . . , Xn)-
— If n> m, takel with 1 < | < n. Let us define

(217 227 ey ZA) = Cardﬂ(xl5 XZ» DRI XI)?
(2.2, Z5) = Cardn(X+1, X2, - - - Xn),
(Y1.¥2,--..Ym) = SMerge,(z1. 22, ..., 27, 2. 2, . . ., Z),

whereA = min{l, m} andB = min{n — |, m}. Then,

Cardn(Xe, Xo, - . ., Xn) = (Y1, Y2s - - - » Yim)-

Again, the number of auxiliary variables and clauses needdtiese networks
can be recursively computed. Ancardinality network of sizen composed by am-
cardinality network of sizéand amm-cardinality network of size—1 needsv; +V,+V3
variables andC; + C; + C3 clauses, wheré, C,), (V,, C,) are the number of variables
and clauses used in tinecardinality networks of sizelsandn — |, and /3, C3) are the
number of variables and clauses needed imtremplified merge network with inputs
of sizes (mirfl, m}, min{n — I, m}).

With the same techniques used in [ANORC11], one could egsitye the arc-
consistency of the encoding.

Theorem 1. The Recursive Cardinality Network encoding is arc-coesistconsider
a cardinality constraint x+ ... + X, < K, its corresponding cardinality networy,

V2, -y Yer1) = Cardg1(Xa, X2, . . ., X), @nd the unit clausewyy, . If we now set to true k
input variables, then unit propagation sets to false thea#img n— k input variables.

Proof (sketchﬂ The proof relies on the following lemmas, which formalize tirop-
agation properties of the building blocks of cardinalityvaerks:

Lemma 1 (Merge Networks).Let S be the set of clauses of
(Y1, Y2, - - - » Yarb) = Mergefa, Xa, . . ., Xa; X1, X5, - - - » Xp)-

Letpge NwithO< p<aand0<qg<hb. Then:

1' SU{Xlsupr»X&n--,X&}'=UPy1s-~-»yp+q~ .
2. lfp<aandg< bthen SU{xy,...,Xp, X, ..., Xg» Yorar1} Fup Xprt, X q-

3. Ifp=aandg<bthen SU{Xy,...,Xp, Xq, ., X Ypra+1} Fup XG1-
4. If p<aandg=Dbthen SU{x,...,Xp, X, ..., X Yorar1} Fup Xpi1.

4 Full detailed proofs will be available in the long version of this paper.

10

Lemma 2 (Sorting Networks).Let X = (X, X2, ..., X%n), X’ € X and S be the set of
clauses ofyi, ¥, ..., ¥n) = Sorting(X). Let p= |X’|. Then:

1. SUX hupyl,...,yp.
2. If p=[X] < n, then SU X" U (Y1} Fup X for all x; ¢ X'.

Lemma 3 (Simplified Merge Networks).Let S be the set of clauses of

(Y1, Y2 - - - Ye) = SMerge(Xa, X2, - - ., Xa; X1, Xo, . . -, Xp)-
Letpge Nbesuchthad < p<a,0<qg<b. Then:

1. Ifp+qg<c,then SU X1, -+ s Xps X4, -5 Xg}h EUP Y15 -+ -5 Ypig: L

2. Ifp<a,g<band prq<c,then Su{xy, ..., Xp, Xi, - .-, X Yprara) Fup Xp+1, Xgu1-
3. Ifp=a,g<band p+qg<c,then SU{X...,Xp, Xy, ..., XG Yprar1} Fup Xge1-

4. Ifp<a,g=band p+qg<c,then SU{Xts -+ Xps X4, - - -5 X Yprar1} Fup Xpi1-
Lemma 4 (Cardinality Networks). Let X = (Xg, X2, ..., %), X’ € X and S be the set
of clauses ofyy, ya, . . ., ¥m) = Cardn(X). Let p=|X’|. Then:

1 Ifp<m,then SUX Eupyi,....Yp.
2. If p<m, then SU X' U {¥p1} Eup X for all x; ¢ X'.

Each lemma is proved by induction and using the correspgridimmas of the inner
building blocks. The proofs of Lemmik 1 did 3 require considdour cases according
to the parities of andg. Finally, the theorem follows as a corollary of Lemma 4.

For the sake of illustration, let us prove the cage < c, a+ b > ¢, with c even, of
the inductive case of propeiffy 1 in Lemima 3. So, let us consigeset of clauses of

(z1,Y2, Y35 - - -, Ye) = SMerge(Xu, Xa, - - -, Xa; X3, Xo, - - - » Xp)
consisting of the clauses — Y., z.;1 — Y. and those in

(21,23, ..., Z11) = SMerge .1 (X1, X3, .- -5 X4, X3, .. .),
(22,24, ..., %) = SMerge (X2, X4, . .. X5, X},),
(y2,¥3) = 2-Compg, z3),

(Ye-2,Ye-1) = 2-Comple-2, Z.-1).

Letp,ge NsuchthatO< p<a 0<qg<bandp+qg<c If p=qg=0there
is nothing to prove. Otherwise let us sh&w {xq, ..., Xp, X}, ..., X3} Eup 21, Yi for all
2<i<p+aq.

Here we focus on the subcageand g even, being the other three cases analo-
gous. Hence, lep = 2p’ andqg = 29'. In Xy, X, ..., Xp there arep’ odd indices and
p’ even indices. Similarly, ing, X, ..., X, there areq’ odd indices andy even in-
dices. Thus, using the IH (notg + g < ¢/2 < ¢/2 + 1), we have that the clauses
of the subnetwork#, zs, ..., Z.+1) = SMerge,, (X1, X3, - - . ; X, X3, . . .) propagate by
unit propagation the literalg,, ..., g .q)-1; and that the clauses ofy(z, ..., z) =
SMerge (X2, X4, - - - ; X5, X3, . . .) propagate by unit propagation the literals..., oy +.q)-
Altogether, all literalsz; with 1 < j < p+ g can be propagated by unit propagation.

Letustake 2< i < p+ q. If i is odd then, thanks to literals ; andz and clause
Z_1 Az — Y; of the 2-comparaton(_;,y;) = 2-Compg_1, z), literal y; is propagated.
If i is even, then thanks to literaland clause; — vy, literaly; is propagated too.

11

5 Direct Cardinality Networks

In this section we introduce an alternative technique falding cardinality networks
which we calldirect, as it is non-recursive. This method uses many fewer auxiiari-
ables than the recursive approach explained in Selction théwther hand, the number
of clauses of this construction makes it competitive onlysimall sizes. However, this
is not a problem as we will see in Sectldn 6, as the two teclesigan be combined.

As in the recursive construction described in Sedtion 4bthileling blocks of direct
cardinality networks are merge, sorting and simplified raergtworks:

— Merge Networks They are defined as follofis

Mergei, Xo, . . ., Xa; X1, X5, - - ., Xp) i= (Y1, Y2, Y3, - - - » Yarb-1, Ya+b)

with clausegx — yi, X; = yj, X AXj = V¥iyj © 1<i<a 1< j<b}. Notice we
needa + b variables andb + a + b clauses.

— Sorting Networks. A sorting network can be built as follows:

Sortingfa, X2, - .., Xn) 1= (Y1, Y2, - - .. Yn)s

with clausegx;, A X, A=A X, = ¥ : I1<sksnl<gii<iz<---<ig<n}
Therefore, we need auxiliary variables and™- 1 clauses.

— Simplified Merge Networks The definition ofc-simplified merge is the same as
in Sectior[4, except for the cases in whiglb < canda + b > ¢, where:
SMerge(Xe, Xz, - - - » Xa; X4, %o, - - +» Xp) := (Y1, Y2, - - -» Vo),
with clausegX — Vi, Xj = ¥, XAXj = Vi) 1<i<al<j<bi+j<ch
This approach needsvariables andg + b)c — 451 — 2&-D _ b0 ¢lauses.

— m-Cardinality Networks . As in Sectioii ¥4, except for the case- m, where:

Cardn(Xe, Xz, - -, %) 1= (Y1. Y2, - -, Ym)
with clauseqx, A X, A---AX, =2 ¥ : 1<k<ml<ii<iz<---<ix<nh
This approach needsvariables andy) + (3) +--- + (1) clauses.
As regards the arc-consistency of the encoding, the foligwian be easily proved:
Theorem 2. The Direct Cardinality Network encoding is arc-consistent

Proof (sketch)The proof uses lemmas analogous to Lemmas [, 2, 8land 4. & ill
tration purposes, let us show propdry 1 in Lenitha 3. Let usiden the clause set of
(Y1, Y2, - - .. ¥e) = SMerge(Xa, X, . . ., Xa; X1, X5, ..., X)), 1.€.,
X =Y, Xj =y, XAX =Yy I<i<al<j<bi+j<ch

Letp,ge Nbesuchthatk p<a 0<qg<bandp+gq=<clfp=qgq=0
there is nothing to prove. Otherwise let us consider K < p+q. Let0<i < pand
O0<j<qgbesuchthai+ j=k Ifi=0thenj=kand the claus& — y; propagates
Yk. Similarly, if j = 0 theni = k and the clause — y; propagategy. Finally, if i > 1
andj > 1 the clause; A X — Yi+j propagategk.

5 Direct merge networks are similar to the totalizers of [BBR09].

12

6 Combining Recursive and Direct Cardinality Networks

The recursive approach produces shorter networks thanirtbet dpproach when the
input is middle-sized. Still, the recursive method for Hing a network needs to induc-
tively produce networks for smaller and smaller input siZ¢some point, the networks
we need have a fliciently small number of inputs such that the direct methodtzald
them using fewer clauses and variables than the recurspu®agh. Here anixed en-
codingis presented: large cardinality networks are build withrérmursive approach but
their components are produced with the direct approacteif #ize is small enough.

In more detail, assume a merge of input siaeendb is needed. We can use the
direct approach, which need4, = a + b auxiliary variables an€p, = ab+a+ b
clauses; or we could use the recursive approach. With thesige approach, we have
to built two merge networks of siz€g 3], [5]) and (2], |3]). These networks are
also built with this mixed approach. Then, we compute thasga and variables needed
in the recursive approacklr andCg, with the formula of Section 4l Mg = Vi + Vo +
2|251], Cr=Cy+Co+3|222| where {1, Cy) and 2, C,) are, respectively, the
number of variables and clauses needed in the recursiveemetgorks.

Finally, we compare the values Wk, Vp, Cr andCp, and decide which method is
better for building the merge network. Notice that we caimistimize both the number
of variables and clauses; therefore, here we try to minintizefunctiona - V + C, for
some fixed valua > 0. The parametet allows us to adjust the relative importance of
the number of variables with respect to the number of claaé#dse encoding. Notice
that this algorithm for building merge networks (and simylasorting, simplified merge
and cardinality networks) can easily be implemented withaslgic programming. See
Section[¥ for an experimental evaluation of the numbers dhlles and clauses in
cardinality networks built with this mixed approach.

The arc-consistency of the mixed encoding easily followsfithe arc-consistency
of the two encodings it is based on.

Theorem 3. The Mixed Cardinality Network encoding is arc-consistent.

Proof (sketch)The proof uses lemmas analogous to Lemfids @] 2, 3land 4. In turn
these lemmas are proved by combining the proofs outlinedhaéofem$ il and) 2.

7 Experimental Evaluation

In previous work[[ANORC11], it was shown that power-of-twRecursive) Cardinal-
ity Networks have overall better performance than othei-w@bwn methods such as
Sorting Networks[[ES06], Adders [ES06] and the BDD-basembdimg of [BBRO6b].
In what follows we will show that the generalization of Carality Networks to arbi-
trary size and their combination with Direct Encodings/|dileg what we have called
here theMixed approach, makes them significantly better, both as reghedsize of
the encoding as well as SAT solver runtime.

We start the evaluation focusing on the size of the resukliimgpding. In Figurgél4
we show the size, in terms of variables and clauses, of thedamg of a cardinality
network with input size 100 and varying output sine

13

It can be seen that, since we minimize the function+C, whereV is the number of
variables andC the number of clauses, the biggeis, the fewer variables we obtain, at
the expense of a slight increase in the number of clauses, isan be seen that using
power-of-two Cardinality Networks as in [ANORC11] is padlarly harmful wherm
is slightly larger than a power of two.

- Recursive with power-of-two size - Recursive with power-of-two size
—— Recursive with arbitrary size R —— Recursive with arbitrary size
L Mixed, A = 0.5 : 1 L Mixed, 1 = 0.5
........ Mixed, 1 =5 : ---=- Mixed, 1 =5
[Mixed, A=30; 1 R Mixed, 1 = 30
QL 2000 : 1 @ 4000 -
Qo %]
s 2
=
g @)

1000."

2004

Fig. 4: Number of variables and clauses generateiixgd and the Recursive Cardi-
nality Networks approaches with input size 100 anf@iedent output sizes.

Although having a smaller encoding is beneficial, this stidval accompanied with a
reduction in SAT solver runtime. Hence, let us now move t@ssfow our new encod-
ing affects the performance of SAT solvers. In this evaluationdulitéon to considering
the power-of-two Recursive Cardinality Networks[in [ANORI} (Power-of-two CN),
the (arbitrary-size) Recursive Cardinality Networks preed in Sectiohl4Arbitrary-
sized CN and theMixed approach of Sectionl 6, we have also included other well-
known encodings in the literature: the adder-based engddidder) of [ES06] and the
BDD-based encodind3DD) of [BBR0O6a]. We believe these encodings are representa-
tive of all different approaches that have been used to deal with cargdioafistraints.
Other works, like the adder-based encodind of [War98], tb®Based one of [ES06]
or the work by Anbulagan and Grastién [AG09], are small vames or combinations
of the encodings we have chosen. Moreover, we have impledem SMT-based ap-
proach EMT) to Cardinality Constraints. In a nutshell, we have cou@e®AT solver
with a theory solver that handles all cardinality constigi\s soon as a cardinality
constraint is violated by the current partial assignmem, $AT solver is forced to
backtrack and, when the value of a variable can be propagiaéeds to a cardinality
constraint, this information is passed to the SAT solveather words, cardinality con-
straints are not translated into SAT, but rather tackled lgdicated algorithm, very
similar in nature to what some pseudo-Boolean solvers domiéoe information about
SMT, the reader is referred to [NOTI06].

The SAT solver we have used in this evaluation is Lingelingiamala, a state-of-
the-art CDCL (Conflict-Driven Clause Learning) SAT solvhaat implements several

14

in/preprocessing techniques. All experiments were condumesl 2Ghz Linux Quad-
Core AMD with the three following sets of benchmarks:

1.-MSU4 suite.These benchmarks are intermediate problems generated ibypéet
mentation of themsu4algorithm [MSPO08], which reduces a Max-SAT problem to a
series of SAT problems with cardinality constraints. Tireudimplementation was run
of a variety of problems (filter design, logic synthesis, imam-size test pattern gen-
eration, haplotype inference and maximum-quartet cagrsiy) from the Partial Max-
SAT division of the Third Max-SAT evaluati%n The suite consists of about 14000
benchmarks, each of which contains multigleardinality constraints.

2.-Discrete-event system diagnosis suit€he second set of benchmarks we have used
is the one introduced in_[AG09]. These problems come fronerdie-event system
(DES) diagnosis. As it happened with the Max-SAT problemsingle DES problem
produced a family of “SAT+ cardinality constraints” problems. This way, out of the
roughly 600 DES problems, we obtained a set of around 6008Hmearks, each of
which contained a single very largecardinality constraint.

3.-Tomography suite.The last set of benchmarks we have used is the one introduced
in [BBO3]. The idea is to first generate &hx N grid in which some cells are filled
and some others are not. The problem consists in finding oigware the filled cells
using only the information of how many filled cells there areach row, column and
diagonal. For that purpose, variablesare used to indicate whether céll j) is filled

and severak-cardinality constraints are used to impose how many fildts¢here are

in each row, column and diagonal. We generated 2600 ben&BrfHDO instances for
each grid sizeN = 15...40).

Results are summariZédh Table[1, which presents a comparison of Mxed
(with 2 = 5) encoding with respect to the aforementioned encodinigs.time limit
was set to 600 seconds per benchmark and we only considemetrbarks for which
at least one of the methods took more than 5 seconds. Thethragetables, one for
each benchmark suite. In each table, columns indicate inrhamny benchmarks the
Mixed encoding exhibits the corresponding speed-up or slow-daator with respect
to the method indicated in each row. For example, in the tilthe MSU4 suite, the
first row indicates that in 43 benchmarks, Power-of-two @eality Networks timed
out whereas our new encoding did not. The columns next tadit@tes that in 732
benchmarks the novel encoding was at least 4 times fast2g5@ between 2 and 4
times faster, etc.

We can see from the table that in thiSU4 andDES suites, which contain bench-
marks coming from real-world applications, our new encgdmutperforms all other
methods (except for SMT IMSU4, where comparable results are obtained). We want
to remark that the gain comes both from using arbitraryesimtworks as well as from
combining them with direct encodings, as can be seen frons¢leend row of each
table. In theTomography suite, the BDD-based encoding and the SMT system out-
perform all other methods, but among the rest of the appesatiteMixed encoding

6 Seehttp://www.maxsat.udl.cat/08/index.php?disp=submitted-benchmarks.
7 Seehttp://www.1lsi.upc.edu/ oliveras/espai/CP13.ods for detailed data.

15

[Speed-up factor of Mixed][Slow-down factor of Mixed]|
[TO 4 2 15 [TOT[|I5 2 4 TO[IOT|

MSU4 suite

Power-of-two CN |43 732 2957 12785010||1 23 13 11 | 48
Arbitrary-sized CN [10 149 544 726(1429||3 106 43 80 | 232
Adder 985 1207 1038 125a1480||0 13 36 40 | 89
BDD 187 1139 1795 1292413||4 10 31 36 | 81
SMT 1143 323 102 53 |[1621||0 1417 211 63 [1691
DES suite

Power-of-two CN (13 21 265 638| 937 ||6 12 7 46 | 71
Arbitrary-sized CN [19 21 75 404| 519 |5 12 11 45| 73
Adder 218 235 611 128R2347||0 5 3 42 | 50
BDD 705 3944 759 51 |5459||0 0 0 0 0

SMT 3003 1134 262 73 [4472[|0 15 19 15| 49

Tomography suite

Power-of-two CN [118 388 408 175/1089((64 82 159 121| 426
Arbitrary-sized CN {104 430 432 169 1135[|67 81 158 11 | 417

Adder 492 591 371 143/1597|[14 20 39 35 | 108
BDD 0 0 0 0 0 |[112 1367 184 51 [1714
SMT 0 10 25 11 | 46 [[112 1250 155 68 |1585

Table 1: Comparison in terms of SAT solver runtime. Figunedate number of bench-
marks in whichMixed showed the corresponding speed-up or slow-down factar w.r.
different encoding methods.

exhibits the best performance. Altogether, ligked encoding is the most robust tech-
nique according to the results of this evaluation.

8 Conclusion and Future Work

The contributions of this paper aré} &n extension of the recursive cardinality networks
of [ANORC11] to arbitrary input and output sizes;) (@ non-recursive construction of
cardinality networks that is competitive for small siz€8) @ parametric combination
of these two approaches for producing cardinality netwdks not only improves on
the size of the encoding, but also yields significant spegduBAT solver performance.

As regards future work, we plan to develop encoding tectesdior cardinality
constraints that do not process constraints one-at-alimsimultaneously, in order to
exploit their similarities. We foresee that the flexibilif the approach presented here
with respect to the original construction [n [ANORC11], Mapen the door to sharing
the internal networks among the cardinality constraingsent in a SAT problem.

Acknowledgments. Abio is supported by DFG Graduiertenkolleg 1763 (QuantLA).
All of the other authors are partially supported by Spanishistry of Education and
Science through the SweetlLogics project (TIN 2010-21062-01). We would also
like to thank the anonymous reviewers of previous versidrbkis paper.

16

References

AAN12.

AGO09.

ANORCO09.

ANORC11.

Bat68.

BBO3.

BBRO6a.

BBROG6bD.

BBRO09.

Czl10.

ESO06.

FMO6.

MCS13.

MSPO08.

NOTO6.

Par92.

PG86.

Roberto Ash Acha and Robert Nieuwenhuis. Curriculum-based course timetabling
with SAT and MaxSAT. Annals of Operations Researcpages 1-21, February
2012.

Anbulagan and Alban Grastien. Importance of Variables Semar@iiF Encoding
of Cardinality Constraints. In V. Bulitko and J. C. Beck, editd&ghth Symposium
on Abstraction, Reformulation, and Approximation, SARA 8Al, 2009.
Roberto A, Robert Nieuwenhuis, Albert Oliveras, and Enric Rgdez-
Carbonell. Cardinality networks and their applications.Inth Conf. Theory and
Applications of Satisfiability Testing (SAT), LNCS 45fdges 167—-180, 2009.
Roberto A, Robert Nieuwenhuis, Albert Oliveras, and Enric Hgdez-
Carbonell. Cardinality Networks: a theoretical and empirical stu@gnstraints
16(2):195-221, 2011.

K. E. Batcher. Sorting Networks and their Applications.AFIPS Spring Joint
Computing Conferen¢@ages 307—-314, 1968.

Olivier Bailleux and Yacine Boufkhad.flicient CNF Encoding of Boolean Cardi-
nality Constraints. In F. Rossi, editd?rinciples and Practice of Constraint Pro-
gramming, 9th International Conference, CP ;@®lume 2833 of_ecture Notes in
Computer Sciencgages 108—-122. Springer, 2003.

Olivier Bailleux, Yacine Boufkhad, and Olivier Roussel. A #fation of pseudo
boolean constraints to salSAT 2(1-4):191-200, 2006.

Olivier Bailleux, Yacine Boufkhad, and Olivier Roussel. A #iation of pseudo
boolean constraints to salSAT 2(1-4):191-200, 2006.

Olivier Bailleux, Yacine Boufkhad, and Olivier Roussel. Neve&atings of Pseudo-
Boolean Constraints into CNF. In O. Kullmann, editb?2th International Confer-
ence on Theory and Applications of Satisfiability Testing, SATVORme 5584 of
Lecture Notes in Computer Scienpages 181-194. Springer, 2009.

Michael Codish and Moshe Zazon-Ivry. Pairwise cardinalitiwoeks. In Ed-
mund M. Clarke and Andrei Voronkov, editorsPAR (Dakar) volume 6355 of
Lecture Notes in Computer Scienpages 154-172. Springer, 2010.

Niklas En and Niklas 8rensson. Translating Pseudo-Boolean Constraints into
SAT. Journal on Satisfiability, Boolean Modeling and Computati®ri—26, 2006.
Zhaohui Fu and Sharad Malik. Solving the minimum-cost satisfialpliplem
using SAT based branch-and-bound searctRrbreedings of the 2006 |IEFACM
international conference on Computer-aided desi@BCAD '06, pages 852—-859,
New York, NY, USA, 2006. ACM.

Amit Metodi, Michael Codish, and Peter J. Stuckey. Booleairmgpagation for
concise and fiicient sat encodings of combinatorial problendsArtif. Intell. Res.
(JAIR), 46:303-341, 2013.

J. Marques-Silva and J. Planes. Algorithms for Maximum Sdtiifyausing Un-
satisfiable Cores. 12008 Conference on Design, Automation and Test in Europe
Conference, DATE '0&ages 408-413. IEEE Computer Society, 2008.

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. iBQISAT and SAT
Modulo Theories: From an abstract Davis—Putnam-Logemann-Layplacedure
to DPLL(T). Journal of the ACM, JACMB3(6):937-977, 2006.

lan Parberry. The pairwise sorting netw@idallel Processing Letter®:205-211,
1992.

David A. Plaisted and Steven Greenbaum. A structure-prege&faimse form trans-
lation. J. Symb. Comput2(3):293—-304, 1986.

SFSWO09.

Sin05.

uRO05.

War98.

17

Andreas Schutt, Thibaut Feydy, Peter J. Stuckey, and ®laallace. Why cu-
mulative decomposition is not as bad as it sound$rbteedings of the 15th inter-
national conference on Principles and practice of constraint programgCP’09,
pages 746-761, Berlin, Heidelberg, 2009. Springer-Verlag.

C. Sinz. Towards an optimal CNF encoding of boolean cardinaitgtcaints. In
P. v. Beek, editorPrinciples and Practice of Constraint Programming, 11th Inter-
national Conference, CP 'Q%olume 3709 ol ecture Notes in Computer Science
pages 827-831. Springer, 2005.

M. Hittner and J. Rintanen. Satisfiability planning with constraints on the number
of actions. In S. Biundo, K. L. Myers, and K. Rajan, editat§th International
Conference on Automated Planning and Scheduling, ICAPSpa@ges 292—299.
AAAL, 2005.

Joost P. Warners. A Linear-Time Transformation of Lineagualities into Con-
junctive Normal FormlInformation Processing Letter§8(2):63—69, 1998.

	A Parametric Approach for Smaller and Better Encodings of Cardinality Constraints

