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In amplitude modulation atomic force microscopy the attractive and the repulsive force regimes

induce phase shifts above and below 90�, respectively. In the more recent multifrequency

approach, however, multiple operation regimes have been reported and the theory should be

revisited. Here, a theory of phase contrast in multifrequency atomic force microscopy is developed

and discussed in terms of energy transfer between modes, energy dissipation and the kinetic energy

and energy transfer associated with externally driven harmonics. The single frequency virial that

controls the phase shift might undergo transitions in sign while the average force (modal virial)

remains positive (negative). VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4870998]

Multifrequency atomic force microscopy (AFM) is an

emerging1,2 branch of AFM where two or more frequen-

cies3,4 are externally excited in order to map material

composition,5–7 enhance resolution8 and sensitivity,9–11 and

quantify material properties12–14 with gentle forces. The

theory that controls the response of the cantilever while

simultaneously exciting several frequencies and modes

however is still emerging12,15,16 and might result com-

plex.17,18 Here, possible mechanisms responsible for multi-

ple regimes of operation in multifrequency AFM are

discussed from the point of view of energy transfer in the

presence of conservative and dissipative interactions. This

is in line with recent reports discussing that multiple opera-

tion regimes can emerge in multifrequency AFM.17–19 We

report and discuss from a theoretical point of view and via

numerical simulations that phase contrast arises from an

interplay between energy dissipation and the kinetic energy,

and energy transfer associated with the externally excited

frequencies and eigenmodes.

The M equations of motion20 that account for M cantile-

ver modes can be written in the following way:1

kðmÞ

x2
ðmÞ

€zðmÞðtÞ þ
kðmÞ

QðmÞxðmÞ
_zðmÞðtÞ þ kðmÞzðmÞ ¼ FD þ Fts; (1)

where the subscript in brackets indicates mode m throughout.

Then k(m), Q(m), x(m), and z(m) are the spring constant, qual-

ity factor, natural frequency, and position of the m eigen-

mode. FD is the term standing for the external driving forces.

Two external forces with magnitudes F0(1) and F0(2) and act-

ing near x(1) and x(2) have been added here as in standard bi-

modal AFM.1 The dynamics of the modes are coupled via

the non-linear tip-sample force Fts. The absolute position z is

the sum of the M modes taken into account in the modal

approximation

z �
XM

m>0

zðmÞ (2)

or frequencies zn

z � z0 þ
XN

n>0

zn ¼ z0 þ
XN

n>0

Ansinðnxtþ /nÞ; (3)

where the subscript without brackets stands for harmonic

number n, z0 is the mean deflection, and An and /n are the

harmonic amplitudes and phases. The approximation implies

that N is finite. Furthermore, the modes can also be decom-

posed into harmonic components

zðmÞ � zðmÞ0 þ
XN

n>0

AðmÞn sinðnxtþ /ðmÞnÞ; (4)

where, z(m)0 is the mean deflection of mode m; suffixes for

mode m and harmonic number n are employed as (m)n for

amplitudes A(m)n and phases /(m)n. Then, the net energy

entering (ET(m)< 0) or leaving (ET(m)> 0) a given cantilever

mode m can be written as

ETðmÞ ¼ �
þ

Fts:zmdt; (5)

where _z(m) is the time derivative of z(m) and ET(m) stands for

net energy transfer (other than that lost to the viscous me-

dium) per cycle via mode m. One can refer to such expres-

sion as Energy Transfer. In this work, two mechanisms

accounting for ET(m) are identified, namely, (1) energy irre-

versibly lost in the tip-sample junction from mode m and (2)

energy transfer from mode m to any other modes. The first

mechanism requires the presence of dissipative forces while

the second does not. Another key definition in dynamic

AFM is that of the tip-sample virial

VðmÞ ¼
1

T

þ
FtszðmÞdt; (6)

where V(m) stands for tip-sample virial of mode m and T is

the fundamental period. In general, V(m) might be positive or

negative. For simplicity modes 1 and 2, i.e., m¼ 1 and

m¼ 2, are accounted for in this work as in standard bimodal

AFM.1 A more common21,22 definition of (5) and (6)
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involves the harmonic terms only that coincide with, or lie

near the, modal frequencies

ETðmÞn ¼ �
þ

FtsAðmÞnnx cosðnxtþ /ðmÞnÞdt � ETn

¼
npkðmÞA0nAn

QðmÞ
sin /n �

An

A0n

� �
; (7)

where m can take the values 1 and 2 and the corresponding

harmonic numbers n are 1 and 6, respectively, and through-

out. Furthermore, A0n are the free amplitudes at x (n¼ 1)

and 6x (n¼ 6) and it is assumed for simplicity that x(1)�x
and x(2)� 6x. Similarly22

VðmÞn ¼
1

T

þ
FtsAðmÞn sinðnxtþ /ðmÞnÞdt � Vn

¼ � 1

2

kðmÞA0nAn

QðmÞ
cos /n: (8)

Next we define the energy terms En for harmonics n¼ 1

(m¼ 1) and n¼ 6 (m¼ 2), respectively, as follows:

En ¼ KEn þ E�Tn; (9)

where KEn stands for kinetic energy and it is computed as

the energy associated with the nth harmonic as

KEn ¼
1

2
kðmÞA

2
n: (10)

Furthermore, E*
Tn is related to ETn in (7) by

E�Tn ¼
ETnQðmÞ

2pn
: (11)

Combining these expressions leads to the phase shifts of har-

monics 1 and 6 (monitored in bimodal AFM) in terms of the

inverse tangent and inverse cosine functions

/n � tan�1 �En

VnQðmÞ

" #
� cos�1

�2VnQðmÞ
kðmÞA0nAn

" #
: (12)

This expression is equivalent to those derived by others23,24

but its interpretation here leads to key results relating to

energy transfer and phase contrast as discussed below. In

standard AM AFM the fundamental phase shift /1 might lie

above or below 90� in what defines two distinct force

regimes,25 i.e., the attractive and the repulsive regimes,

where the average tip-sample force FAV is attractive or repul-

sive, respectively. From now on, the average force FAV being

negative or positive will be employed to define attractive and

repulsive force regimes, respectively. The inverse tangent

relationship in (12), however, suggest 4 possible combina-

tions or regimes of operation at both harmonics n¼ 1

(m¼ 1) and n¼ 6 (m¼ 2), respectively. This follows from

the fact that both Vn in (8) and En in (9) can, in principle, be

positive or negative. A closer look at (12), however, indi-

cates that the sign of the virial alone controls whether the

phase lies above or below 90� since the inverse cosine rela-

tionship depends on Vn only. Then it also follows from the

inverse tangent relationship in (12) that it is a necessary con-

dition that E1> 0 (m¼ 1) and that E6> 0 (m¼ 2). This is a

main hypothesis in this work, and has some important

implications:

(1) First, E*
T1 (and E*

T6) might be negative or positive

implying that during the tip-sample interaction energy

transfer might be positive or negative at n¼ 1 and/or

n¼ 6. This is consistent for both conservative and dissi-

pative interactions since no assumptions have been

made in terms of the character of the forces. Also note

that in monomodal AFM it is required that E*
Tn< 0 for

n> 1.

(2) Second, it necessarily follows from (12) that

KE1>�E*
T1 (E1> 0) and that KE6>�E*

T6 (E6> 0).

(3) Third, for conservative interactions it is a necessary

condition that ET(1)¼�ET(2) or, in terms of the moni-

tored frequencies, ET1�� ET6.

The third point follows directly from the energy conservation

principle. Note that the energy dissipated per cycle Edis can

be written as

Edis ¼ ETð1Þ þ ETð2Þ: (13)

Then, for a conservative system where Edis¼ 0 it follows

that ET(1)¼�ET(2). For a more general system, where other

eigenmodes are included (M> 2) energy transfers between

the M modes when Edis¼ 0. The energy transfer between

modes 1 and 2 is illustrated in Fig. 1.

The expressions above are next compared to the results

of numerical integration. In the long range Fts is defined by

the Hamaker constant H, the tip radius R, and the tip sample

distance d22

FtsðdÞ ¼ �
RH

6d2
a0 < d ; (14)

where a0 (�0.165 nm) is an intermolecular distance. The dis-

tance d and the tip position z are related via the cantilever

separation zc since d¼ zcþ z.

For Fig. 2, the parameters are: A01¼ 5 nm, A1¼ 4 nm,

k(1)¼ 2 N/m, k(2)¼ 80 N/m, Q(1)¼ 100, Q(2)¼ 600, f(1)¼ 70 kHz

(x(1)¼ 2pf(1)), f(2)¼ 42 kHz (x(2)¼ 2pf(2)), H¼ 4.1� 10�19,

J and R¼ 5 nm. Only the second mode phenomena corre-

sponding with harmonic 6 are discussed in detail for

FIG. 1. Illustration of how energy might transfer between modes (a) 1 and

(b) 2.
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simplicity and because the corresponding channels A6 and

/6 provide1 compositional contrast. With these parameters d

always lied above a0 (d> a0) in the simulations. Thus, the

example in Fig. 2 corresponds to bimodal AFM operated in

the standard attractive regime where FAV< 0. Note also that

in Fig. 2, Fts is conservative, i.e., Edis¼ 0. In the figure, the

free amplitude of the second mode (sixth harmonic) A06 has

been varied in the range 0.1–5 nm since this is characteristic

of standard values in bimodal AFM.1,14,15 Fig. 2(a) shows

variations of KE6 (squares) and E*
T6 (circles) with A06. The

energies have been normalized with 6.2 keV. KE6 monoto-

nously increases with A06, whereas E*
T6< 0 throughout. The

numerical values are E*
T6¼�0.3, �1.7154, �2.5318,

�2.9002, �3.0365, and �3.1318 eV for A06¼ 0.1, 1, 2, 3, 4,

and 5 nm, respectively. By comparing these results with

KE6¼ 3.1, 239.2, 972.3, 2211.6, 3954.1, and 6198.1, it fol-

lows that the condition KE6>�E*
T6 is satisfied. The nor-

malized values of E6 (rhombuses) and V6 (crosses) are

plotted in Fig. 2(b); E6> 0 and V6> 0 throughout with max-

ima of 6.2 keV and 0.9 eV, respectively. In terms of the

observable /6 this implies that /6> 90� throughout (Fig.

2(c)) in accordance with the prediction of (12). According to

the simulations here, these results should be standard in bi-

modal AFM in the attractive regime where FAV< 0. That is,

/6> 90� independently of A06. Furthermore, from the nu-

merical results it was also verified that ET1��ET6, and,

more thoroughly, ET(1)¼�ET(2) exactly. In summary, in the

attractive regime the three conditions above are satisfied

according to the simulations here.

FIG. 2. Results of the experimental observables and expressions that can be

computed from observables in bimodal AFM in the attractive regime as a

function of second mode (sixth harmonic) free amplitude A06.

FIG. 3. Response (conservative forces only) of experimental observables

and expressions that can be computed from observables in bimodal AFM in

the repulsive regime as a function of second mode (sixth harmonic) free am-

plitude A06.

FIG. 4. Response (conservative and dissipative forces) of experimental

observables and expressions that can be computed from observables in bi-

modal AFM in the repulsive regime as a function of viscosity g.
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Next, bimodal AFM is operated in the repulsive regime

where FAV> 0. For this purpose, a repulsive force22,25 is

employed when a0� d

FtsðdÞ ¼ �
RH

6a2
0

þ 4

3
E�

ffiffiffi
R
p

d
3=2

a0 � d ; (15)

where d and the tip-sample deformation d are related by

d¼ a0 � d. E* (�1 GPa in this work) is the effective

Young’s modulus in the contact and A06 has been varied

from 0.1 to 5 nm. The results are shown in Fig. 3 for:

A01¼ 10 nm, A1¼ 10 nm, and H¼ 2.1� 10�20 J (all other

parameters as in Fig. 2). The first thing to note from Fig. 3(a)

is that E*
T6 (circles) goes from negative to positive for

A06¼ 2.5–3 nm. Physically this implies that for small values

A06 or KE6 the energy transferred to n¼ 6 are positive.

However, when KE6 (squares) is sufficiently large (	1 keV

in Fig. 3(a)) energy transfers from the 6th frequency

(mode 2) to other frequencies. The numerical values are pro-

vided in Table I. Again Figs. 3(b) and 3(c) confirm that

E6> 0 and that V6 alone controls whether /6 lies above or

below 90�. In particular, V6 becomes negative in Fig. 3(b)

for A06¼ 1.5–2 nm and the phase transition follows

(Fig. 3(c)). Numerical values of the corresponding d and FAV

are also given in Table I (discussed below).

As another test to the theory above, a dissipative force

can be added in the contact region11,26

FdisðdÞ ¼ �g Rdð Þ1=2 _d d > 0 : (16)

The range of values given to the viscous coefficient g in Fig.

4 is; g¼ 0, 1, 10, 75, 100, 500, and 1000 Pa s (x-axis). The

rest of parameters are as in Fig. 3 except for A06 which is

1 nm throughout. Fig. 4(a) shows that KE6 (squares)

decreases with increasing g and dissipation (Edis). The

energy transfer E*
T6 (circles) goes from negative to positive

with increasing g. Again E6> 0 (Fig. 4(b) rhombuses)

throughout (see Table II) and the sign of V6 (crosses) alone

defines whether /6 lies above or below 90� (Fig. 4(c)).

Finally, we note an interesting physical observation.

Namely, even if V6> 0, and provided FAV> 0, the mode vir-

ial in (6) gives V(m)< 0. This implies that /6 does not follow

from the sign of V(m); see the corresponding numerical val-

ues in Table II and compare V(m), FAV, /1, and /6. FAV is

also shown in Table I for the results in Fig. 3 where it can be

seen that FAV decreases monotonously with increasing A06.

TABLE I. Numerical values corresponding to the results in Fig. 3. The number of the equation employed is written in brackets in the first column.

A06 [nm] 0.1 0.5 1 1.5 2 2.5 3 4 5

ET(1) [eV] (5) 5.93 8.86 11.29 12.82 13.88 17.78 19.03 20.1 20.51

ET(2) [eV] (5) �5.93 �8.86 �11.29 �12.82 �13.88 �17.78 �19.03 �20.1 �20.51

V(1) [eV] (6) �10.18 �9.84 �9.53 �9.33 �9.18 �8.59 �8.39 �8.22 �8.16

V(2) [eV] (6) �0.01 �0.12 �0.31 �0.56 �0.86 �1.7 �2.24 �3.17 �4.05

V6 [eV] (8) 0.02 0.12 0.32 0.56 �0.86 �1.71 �3.00 �3.99 �4.89

E6 [eV] (9) 10.22 33.45 29.22 0.43 49.01 739.69 1960.97 4079.16 6632.22

KE6 [eV] (10) 83.89 107.22 150.24 203.35 269.69 1022.68 1773.73 3583.63 5853.96

E*
T6 [eV] (11) �73.67 �73.77 �121.01 �202.92 �220.68 �282.99 187.25 495.53 778.25

/1 [�] (12) 35.11 37.76 40.03 41.49 42.51 46.45 47.74 48.85 49.24

/6 [�] (12) 135.05 155.86 171.32 179.93 5.42 35.85 47.46 59.61 66.13

E(2)6 [eV] (17) �10.52 �33.73 �29.48 �0.64 48.85 739.73 1470.91 3263.71 5527.47

d [nm] 1.07 1.15 1.23 1.3 1.37 1.57 1.66 1.79 1.88

FAV [pN] 86.67 84.18 82.38 81.63 81.46 76.79 74.91 73.04 72.19

TABLE II. Numerical values corresponding to the results in Fig. 4. The number of the equation employed is written in brackets in the first column.

g [Pa s] 0 1 10 50 75 100 500 1000

ET(1) [eV] (5) 11.29 11.32 11.52 12.41 12.94 13.45 19.88 26.31

ET(2) [eV] (5) �11.29 �11.26 �10.97 �9.71 �8.97 �8.25 �0.74 3.28

V(1) [eV] (6) �9.53 �9.53 �9.50 �9.38 �9.31 �9.24 �8.22 �6.92

V(2) [eV] (6) �0.31 �0.31 �0.31 �0.31 �0.31 �0.31 �0.22 �0.09

V6 [eV] (8) 0.32 0.32 0.32 0.32 �0.31 �0.31 �0.22 �0.08

E6 [eV] (9) 29.22 28.80 24.97 8.82 0.54 9.33 95.61 143.64

KE6 [eV] (10) 150.23 150.15 149.35 145.55 143.02 140.43 107.23 91.263

E*
T6 [eV] (11) �121.01 �121.35 �124.39 �136.74 �142.49 �131.10 �11.63 52.38

/1 [�] (12) 40.03 40.06 40.26 41.11 41.63 42.12 48.83 56.62

/6 [�] (12) 171.32 171.45 172.57 177.35 0.16 2.86 35.76 72.13

E(2)6 [eV] (17) �29.48 �29.05 �25.22 �9.06 0.30 9.10 95.40 143.42

d [nm] 1.23 1.23 1.23 1.22 1.21 1.20 1.05 0.89

FAV [pN] 82.38 82.36 82.14 81.18 80.60 80.02 71.40 59.35

Edis [eV] (13) 0.00 0.06 0.56 2.70 3.97 5.20 19.13 29.59
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This however does not imply that the interaction becomes

gentle by increasing the amplitude of the second mode in bi-

modal AFM. On the contrary, the tip-sample deformation d
increases monotonously with increasing A06 (Table I). As

dissipation increases however, and for a given A06, d
decreases monotonously with increasing g and Edis (Table II)

as in standard AFM.27–29 Let us, however, define a modal

energy term E(m) similar to that of the frequency term in (9)

EðmÞn ¼ KEn þ
ETðmÞQðmÞ

2pn
: (17)

The numerical values of (17) are shown in Tables I and II for

mode m¼ 2 and harmonic n¼ 6. The sign of E(2)6 is now

observed to follow the transitions of /6 as opposed to the

sign of the modal virial V(2) and the average force FAV.

In summary, phase contrast in bimodal AFM has been dis-

cussed in terms of energy transfer between modes, energy dis-

sipation and the kinetic energy, and energy transfer associated

with the harmonic component externally driven at mode 2 and

close to resonance, here harmonic 6. In the simulations here

and in the attractive regime where the average force is nega-

tive, the single frequency virial remained positive for the two

monitored frequencies and the corresponding phase shifts lied

above 90� throughout. On the other hand, in the repulsive re-

gime the single frequency virial, and the corresponding phase

shift, might undergo transitions in sign as reported by

some.18,19 Such transitions might occur even when the average

force and the modal virial remain negative. The results should

be general for any higher eigenmodes since no assumptions

have been made in terms of higher mode number.

The artistic figure was designed by Maritsa Kissamitaki.
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