
WWG: a Wide-Area Infrastructure for Groups

Joan Manuel Marquès
Universitat Oberta de Catalunya

Universitat Politècnica de Catalunya
Barcelona, Spain

jmarquesp@campus.uoc.es

Leandro Navarro
Computer Architecture Department
Universitat Politècnica de Catalunya

Barcelona, Spain
leandro@ac.upc.es

ABSTRACT
Group learning at Internet scale is becoming more frequent
in university courses. This complex process requires
support by distributed computing learning support
infrastructures.
This paper describes the design of WWG: a distributed and
decentralized infrastructure with the aim of supporting
distributed group learning and team work, centered on the
distribution of events, so that every participant can be
notified and thus be aware of the actions, changes, progress
of the groups he belongs to: synchronous awareness for
asynchronous work.
The design issues, requirements and the resulting
architecture are presented. WWG is based on a multicast
mechanism for event distribution with meta-information
agents responsible for the dissemination and transformation
of events, repository agents responsible for the storage of
group information and use agents responsible for the
representation of users (sources and sinks of events).

Keywords
CSCL environment, event distribution, Internet-scale
distributed systems, Virtual groups.

1. INTRODUCTION
Group learning and in general, group work is an activity
that is increasingly being perceived as beneficial and
necessary for a more active and better learning process.
The period of intensive learning that occurs at the school
and the university is a great opportunity to acquire team
work skills. These skills will be key to success in the
professional activity.
In addition, the learning process is increasingly influenced
and mediated by computers, and a fast growing number of
universities are beginning to offer virtual campuses to
support distance learning, because many students and
sometimes professors are in remote locations, they have
temporal restrictions due to overlapping activities, or self
pace learning is preferred.
The challenge of supporting cooperative learning or in
general, group work, in this distributed context is the
motivation of this work.

This is the experience of the authors at the "Open
University of Catalonia" (UOC) (http://www.uoc.es), a
virtual university providing university education to the
Catalan and Spanish speaking world, also at UPC
(http://www.upc.es), an established university giving in
person and half-distance university engineering education.
Furthermore, we have acquired experience from
cooperation with IEARN (http://www.iearn.org) a world-
wide network of primary and secondary schools working
with children from more than 20 countries in cooperative
cross cultural projects.
Since the beginning of the Computer Sciences studies in
the UOC (1997) the learning through working in group has
been a main issue. Several experiences [DAR00] [DAR01]
have enlightened the design of our infrastructure. In one
hand, we realized that to most people computer mediated
group learning is a brand new way of learning and they
need first to get used to it. On the other hand, learning in
group needs some extra awareness information to know
what the other members of the group are doing,
information not needed in individual learning. That
awareness information is not well provided by present
applications because the infrastructure they use was
designed to support isolated work. Our proposal is focused
to provide that awareness information as the key design
aspect.
The extension of learning activities from a campus scale to
Internet scale presents several problems of scalability and
inter-operability between systems based on different
architectures. This suggests the need for a cooperative
learning infrastructure to support a large number of groups
spread over the Internet.
The role of the tutor on those environments differs a lot. It
goes from very active involvement where he organizes the
interactions, observes, acts as another member of the group
and at the end assesses the overall work, to the case in
which the tutor only supervises the group and grades the
students. The degree of involvement depends on the kind
of activities. In any case, the tutor needs information about
what every group member is doing and has done. It
requires special computer support to refine and abstract
what is happening in the group. While members of a group
could be interested on who has read, wrote or modified

every document, the tutor will be interested in how groups
are working, the kind of contributions done by every
student, etc.
The management of the learning process and the
representation of meta-information about objects or
components used in that process are being supported by
initiatives such as ARIADNE [ARI00], IMS [IMS00] or
the Learning Task Force at IEEE [LTT00]. Our work is
complementary to those activities.
This paper describes the design of WWG: a distributed and
decentralized infrastructure with the aim of supporting
distributed group learning and team work, centered on the
distribution of events, so that every participant can be
notified and thus be aware of the actions, changes, progress
of the groups he belongs to. Participants may need to
transform (summarize, condense) events, to give the
required information to group members with diverse degree
or mode of participation. This is the case for tutors,
teachers, professors, assistants, supervisors, moderators,
evaluators, etc.
WWG has been designed for situations where participants
interact and work asynchronously, but receive
synchronously information about the actions done in the
group. This event distribution mechanism provides
consistency, sense of immediacy, sense of complete
information about what’s going on. This infrastructure has
to work on Internet scale, be accessible from any site, from
mobile users, and support the high degree of interaction
and information exchange that occurs on any collaborative
setting with many groups, and specially on learning
environments.
Major issues are presented in the next section. These issues
are translated into system requirements in section 3. The
central mechanism of event distribution is discussed in
section 4. Event distribution prescribes the interaction with
users, and with repositories where documents, history of
events, configuration and status of groups are stored. This
separation between user interaction - event distribution -
storage determines in section 5 the overall architecture of
WWG. Section 6 describes how it works in more detail.
Previous work that has influenced our design is described
in section 7. The paper ends with a description of work in
progress and conclusions.

2. ISSUES
The scenario as presented before is large, diverse and it has
been studied before. The following issues have been
considered the most influential to our design:
• Multiplicity: people may belong to several groups at the

same time. Implication in every group varies (absence,
passive, active participation generating large amount of
awareness information), based on diverse
communication and dissemination mechanisms (e.g.
mailing lists, nntp newsgroups, web forums, workflow).

Users need facilitation to handle the complexity of
multiplicity+diversity.

• Group membership may be relatively small, even though
there may be large groups.

• Awareness: effective group work requires that members
must be aware of the progress of the group: what others
are doing, at low cost, at a glance. This knowledge
includes: actions done on objects, who did these actions,
what other people is doing. It is very important that
people have up-to-date and rich awareness information.

• Multiple locations: members may connect from different
locations: physical location, organization, network
provider. This implies variance of working hours, delay,
bandwidth, and other traffic characteristics may change
significantly.

• Quality of service: The degree of accessibility and
reliability of the system improves significantly when
information is available in several locations (distributed
and replicated). Clients will be offered the most
accessible server from the set of currently available.

• Mobility: one person may connect from different
environments: work, home, mobile, etc. The view of the
groups must be the same from any location. Most users
during the day may connect from various locations.

• Degree of connectivity: many group activities do not
require to be connected to the rest of members. Given
that connections may be expensive, not very reliable
sometimes (e.g. analog phone, mobile devices), people
may choose to work in connected mode: operations are
synchronously applied to the group repository, or
disconnected (off-line) mode: operating locally and
connecting to synchronize (conciliate the state of the
local and the on-line repository).

3. REQUIREMENTS
In the design of WWG we have addressed each of the
previous issues. These issues have been translated into
requirements that are briefly described in the following
basic requirements for an infrastructure to handle easily
and efficiently many learning/work groups at Internet
scale:
• Information must be accessible at any time, and be

managed transparently. The user does not have to worry
about the accessibility and replication of information.

• The user needs the appropriate amount of information
produced by the group in form of documents, messages
and events (awareness information).

• The system must be scalable: large number of
participants, large number of events, participants
distributed across large distance, decentralized: no
central control/view.

• Group members must have information accurate,
updated and consistent about actions being carried out
by the rest of the group.

• Objects may be accessible from any location with an
appropriate (interactive) response time.

• Access must be transparent and independent to where
objects are stored.

• Adaptable to the needs of users: info should be where is
more convenient to users. The user also requires
availability, reliability and a good access time.

• Adaptive to the needs of the system: load balancing,
balancing of storage, minimizing the exchange of
information.

• Multiple access points: when a user moves to a new
location, the system must adapt dynamically and provide
a closer service access point.

Existing systems do not support the above requirements
and issues. The goal of WWG is to provide an
infrastructure for information management and
propagation, without prescribing how information is
represented or how applications operate.

4. EVENT DISTRIBUTION
Given that WWG is aimed at supporting learning and
working in groups, the key factor is that group individuals
should be informed immediately of whatever occurs within
their groups. This is provided by the event distribution
mechanism.
WWG is intended for situations where users get virtually
synchronous information (equivalent to real-time
information but relaxed to scale better and save resources)
about the actions that occur on the system. In terms of
system design, synchronous event distribution allows us to
do the following assumptions:
• Consistency through events: virtual synchrony and

consistent distribution of events can lead to a consistent
distributed and replicated system. Consistency is
possible because the system always knows where the
latest version of every object is located. Protocols to
preserve the "natural ordering" of events (causal and
total order where needed) have to be included.

• Events provide “sense of immediateness”: event
distribution provides information about what is
happening now in the system i.e. in the groups of
interest. Getting the actions done within the group a
short time (virtually at the same time) after occurrence
allows the members to figure out the evolution of the
group.

• Events provide “maximum information”: when a
learning or working activity is done in groups is of great
importance to have the maximum amount of information
about what are doing all participants. For us, “maximum
information” means both the number of events received

by a member and the amount of information that every
event conveys.

• Events may be used to select the best location for an
object. The origin and destination of events helps to
decide the best place in the system to store objects.

Once we have decided that our system is based on event
distribution, the next step is to design an architecture to
guarantee a distribution of events that facilitates the
achievement of these assumptions.

5. ARCHITECTURE OF WWG
The user agent represents users in the system. It is in
charge of being notified of all actions done by the user.
Once notified, the user agent has to interact with the rest of
the system to get the action processed or to get the
information about the action distributed to other members
of the group, in form of an event. It is also in charge of
receiving events about actions done by other members of
the group and to provide this information to the user.
Repository agents are dedicated to the storage of the
information generated by the group (documents,
discussions, events, users, groups, folders, etc). To
facilitate the availability and the accessibility the
information on a potentially large scale, information may
be replicated in different storage components depending on
the needs of every group.
User agents (representatives of people participating on one
or several groups, responsible for the exchange of events
between a individual and the group) and repository agents
(responsible for the efficient storage of group history, state
and objects) are separated and interrelated by an
intermediate layer in charge of the distribution of events
between these agents (repository or user agents).
Traditional applications for information dissemination are
based on client-server model. In the “pull” mode, the client
polls the server to get event information. The client has to
know which server has the right information and server
replicas have to be consistent. The client also has to check
the server periodically to get new events and to refresh
frequently updated information. In the “push” model clients
sign up for information to be sent directly to them, rather
than fetching it by themselves. That model has limitations
at Internet scale with a large number of groups with few
participants each.
In our proposal the event distribution layer sits between
user agents and repository agents, and is composed by
meta-information agents, in charge of efficient
distribution of information (events) generated by the users
and the system. Meta-information agents have passive
functionality (efficiently routing and distributing event
information to interested agents, but also filtering,
aggregating and transforming events), and active
functionality (suggesting the best meta-information agent
for each user agent, helping repository agents to decide the

best location and the number of replicas needed for each
object).

5.1 A unicast+multicast architecture
The WWG network is composed by a set of coordinated
computers running one, two or three of the following
functions: user agent, meta-information agent, or repository
agent.
User agents represent the end user on WWG, and interact
directly with the user (in the same machine or remotely),
with a close meta-information agent and with one or
several repository agents.

Event distribution by meta-information agents
The event distribution layer is responsible for efficiently
offering, collecting and distributing event information
among agents:
• Events have to be delivered as soon as possible to all

interested parties (interactive delivery, virtually
synchronously).

• The volume of generated messages is kept to a minimum
(optimize the use of the network by aggregation).

• Events have to arrive to every destination interested (to
all, in the right order).

A reliable multicast transport (e.g. LRMP [LRM99] or a
higher level infrastructure for event distribution such as
Siena [CAR00]) is an appropriate model for the
distribution of events among meta-information agents.
The exchange of information between a user agent and a
meta-information agent or between a repository agent and a
meta-information agent is done using a unicast reliable
transport protocol (TCP). In both cases unicast is
appropriate for an exchange of particular information
between a pair of mutually known agents.

User
agent

Meta-info
agent

Repository
Agent

unicast unicastmulticast

event event
disseminationdissemination

Events
Documents

User
agent

Meta-info
agent

Repository
Agent

unicast unicastmulticast

event event
disseminationdissemination

EventsEvents
DocumentsDocuments

The combined use of unicast and multicast protocols allows
an efficient use of the network: a) when an event is
generated, it goes by unicast between the user agent and a
meta-information agent; then it is efficiently multicasted to
the interested meta-information agents; and then it is sent
by unicast to a user agent interested on that event.
Efficient distributed consistency protocols (application or
network level multicast) for meta-information and content
have been proposed in [YU99] and [GOL92]. In addition,

[YU99] and [CAR00] demonstrate the scalability of a
solution based on application or network level multicast
without a central authority.
Events can be expressed as structured messages: for
instance as an XML vocabulary [W3C00] with structured
data eventually including objects by value or reference.

Network storage by Repository Agents
Repository agents cooperate to provide distributed and/or
replicated network storage for objects. Group members
should have transparent access to their objects with a
reasonable quality.
Event information is very dynamic and abundant in any
collaborative setting, and that is clearly useful for user
agents to be aware of the progress of groups, but that is
also useful for repository agents to decide where objects
have to be located.
Event distribution (meta-information agents) should be
separated from network storage (repository agents). We
have observed in BSCW [BEN95] log files that the number
of active participants in groups is on the order of O(log N),
being N the number of participants. While all N participants
will have to be aware of the progress of the group (i.e.
receive events), only active participants will require a good
quality access to documents and other objects at repository
agents.

6. HOW IT WORKS
The WWG infrastructure provides a framework that
support the event distribution assumptions described in
sections 4 and 5. Applications that require asynchronous
collaboration in group are built in top of that framework.
Those applications have to implement an interface to the
user agent and another interface to the repository agent
respectively through an API.
When an event is generated and passed to the user agent,
WG guarantees the application that the event will arrive to
a repository agent and to other members of the group by
means of meta-information agents.
WWG is responsible for deciding the best location and the
number of replicas of every object or event. Those
decisions are taken transparently to the application and are
done by the different agents that collaborate within the
system. Applications benefit from features of the WWG
system without having to deal with their implementation.
WWG supports three modes of operation:

• Connected: the user agent has a permanent connection to
a meta-information agent. Every operation is
immediately propagated, and every event in WWG is
notified synchronously to the user agent.

• Disconnected: the user agent saves locally the required
group information, and then disconnects from its meta-
information agent. While disconnected work, operations
are applied locally. When the user reconnects a

resynchronize process is started. That resynchronize
process must take into account any eventual update
conflict.

• Offline: This mode is a combination of the above. The
user keeps connection with its meta-information agent.
It operates over a local copy, and any incoming or
outgoing event is delivered asynchronously.

To achieve the assumptions of consistency through events,
“sense of immediateness” and maximum of information a
thoroughly study of events is required. Sending all the
events generated is not enough to fulfil those assumptions.
This option could flood the system and overload end users
with too many events: messages should be prioritized.
Events that modify the global state of the system (i.e.
create, delete or modify a document or an user) must be
sent as soon as possible. Different policies can be applied
to the events that are informative, which will be the
majority of the events generated. It is not the aim of that
paper to study those policies, nevertheless we present three
possibilities: aggregation (when 10 actions occur in an
object, send an unique event indicating that 10 actions have
occurred), grouping (when several events goes to the same
destination, send all of them in the same message) and
delaying (when a lot of events are generated, wait a little
while to send them).
Regarding to users, a similar problem occurs. Users have a
finite capacity of processing events [DAR01]. A user,
depending on the number of groups to which he belongs,
on the activity of those groups and in his degree of
involvement, needs to receive events with a different level
of abstraction. For instance, in a group formed by three
people writing a document, all the members may want to
get all the events; but a tutor responsible for six groups,
with three members in each group generating events, can
be easily overloaded. In this case, the tutor needs fewer but
more abstract events. These new events are the
combination of several related events. Examples of those
new events could be: this group is working very hard; a
member of this group is not working; or in this group every
member is in charge of at least one document.
When objects are used by different people some conflicts
may appear. In an asynchronous environment such as
WWG most of the conflicts can be avoided by careful
choice of some design alternatives. Even that, conflicts are
still possible and the system must be able to solve them.
WWG provides an special kind of event, the conflict
events, used when a conflict is detected. That kind of event
has high priority and it is sent to the different parties
involved. If the conflict can’t be solved automatically, the
members of the group will be informed and someone will
be responsible for the explicit resolution (as in [KIS92]).
Conflicts and conflict resolution has been studied in a
separate research report.

7. RELATED WORK
The design of the following systems have inspired some of
the WWG features. BSCW [BEN95] provides a
collaboration environment but the server is not distributed
and does not consider local events. IMAP provides the idea
of several modes of operation for different connectivity
situations. Directory services provide the idea of network
accessible user and group configuration information.
WebDAV provides the idea of ways to extend http to
support publication of documents. Distributed storage is
provided for file systems (CODA, Ficus, Freenet) or
distributed message/event systems (Usenet News). Siena is
an event distribution system for wide-area networks
concerned with scale.

Collaboration Environments: Bscw
The BSCW (Basic Support for Collaborative Work) system
[BEN95] is a Web-based application for collaborative
information sharing based on the metaphor of shared
folders as a repository for group information. BSCW
provides awareness information about all the objects within
the system (events).
Two limitations: 1) it does not take into account events
result of local actions, 2) it can be used from any web
browser, but it is a centralized system with one single
database; it is not replicated: objects may not the proximity
of the user. It does not work well for distributed groups, the
server is a single point of failure, and the user suffers from
network degradation or failures as distance increases.

Client manipulation of remote objects: Imap
IMAP (Internet Mail Access Protocol) allows a client to
access and manipulate electronic mail messages on a server
functionally equivalent to local mailboxes [CRI96]. IMAP
has three modes of operation that are desirable to our
system:

• Offline: messages are delivered to a server and a client
machine periodically connects to the server and moves
(deletes from server) to the client all new messages.
Thereafter, message processing occurs at the client
machine.

• Online: messages are left on the mail server and
manipulated remotely by mail client programs.

• Disconnected: a mail client connects to the mail server,
makes a "cache" copy of selected messages, and then
disconnects from the server, later to reconnect and
resynchronize. The user operates "offline" on the cache.

Online and disconnected operation complement each other
and one may alternate between them; they rely on a
principal copy at the server and a cache at the client.

Directory service: ACAP and LDAP X.500
Both the ACAP (Application Configuration Access
Protocol) [WOO99] and LDAP-X.500 (Lightweight
Directory Access Protocol) [OLD00] services provide

mechanisms to store and manipulate generic name-value
pairs of information one or several replicated remote
servers. They also provide ways to locate and access that
information from remote locations.

HTTP Extensions: WebDAV
The Web Distributed Authoring and Versioning
(WebDAV) [DAV00] protocol allows users to
collaboratively author their content directly to an HTTP
server, allowing the web to be viewed not just as a read-
only medium, but as a writeable, collaborative medium
[GOL92]. It provides facilities to HTTP for concurrency
control, namespace operations, and property management.
WebDAV may be the basis for the interface of user agents
and repository agents.

Distributed Storage Systems: CODA, FICUS, Freenet
Coda [KIS92] and Ficus [GUY90] are general purpose
replicated file systems intended to facilitate distributed
collaboration in a highly reliable and scalable fashion.
Both file systems allow updates so long as at least one
replica of a data object is available (single-copy
availability).
When conflicts do occur, they are reliably detected. Most
conflicts are resolved automatically based on an
understanding of the semantics (e.g. directories and replica
location information).
While Coda has clients and file servers, in Ficus each
machine, including workstations, portable computers and
servers, should be empowered with full function so far as
replication, file service, and reconciliation are concerned.
In this sense, all machines are peers.
Freenet [CLA99] has been recently proposed as a peer-to-
peer, completely decentralized, network designed to allow
the distribution of information over the Internet in an
efficient manner, without fear of censorship.
It will provide an information publication system similar to
the World Wide Web. Unlike the Web, information on
Freenet is not stored at fixed locations or subject to any
kind of centralized control. Freenet is a single world-wide
information store that stores, caches, and distributes the
information based on demand. This allows Freenet to be
more efficient at some functions than the Web.
CODA, Ficus and Freenet service is close to the service
provided by a network of repository agents.

Distributed message systems: Usenet News, Freenet
Usenet [SAL92] is a distributed bulletin board system, built
in the eighties as a logical network on top of other
networks and connections. By design, messages resemble
standard Internet electronic mail messages.
Messages generated at a site are sent to the site’s
‘‘neighbors’’ who process them and relay them to their
neighbors, and so on by a "flooding" algorithm. It

propagates messages but it does not provide consistency
guarantees.
Messages can be assimilated in many cases to events,
forming something similar to a network of meta-
information agents.

Event Distribution Systems: Siena
Siena (Scalable Internet Event Notification Architecture)
[CAR00] is a research project aimed at designing and
constructing a generic scalable event service. It supports
the idea of components that interact with events to inform
of a change in their internal state or to request services
from other components.
It has been designed to work on a wide-area network, for
highly distributed applications that require a fine-grained
interaction.

We are currently evaluating the suitability of the Siena
model and the current Siena prototype for our purposes. In
our approach, support for asynchronous distribution of
events is a key issue.

8. WORK IN PROGRESS
A prototype implementation is in development. It will be
useful to refine the specification of the protocols, as an
extension of HTTP and WebDAV. In addition, we plan to
do use the implementation for field studies with real
groups.
Research issues that have to be clarified are:

• Decide the mechanisms for event propagation in each
mode of operation (connected, disconnected, offline).

• Select the best protocols for the replication of objects at
repositories.

• Research on mechanisms to decide the number and
location of replica for the objects of every group.

• Improve the propagation, routing, aggregation,
transformation of awareness information optimizing the
number of events, and the cost of distribution.

• Evaluate the impact of different event policies (the kind
of events collected and aggregation policies used) on the
scalability of the architecture.

9. CONCLUSIONS
The WWG architecture is intended to support collaboration
among people pertaining to groups in wide-area networks.
We have designed an architecture that incorporates many
features from existing systems. The resulting infrastructure
will provide a large number of services or components
where collaborative applications may be easily built and
integrated with each other.
The WWG infrastructure may be useful to extend existing
centralized systems such as BSCW that give support for
small to medium scale groups, but it may also be an
important improvement for large scale groups now using

primitive tools not adapted to collaborative learning such as
mailing lists or Usenet News.
Initial work shows the viability of WWG, but work is
under way to demonstrate and optimize their scalability,
evaluate how awareness is supported, describe the
operations, and build the system to be able to get feedback
from real use.

10. ACKNOWLEDGMENTS
This work has been partially supported by the CICYT-
Spain.

11. REFERENCES
[ARI00] Ariadne Project (Alliance of Remote Instructional

Autoring and Distribution Networks for Europe), CE.
1996-2000. URL: http://ariadne.unil.ch/

[BEN95] Bentley, R., Horstmann, T., Sikkel, K. and
Trevor, J., Supporting Collaborative Information
Sharing with the World Wide Web: The BSCW Shared
Workspace System, in The World Wide Web Journal:
Proceedings of the 4th International WWW Conference,
Issue 1, December 1995, pp 63-74. ©O'Reilly.

[CAR00] Carzaniga A., Ronsenblum D. S., Wolf, A. L.,
Achieving Scalability and Expressiveness in an Internet-
Scale Event Notification Service, in Nineteenth ACM
Symposium on Principles of Distributed Computing
(PODC2000), July 2000.

[CLA99] Clarke, I. A Distributed Decentralised
Information Storage and Retrieval System, Unpublish
Technical Report Edinburgh University, Scotland, June
1999. http://freenet.sourceforge.net/

[CRI96] Crispin, M., rfc 2060: INTERNET MESSAGE
ACCESS PROTOCOL – VERSION 4 rev1, IETF -
University of Washington, December 1996.
urn:ietf:rfc:2060.txt, http://www.imap.org

[DAR00] Daradoumis, T. and Marquès J.M. A
Methodological Approach to Networked Collaborative
Learning: Design and Pedagogy Issues. In: Proceedings
of the 2nd International Conference on Networked
Learning. Lancaster University, England, April 17-19,
2000. http://collaborate.shef.ac.uk/nlpapers/daradoumis-p.htm

[DAR01] Daradoumis T., Xhafa F., and Marquès J.M. A
Methodological Framework for Project-based
Collaborative Learning. Internal report available in
http://campus.uoc.es/~grc0_000228_web/Papers/TDP.doc

[DAV00] WebDAV "Web-based Distributed Authoring
and Versioning", URL: http://www.webdav.org

[GOL92] Golding, R.A., Weak-consistency group
communication and membership, Ph.D. thesis, published
as technical report UCSC-CRL-92-52. Computer and
Information Sciences Board, University of California,
Santa Cruz, December 1992

[GOL99] Goland, Y. Y., Whitehead, Jr, E. J., Fizi, A., S.R.
Carter, and D. Jensen. HTTP Extensions for Distributed
Authoring -- WEBDAV, RFC 2518, Microsoft, U.C.
Irvine, Netscape, Novell, 1999.

[GUY90] Guy R. G., Heidemann J. S., Mak W., Page T.,
Popek G. J., Rothmeier D., Implementation of the Ficus
replicated file system, in USENIX Conference
Proceedings, pages 63-71. USENIX, June 1990.

[IMS00] Instructional Management System, URL:
http://www.imsproject.org

[JOH00] Johnson, K. L., Carr, J. F., Day, M. S., Kaashoek
F., The Measured Performance of Content Distribution
Networks, in 5th International Web Caching and Content
Delivery Workshop, Lisbon (Portugal), May, 2000.

[KIS92] Kistler, J.J., Satyanarayanan, M., Disconnected
Operation in the Coda File System, in ACM
Transactions on Computer Systems, Feb. 1992, Vol. 10,
No. 1, pp. 3-25 http://www.coda.cs.cmu.edu/

[LRM99] GIB: Light-weight Reliable Multicast Protocol,
URL: http://webcanal.inria.fr/lrmp/

[LTT00] IEEE Computer Society Learning Technology
Task Force (LTTF), URL: http://lttf.ieee.org/

[OLD00] Open LDAP Consortium, URL:
http://www.Openldap.org.

[SAL92] Salz R. InterNetNews: Usenet transport for
Internet sites, in Summer ’92 USENIX Conference (San
Antonio, TX, June 1992), 93-98.

[W3C00] W3C Architecture: Extensible Markup Language
(XML), URL: http://www.w3.org/XML/

[WOO99] Wood, D., Programming Internet Email, in
Mastering Internet Messaging Systems, Chapter 12,
O’Reilly, 1999.

[YU99] Yu, H., Breslau, L., Shenker, S. A Scalable Web
Cache Consistency Architecture, in Proceedings of the
SIGCOMM’99 Conference.

