
1

Extending the Scope of Asynchronous Collaboration: a Matter of Being
Autonomous and Self-sufficient

Joan Manuel Marquès
Universitat Oberta de

Catalunya
jmarquesp@uoc.edu

Leandro Navarro
Universitat Politècnica

de Catalunya
leandro@ac.upc.es

Thanasis Daradoumis
Universitat Oberta de

Catalunya
adaradoumis@uoc.edu

Abstract

Asynchronous collaborative applications and systems
have to deal with complexities associated with
interaction nature, idiosyncrasy of groups and technical
and administrative issues. Inclusion of requirements
derived from them is costly (in time, resources and
economically). Existing solutions addresses
asynchronous collaboration via simplification of
requirements and by using centralized models. In this
paper we present LaCOLLA, a fully decentralized
infrastructure for building collaborative applications
that provides general purpose collaborative
functionalities. The provision of those functionalities will
avoid applications deal with most of complexities
derived from groups and its members, what will help
inclusion of collaborative aspects.
The implementation of LaCOLLA follows the peer-to-
peer paradigm and pays special attention to autonomy of
its members and to self-organization of the components
of the infrastructure. Another key aspect is that
resources (e.g. storage) and services (e.g. authorization)
are provided by its members (avoiding dependency from
agents not belonging to group).

Keywords: collaborative infrastructures, peer-to-peer
collaborative systems, peer-to-peer middleware.

1.Introduction

One of the most significant benefits of Internet is the
improvement on people interactions and communication.
E-mail, Usenet News, Web and Instant Messaging are
four of the most well-known and successful examples of
this. Internet has allowed the creation of asynchronous
virtual communities in which its members interact in a
many-to-many basis. Many-to-many interaction is not
something we typically experience in the physical world.
That has transformed the way people organize to realize

a task, the way people with common interest gather and
share them, the way people learn, ... But after 10 – 15
years of great excitement the pace of this transformation
is slowing down because collaboration is much more
than e-mail, instant messaging and discussion tools.
Among the reasons for this slow down, in this paper, we
outline that Internet technology is designed on a one-to-
one basis and that applications with collaborative
necessities have to deal with complexities derived from:

Interaction nature: participants are dispersed at
Internet, many-to-many collaboration, people
participate in the collaboration at different times,
same person connects from different locations at
different times (home, work, notebook) of the day,
...

Idiosyncrasy of groups: flexibility, dynamism,
decentralization, autonomy of its participants,
groups exist while its members participate in group
activities and while they provide necessary
resources, few participants, ...

Technical and administrative issues: guarantee the
availability of information generated in the group,
interoperability among applications, security aspects
(authorization, access rights, firewalls), ...
participants belong to different organizations or
departments with different authorities that impose
rules and limitations in order to facilitate
administration, internal work and individual use. [1]

Development of applications that take into account
all those requirements are costly (in time, resources and
economically). This has provoked that applications
include minimal collaborative functionalities. Even
collaborative applications focus only in a few of those
aspects (the key aspects for the application) and neglect
other aspects. In that way, most of the solutions are
centralized and use resources administrated by a third
authority (what mean that some of the resources not
belong to members of the group).

From the architectural point of view, most of those
systems are based on client/server models. Even the

Proceedings of the 13th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE’04)
1524-4547/04 $ 20.00 IEEE

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 14, 2008 at 06:37 from IEEE Xplore. Restrictions apply.

2

systems and applications that claim to be peer-to-peer,
like Groove [2] or some Instant Messaging systems, have
some centralized functionalities (like rely servers, or
authentication authorities).

In this paper we present LaCOLLA, a fully
decentralized infrastructure for building collaborative
applications that provides general purpose collaborative
functionalities. The provision of those functionalities
will avoid applications deal with most of complexities
derived from groups and its members. This
simplification will help inclusion of collaborative aspects
into applications.

LaCOLLA is implemented following the peer-to-peer
paradigm and pays special attention to autonomy of its
members and to self-organization of the components of
the infrastructure. Another key aspect is that resources
(e.g. storage) and services (e.g. authorization) are
provided by its members (avoiding dependency from
third party agents).

The rest of the paper is organized as follows: Section
2 presents the requirements that should satisfy an
asynchronous collaborative infrastructure. Section 3
describes the functionalities and architectural aspects of
LaCOLLA. In this section, is also presented what we
have named virtual synchronism, a key functionality that
provides all occurred events to members of the group
and allow them to have access to last version of any
object in a time that they perceive as immediate. Section
4 presents experimental results. In section 5 our present
work is presented (LaCOLLA prototype) and sketches
future work. We conclude in Section 6.

2. Requirements for an asynchronous
collaborative Infrastructure

As mentioned in the previous section, asynchronous
collaborative applications have to deal with many
aspects to achieve collaboration. The basic requirements
an infrastructure should satisfy to facilitate the
development of this kind of applications are:[3]

Oriented to groups: group is the unit of
organization.

Internet-scale system: formed by several
components (distributed). Members and components
can be at any location (dispersion).

Universal and transparent access: participants can
connect from any computer (or other digital device),
with a view independent from the connection point.
E.g. web provides it.

Decentralization: No component is responsible of
coordinating other components. No component is
the only component that possesses a certain
information. Centralization leads to easy solutions,
with critical components, that condition the
autonomy of participants.

Self-organization of the system: system has the

capability to function in an automatic manner
without requiring external intervention. Has the
ability of reorganizing its components in a
spontaneous manner in presence of failures or
dynamism (connection, disconnection, or mobility).

Group availability: Capability of a group to
continue operating with some malfunctioning or not
available component. Replication (of objects,
resources or services) can be used to improve
availability and quality of service.

Individual autonomy: members of a group decide
freely which actions perform, which resources and
services provide, and when will be connected or
disconnected.

Group's self-sufficiency: group is able to operate
with resources provided by its members (ideally) or
with resources obtained externally (public, rent,
interchange with other groups, ...)

Allow sharing: information belonging to group (e.g.
events, objects, presence information, ...) can be
used by several applications.

Security of group: guarantee the identity and the
selective and limited access to the shared
information (protection of information,
authentication).

Availability of resources: provide mechanisms to
use resources belonging to other groups (public,
rented, interchange between groups to improve
availability, ...)

Transparency of location of objects and members:
applications don't have to worry about where are the
objects or members of the group. Applications use
an identifier independent from location.

Scalability: in number of groups is guaranteed
because each group uses its own resources.

Support disconnected operational mode: work
without being connected to group. Very useful for
portable devices.

3. LaCOLLA

LaCOLLA is an infrastructure that follows the
requirements presented in the previews section. Three
main abstractions have lead all the design process of
LaCOLLA: is oriented to groups, all members know
what is happening in the group, all members have access
to latest versions of objects. Those abstractions are
concreted in the following functionalities:

3.1 Functionalities

LaCOLLA provides to applications the following
general purpose functionalities: [3]

“Immediate” and consistent dissemination of
events: information about what is occurring in the

Proceedings of the 13th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE’04)
1524-4547/04 $ 20.00 IEEE

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 14, 2008 at 06:37 from IEEE Xplore. Restrictions apply.

3

group is spread among members of the group as
events. All connected members receive this
information right after it occurs. Not connected
members receive it during the re-connection
process.

Virtually strong consistency in the storage of
objects: components connected to a group can
access the latest version of any object. Objects are
replicated. When an object is modified, if an
application asks for the object, LaCOLLA
guarantees that the last version of it will be provided
(even thought all replicas are not consistent and it
will require some time to have all of them
consistent).

Presence: know which components and members
are connected to the group.

Location transparency: applications don't have to
know location (IP address) of objects or members.
LaCOLLA resolves it internally (similar to domain
name services like DNS).

Instant messaging: send a message to a subgroup of
members of the group.

Management of groups and members: add, delete or
modify information about members or groups.

Disconnected mode: allow applications operate
offline. During re-connection, the infrastructure
automatically propagates the changes.

3.2 Architecture

The architecture of LaCOLLA [3] is organized in
three kinds of components. Components coordinate
through mechanisms grouped in nine categories.

3.2.1 Components

Component behaves autonomously. Peers decide to
instantiate one, two or three of the following
components:

Figure 1. LaCOLLA peer.

User Agent (UA): Interacts with applications.
Through this interaction, it represent users
(members of the group) in LaCOLLA.

Repository Agent (RA): store objects and events
generated inside the group in a persistent manner.

Group Administration and Presence Agent (GAPA):
in charge of administration and management of
information about groups and its members. Also is
in charge of authentication of members.

3.2.2 Mechanisms

Components interact one to each other in an
autonomous manner. The coordination among the
components connected to a group is achieved through
internal mechanisms. Internal mechanisms have been
grouped in: events, objects, presence, location, groups,
members and instant messaging. They are implemented
using weak-consistency optimistic protocols [4] and
random decision techniques. Table 1 presents which
components are involved in each category of
mechanisms.

Table 1. Shows which categories of mechanisms
implements each kind of component.

Categories of Mechanisms UA RA GAPA

Events X X -

Objects X X -

Presence X X X

Location X X X

Instant Messaging X - X

Groups X X X

Members X - X

Security X X X

Disconnected operational mode X - -

Our objective was to prove that the proposed
architecture can provide the presented functionalities in a
way that satisfies the requirements. We never had as
objective to implement the best choice for each
mechanism. Table 2 presents a brief summary of
algorithms used to implement presence, events and
objects mechanisms, which are the key mechanisms to
provide virtual synchronism.

UA RA GAPA

Transport

...

Applications

Peer LaCOLLA

Proceedings of the 13th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE’04)
1524-4547/04 $ 20.00 IEEE

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 14, 2008 at 06:37 from IEEE Xplore. Restrictions apply.

4

Table 2. Functional description of mechanisms
related to presence, events and objects.

Mechanisms Description

Connection Component authenticate in any of the
GAPAs connected to group.
The GAPA returns to connecting
component the components and
members that it knows that are
connected.
Connecting component sends a
message to all components that
knows that are connected to inform of
its connection.

Disconnection Component sends a message to all
connected members informing about
its disconnection.

Dissemination
of presence
information

All messages include a summary of
all components that sender knows that
are connected.
If a component has not sent any
message for a long period of time,
sends a message to other members
saying that still is alive.

Consistence
of presence
information

Periodically, components do
consistency sessions* with other
components to guarantee that all
components know who is connected
to group.

P
re

se
n
ce

Detection of
components
no more
connected

When a component realizes that a
component has not done activity for a
long period of time, sends to it a
message asking if is still connected. If
no answer is received, takes it out of
its connected-members information.

Dissemination
of events

When a new event is generated, the
component where the event was
generated sends it to all connected
components.

Consistency
of events

Periodically, components do
consistency sessions* to guarantee
that all components have all events.

Storage of
events

RAs store all events generated in the
group.

E
v

en
ts

Storage of
events at UA

UAs store events during a session.
Members connect to group from
different UAs; for this reason, UAs
only have to guarantee that have
events during the session.

Storage When a new object (or version) is
created, the UA sends it to an RA to
be stored in a persistent manner.
The RA sends an event to all
connected members informing about
the new object. O

b
je

ct
s

Obtain Due to events mechanisms, all
connected members know all objects
that are in the system. Then, when an
UA requires an object, ask it to any of
the RA that has a replica of the

* A variant of weak-consistency sessions proposed by
Golding[4].

object.

Replication Periodically, each RA tries to
replicate all locally stored objects that
are replicated a number of times
lower that a replication factor defined
to group. Those replicas are done
sending the object to any RA
belonging to group that doesn’t has
the object.

As can be seen in table 2, LaCOLLA combines push,
pull and autonomous decision behaviors. Some examples
of each kind are: a) push: when a component has an
information that interest other members (e.g. object
modified, member connected, etc.), sends it to other
connected components; b) pull: periodically, components
do consistency sessions to get information about
presence, events, ... that they don't have; c) autonomous
decisions: when an RA has an object that is replicated
less times than the replication degree fixed to group, it
chooses another RA and copies the object. When a
component realizes that another component has been
inactive for a long period of time, takes him out of its
connected components (if the component is still
connected, he will learn about him in a near future).

Even though push behavior is very used, neither
components nor network are saturated because groups
are small. Another key characteristic is that each
component knows at any moment (or discovers them in a
short time) which components are connected to group.

This combination of autonomy of components and
direct communication among them (in a peer-to-peer
manner) along with the ownership of resources provides
a flexibility that suits idiosyncrasy of groups.

Among the aspects that characterize LaCOLLA one
that deserves special attention is what we have named
virtual synchronism.

3.3. Virtual synchronism

LaCOLLA guarantees to applications that all events
delivered to LaCOLLA will be received almost
immediately by the rest of connected members. This
guarantee provides them the feeling that they know what
is happening in the group while it is occurring. No
connected members will receive the events during the re-
connection process.

LaCOLLA also guarantees that all objects belonging
to group will be available immediately by all members.

The sum of both guarantees is what we named virtual
synchronism. Apart from the up-to-date perception that
group members have at any moment, the virtual
synchronism has an interesting side effect. This side
effect is very useful in an autonomous, decentralized and
dynamic storage system: because all components know
the location of all objects (and their replicas),
components access them directly (without requiring a

Proceedings of the 13th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE’04)
1524-4547/04 $ 20.00 IEEE

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 14, 2008 at 06:37 from IEEE Xplore. Restrictions apply.

5

resolver that informs about location of last version of the
object). This allows LaCOLLA to have an autonomous
and decentralized policy to handle objects and its
replicas at the same time that it guarantees immediate
access to last version.

4. Validation

We have a prototype of LaCOLLA. Now we are
implementing some collaborative applications to study
the performance of LaCOLLA in real situations. The
results presented here come from a simulator
implemented to validate the proposed architecture. The
simulator uses J-Sim [5] as network simulator and
implements the three kinds of components and the
internal mechanisms necessary to prove that LaCOLLA
self-organizes even though it operates in an autonomous,
decentralized and self-sufficient manner. The
mechanisms implemented are: events, presence, objects
and location. We also proved virtual synchronism.

Several experiments were done with different degrees
of dynamism (failures, connections, disconnections or
mobility), with different sizes of groups (from 5 to 100**

members) and with different degrees of replication
(different number of RAs and GAPAs). All components
are affected by dynamism.

Experiments showed that, in spite of the dynamism
and the autonomous and decentralized behavior of
components, LaCOLLA requires short amount of time to
have up to date the information referring to internal
mechanisms in all components. Experiments also
showed that members know what is happening in the
group and that they have access to latest versions of
objects in a time they perceive as immediate.

Simulation was done in two phases. First phase
simulated a real situation, whit all internal mechanisms
operating. In this phase events and objects were
generated depending on different activity degrees
(simulating different kind of members). Also failures and
changes (connections, disconnections and mobility)
occurred according to different degrees of dynamism.
This first phase was used to show the tolerance to
failures and changes (if system is able to reach a
consistent state after failures and changes occurred
during the first phase, it means that LaCOLLA has been
able to recuperate from them). Duration of first phase
was different for each simulation.

Second phase was used to show the ability to recover
automatically. During this phase, only were active
internal mechanisms (no failures, connections,
disconnections, mobility, new events or new objects).

**
 (Due to human limitations) a group with 100 members is an

extreme situation. Collaboration occurs in small groups. Big
groups tend to split in smaller groups. Proxy techniques can be
used to provide information to members that are not active
participants.

Time to reach a consistent state was calculated (by
consistency we mean: all components have same
information about presence, location, available objects,
events, and GAPAs belonging to group). More precisely,
we evaluated how much time requires LaCOLLA to
achieve:
a) self-organization: all connected components have

consistent the information about all internal
mechanisms.

b) virtual synchronism: all connected components have
all events and have consistent the information about
available objects.

c) presence+location: all connected components have
consistent information about presence and location.

Figure 2. Time required by LaCOLLA to reach self-
organization, virtual synchronism and presence+location

consistency after being active during a period of time.
(Failures, connections, disconnections, mobility occurred,

and members did actions that generated events and
objects).

Figure 2 shows the time required by LaCOLLA
(depending on group size) to be self-organized, to
provide virtual synchronism, and to have consistent
information about presence and location. Note that, for
groups of usual size (10 members), LaCOLLA has a
good performance: requires 20 seconds to self-organize,
and less than 10 seconds to provide virtual synchronism.
Deserves special attention the fact that, even though all
components don't have consistent all information about
internal mechanisms (self-organization), connected
members know all what is happening in the group and
have access to last version of objects (virtual
synchronism) in a time that they perceive as immediate.
This is due to the decentralized implementation of
internal mechanisms and to the fact that non-key
mechanisms have long-term consistency policies. In this
figure is also plotted the required time to have consistent
presence and location mechanisms because they have a
great influence in the achievement of self-organization.

When size of groups increases, the required time
grows, but still maintains low enough values for

0

20

40

60

80

100

120

140

160

180

200

220

0 20 40 60 80 100

size (#members)

#
s
e
c
o

n
d

s

self-organization
virtual synchronism
presence + location

Proceedings of the 13th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE’04)
1524-4547/04 $ 20.00 IEEE

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 14, 2008 at 06:37 from IEEE Xplore. Restrictions apply.

6

asynchronous collaboration (e.g. 60 members: self-
organizes in 2 minutes, provides virtual synchronism in 1
minute). This proves that LaCOLLA can be used in
situations where big groups require asynchronous
sharing capabilities (understand big groups on terms of
collaborative groups). With bigger groups, proxy
techniques should be used.

5. LaCOLLA prototype and future work

At present time we have a prototype that implements
the basic functionalities presented in this paper. We are
also implementing some collaborative applications (a
chat tool and a document sharing tool) that benefits from
LaCOLLA. Those “real” applications will help us to
improve the architecture and implementation of
LaCOLLA.

The prototype implements mechanisms related to
presence, events, objects and location. The first three are
described at table 2. The last category of mechanisms is
strongly related to presence. More detailed information
can be found at [3]. At present time, our prototype
doesn’t implement object mechanisms related to delete
and conflicts. Our next step will be to implement them.
The literature has treated widely all those concerns
[6][7]. Our approach will be to adapt one of those
solutions to our concrete situation.

In parallel, we are working on extending LaCOLLA.
Our main effort is focused on defining and implementing
the necessary components and mechanisms that will
allow members of a group provide computational
capabilities in a dynamic and decentralized way to other
members of the group. At first step, this will mean that a
member could execute tasks using computational
resources belonging to group (and provided by group
members). But our goal is that members of the group
could deploy services using computational and storing
resources belonging to the group. The components and
mechanisms of the first step are based on the ideas used
to design JNGI [8], a decentralized and dynamic
framework for large-scale computations for problems
that feature coarse-grained parallelization. The
components of JNGI communicate using JXTA [9]. In
our case we use the communication facilities of
LaCOLLA.

We also are working in the extension of the
infrastructure to provide a better support for synchronous
collaborative applications.

6. Conclusions

Asynchronous collaborative applications have to
adapt to group idiosyncrasy and interaction nature. This
is achieved by stressing autonomy and self-sufficiency.
The architectural paradigm that better adapts to it is peer-
to-peer. Infrastructures like the one described in this

paper will help the inclusion of asynchronous
collaborative functionalities in applications.

In this paper we have described the general
characteristics and properties of LaCOLLA, a
decentralized, autonomous and self-organized
infrastructure for building collaborative applications that
operates with resources provided by its members, and
that adapts to group's idiosyncrasy and to interaction
nature.

The developing and use of applications that are
implemented on top of LaCOLLA will help us to
improve the architecture and implementation of
LaCOLLA. New functionalities (like computational
capabilities) will open new possibilities of cooperation.

7. Acknowledgments

This work was partially supported by MCYT-
TIC2002-04258-C03-03.

8. References

[1]Foster, I.; Kesselman, C.; Tuecke, S. (2001). The Anatomy
of the Grid Enabling Scalable Virtual Organizations. Lecture
Notes in Computer Science.
[2] Groove: http://www.groove.net
[3] Marquès, J.M. (2003). LaCOLLA: una infraestructura
autònoma i autoorganitzada per facilitar la col·laboració.
Doctoral thesis, <http://people.ac.upc.es/marques/LaCOLLA-
tesiJM.pdf>
[4] Golding, R.A. (1992). Weak-consistency group
communication and membership. Doctoral Thesis, University
of California, Santa Cruz.
[5] J-Sim: http://www.j-sim.org
[6] Kistler, J. J.; Satyanarayanan, M. (1992). “Disconnected
Operation in the Coda File System”. ACM Transactions on
Computer Systems. Febrer 1992, 10(1): 3-25, <
http://www.coda.cs.cmu.edu/>.
[7] Guy, R. G.; Heidemann, J. S.; Mak, W.; Page, T.; Popek, G.
J.; Rothmeier, D. (1990). “Implementation of the Ficus
replicated file system”. A: USENIX Conference Proceedings,
p. 63-71. USENIX, juny 1990.
[8] Verbeke, J.; Nadgir, N.; Ruetsch, G.; Sharapov, I. (2002)
Framework for Peer-to-Peer Distributed Computing in a
Heterogeneous, Decentralized Environment. Manish Parashar
(Ed.): Grid Computing - GRID 2002, Third International
Workshop, Baltimore, MD, USA, November 18, 2002. Lecture
Notes in Computer Science 2536 Springer 2002, ISBN 3-540-
00133-6. <http://jngi.jxta.org/>
[9] JXTA: http://www.jxta.org/

Proceedings of the 13th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE’04)
1524-4547/04 $ 20.00 IEEE

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 14, 2008 at 06:37 from IEEE Xplore. Restrictions apply.

