Multicast Injection for Application Network Deployment

O. Ardaiz, F. Freitag, L. Navarro
Computer Architecture Department, Polytechnic University of Catalonia, Spain
{oardaiz, felix, leandro}@ac.upc.es

Abstract

Introduction of new services on the Internet is a
laborious, time-consuming task. Application networks,
applications being serviced through multiple
interconnected service nodes disseminated across the
Internet for better performance, fault tolerance and
availability, as well are costly to set up. In order to
provide a network-enabled application service, a number
of surrogate servers have to be provisioned.

In this paper we propose a mechanisms to
dynamically deploy an application network: multicast
injection. Currently employed dvnamic deplovment
mechanisms, SNMP per-node configuration, is a
centralized model that can not scale or be as fault
tolerant as more distributed mechanisms such as
multicast injection.

We perform simulations to compare its efficiency in
terms of deployment request success rafio, unused
allocation percentage and traffic vs. deployment
resource allocation requests. We show that multicast
injection has a higher success ratio with lower bandwidth
consumption at deployers' locations.

1. Introduction

"The introduction of new services into existing
networks is usually a manual, time consuming and costly
process”, “there is an increasing demand to add new
services to networks to match new application needs"”
Campbell et al. [4], "vendors are hesitant to support
service before they gain user acceptance, yet the utility of
network services is dependant on their widespread
availability” Tennenhouse et al. [18]; these cites expose
the relevance of facilitating service introduction in a
network. That is, enabling an easy, efficient and secure
introduction of new services will promote service
development, flooding the Internet with new services for
the benefit of end users.

An application network is a set of interconnected
application entities providing an application layer
service. Application networks have been shown to

0-7695-1321-2/01 $10.00 © 2001 IEEE

386

improve service performance, availability and fault
tolerance. Content Distribution Networks as Akamai [1]
are examples, but peer-to-peer systems as Freenet [8], fall
into this definition too. Each service agent provides an
equal service and communicates with others to maintain
a consistent service or to propagate client data to other
service agents. We will use through this article the term
surrogate for these service agents as it is widely used,
though it implies the existence of an origin master
service entity, which needs not always be the case.

Application network services are provisioned on the
Internet either by users replicating servers without any
coordination or by centralized management stations
configuring a number of proprietary servers. In the first
case service providers are not able to specify which
service level they desired, whereas the management
stations model does not scalable and requires resources
provider to give a lot of control on their resources to
managers. Our solution, multicast injection, aims at ease
service deployment in an scalable and cost-effective way;
thereby allowing networked application creators to
provide its services to more users, and benefiting users
with a wider service offer.

1.1. Application Network Deployment

Application network deployment is defined as the
process of setting up or creating an application network
service. All steps since a new application network service
is specified till it is provided to users. Application
networks require a number of surrogates to be
provisioned from a pool of surrogates, as web sites are
provisioned on web hosting centres or virtual private
networks are provisioned on virtual network provider's
infrastructure.

To allow for ease creation of services requires the
development of a framework that provides basic building
blocks with which to construct a service deployment
system. This framework should support the automation of
every task required to deploy a service.

Our first task is to define which functionality is
demanded from this framework. Deploying a service
requires: obtaining service specifications, mapping
specifications to resources, discovering resources,

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 13, 2008 at 11:29 from |IEEE Xplore. Restrictions apply.

gathering resources, configuring resources, activating
service, and providing a management interface.
Providing this functionality requires architecture
composed of resource agents at resource providers’ nodes
and deployment managers at service providers’ nodes.
Resource agents are responsible for publishing resources,
mediating between resources and service providers'
deployment managers, configuring resources, activating
services, and returning management interfaces.
Deployment managers are responsible for obtaining
service specifications, mapping specifications to
resources, discovering resources, gathering resources,
trading with resource agents on behalf of service
providers, and managing overall deployment operation.

Service providers demand these properties from this
framework: usability, to allow for an easy service
introduction, efficiency and cost-effectiveness, for rapid
and cheap service provision, manageability, to govern
services once deployed, safeness and fault tolerance, to
assure service integrity and availability.

Resource providers demand these properties from this
framework: efficiency and cost-effectiveness, for highest
resource revenue, scurity, to avoid resource misuse.

1.2. Problem Scope

A framework for provisioning an application network
poses several technical challenges, several of which can
be solved by already proven technologies; we will first
differentiate which issues are particular to this problem.

Resource agents, in a framework for application
network deployment have to permit for dynamic service
activation and service level enforcement. Service
activation means launching remotely a service on a
surrogate. Its main issue is security, proposals such as
active caches [5] or the extensible proxy service
framework [19] are defining requirements nodes
environment must fulfill for secure remote service
activation. Service level enforcement is a harder issue,
how to provide and maintain quality of service to
applications is subject to intensive research, research
such as [15] is setting the path for QoS web services. We
are not discussing farther these issues.

Besides end-to-end security, safety and manageability
have to be considered. There exist several researches
already discussing the security and management
functionality required to make a reality programmable
network nodes [4], so we are not discussing it further.

Provisioning is formulated as a resource allocation
problem, a number of scarce resources have to be
allocated to a number of services requesting resources.
But resource allocation is only one of the tasks of the
provisioning process; provisioning consist in gathering a

387

number of resources required to build a service,
configuring them and activating the service. There exist
a number of studies proposing algorithms for resource
allocation on a set of distributed resources which
optimize distributed web services, such as those
undertaken by Aron et al [3], Korupolu et. al. [11], or
Kelly et al. [10]. Research undertaken in this paper does
not propose novel resource allocation algorithms. It
makes use of simple algorithms to provide a good enough
resource allocation with available data at deployer
entities. Heuristics for optimization are subject of future
research.

We have identified a framework component that
provides functionality specific for this problem requiring
extensive research to meet every party requirement: the
mechanisms that provide for an efficient and cost-
effective deployment. This research is about the
mechanisms to accomplish application network
provisioning, about how to dynamically deploy an
application networks. Deployment mechanisms make
service deployers discover and gather resources, plus
activate services on appropriate nodes. It is not a trivial
issue; scale and dynamics of the Internet, wide range of
application specifications, and quantity and
characteristics of surrogates and deployers are a complex
set of dimensions to be met by those mechanisms in a
cost-effective and efficient way. Our goal is to propose
mechanisms for dynamic deployment on the Internet that
are able to meet the scalability, adaptability, multiplicity
and heterogeneity requirements of the Internet
environment.

In section 2 we explain which is the design space we
set for evaluation and in section 3 we describe which
solutions exists and which we propose. Finally in section
4 we describe the performance evaluation we have
carried out and in section 5 we present and discuss the
results of such simulation.

2. Design Space

Our goal shall be to design mechanisms for dynamic
application network deployment that scale efficiently and
cost-effectively in those value ranges that can be
encounter on the real world. There are three kinds of
parameters that affect performance of those mechanisms:
in first place specifications of application networks to be
provisioned, in second place characteristics and
multiplicity of deployer entities and surrogates; thirdly,
characteristics of the Internet will condition those
dynamic deployment mechanisms. The ranges of values
for these design space parameters are:

. Application networks specifications
parameters: per node storage, which varies from Kbytes

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 13, 2008 at 11:29 from |IEEE Xplore. Restrictions apply.

to Gbytes; total service traffic, from Kbits to Gbits,
network regions where service is to be provided: from
some regions to every region; maximum distance
between service nodes and client regions: from nearer
surrogates to surrogates at any distance; maximum
application network diameter: from surrogates at most 1
hop away from each other (a mesh) to surrogates n hops
away from further surrogate (n level hierarchy); number
of nodes providing service: from one to tens of
thousands; service duration: from seconds to years;
finally service demand variations will condition how
often allocations are-evaluated.

o Surrogate capabilities parameters: storage and
network bandwidth, which are the scare resources;
service regions, surrogates can service different regions
with different service levels depending on network path
characteristics from surrogate to region, depending on
their network location, they can service from a few
regions to hundreds of regions (however there is no good
characterization of what is a region, it has to be subject of
research); finally the number of surrogates dictates the
total amount of resource and traffic that can be provided.

e Deployer parameters: number of deployer entities
is a limiting factor since deployers condition each other
efficiency by contending for shared surrogates. Although
the number of surrogates and deployer entities is
determined by service offer and demand, we can expect
at least as many surrogates and as many deployer entities
as number of service regions. Any surrogate located
nearer than any other to a service region will be chosen
for service that region. Deployers will be located nearer
application providers, which again will be evenly
distributed over every service region.

¢ Internet parameters: are scale and dynamics; scale
affects specifications of services, and the number of
deployer entities and surrogates as previously
commented. It also affects latency and traffic
characteristics of the deployment mechanisms; dynamics
of the Internet affect the pace at which services must be
deployed, causing services not to be deployed on optimal
locations by the time deployment terminated due to
changes on the availability of resources in the
meanwhile. It also affects service levels provided to
clients due to variations in best surrogate election.

3. Dynamic Deployment Mechanisms

Deployment mechanisms make service deployers
discover and gather resources, plus activate services on
appropriate nodes. A first solution represents the method
currently used for provisioning services that require
resource allocation at multiple nodes, such as virtual
private networks or content distribution networks. It is

388

the SNMP management station based method, in which a
centralized entity monitors, chooses and configures
resource agents [7]. As every centralized system, it is not
the best solution in terms of scalability or fault tolerance.

The method we propose is multicast injection. Our
approach aims at taking advantage of the announce/listen
communication mechanisms of multicast to provide
robustness and adaptability to the system [17], and the
raffic aggregation capability that provides better
scalability. Beside this mechanisms lends itself to a
distributed resource allocation by autonomous resource
agents, thereby eliminating the bottleneck and single
point of failure that centralized resource allocation
involves.

3.1 Centralized Configuration Mechanism

This is the method currently used [3] [7]. Per

surrogate configuration deployment involves the
following steps:
1. Deployer continuously monitors surrogates

resources, / agents publish their resources,

2. Service provider request service deployment,

3. Deployer calculates resource allocation,

4. Per surrogate configuration,

5. (At timeout), every surrogate response is ok OR
deployer per surrogate rollback.

It is a centralized system where a deployer has to
gather information from every surrogate in order to
calculate resource allocations for every deployment
requests.

3.2 Multicast Injection Mechanism

Our proposal multicast injection deployment has to
take the following steps:
1. Provider request service deployment,
2. Deployer injects application service specifications in
a global mcast channel,
3. Surrogates map spec = allocate resource and mcast
service match on application channel OR do nothing,
4. Surrogates compare published matches with itself >
service activation OR cancel service and release
resources,
5. (At timeout) every region serviced OR surrogate
cancels service and release resources.

Multicast injection considers resource agents as active
entities that can decide autonomously whether to accept
or discard a service activation request based on local
policies and information that other agents publish.
Deployer entities inject service specifications (including a
reference to application binaries and data) into the

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 13, 2008 at 11:29 from |IEEE Xplore. Restrictions apply.

system at a global multicast channel. Deployers can only
expect that enough and appropriate resource agents
accept the service activation request, else they can inject
a cancel service request, appropriate agents are those that
have enough resources and can provide client with good
enough service. Surrogate entities implement an agent
that listens to deployer requests, calculates if they can
provide the service and publishes on an application
specific multicast channel where the service has been
allocated. After a while if they do not listen that enough
resource agents have allocated resources for that service
they cancel the application activation.

3.3 Comparison

Advantages Disadvantages
-Deployer
Centralized computation
. -Deployer traffic
Configuration -More control ; .
(SNMP) -Stale information
-Unused
allocations
-Faster
activation
. -More -More unused
Multicast adaptable .
Iniecti _Simpl allocations
njection 'mpie -Network traffic
deployers
-Robust system
-Loose relations

Figure 1 - Mechanisms Comparison

Centralized configuration presumes more control by
the deployment entity over surrogates, since surrogates
are passive entities controlled by deployers. In contrast,
multicast injection presumes a looser relation between
deployers and surrogates. Surrogates subscribe to
deployers at will, retaining its autonomy on local
configuration actions. It is easy to establish relations with
more nodes when least requirements are put on both
parties, therefore larger sets of surrogates can be
available for multicast injection dynamic deployment.

Centralized configuration requires high bandwidth in
a centralized location; as well it has to implement a
centralized resource allocation algorithm, which can
require high computational resources on Internet scales.
Multicast injection makes use of a distributed allocation
algorithm, which makes it more scalable and fault
tolerant.

When many deployers content for surrogates, with the
SNMP method a deployer can be denied allocation of
resources in a surrogate that was thought to be available
but another deployer got its resources a little earlier;
contention probability will increase as the number of

389

deployers and request load increases. With multicast
injection it shall not happen, since resources are allocated
as soon as they are discovered, however allocated
resources might have to be released is not enough
resources are found to set up the service. This unused
allocations block others requests which do not make use
of more resources allocated to them reaching to deadlock
situations. This phenomena, called thrashing, has been
observed in other scenarios [14]. We shall evaluate how
serious this phenomenon is.

Multicast injection requires simpler deployers since it
just sends a service deployment request: they do not have
to be continuously monitoring the state or individually
configure every surrogate. It is also more robust since
deployers do not have to detect and recover from every
surrogate failure. Multicast injection puts less resource
requirements on deployer entities, while permitting
surrogates to have more autonomy, thereby allowing
application creators to easy deploy application network
and resource providers to easy provide their resources for
third party service deployment.

4. Simulated Evaluation

4.1. Metrics

Our experiments aim at comparing efficiency of both
deployment mechanisms. Our first metric for comparison
is success ratio, defined as the number of "average
application” deployed to number of request for
application deployment. An "average application"”
represents an application whose surrogate resource
requirements are the media. Other metrics for
comparison are unused allocated resources and traffic
created.

e Success ratio depends on service specifications,
stricter specifications means an application has higher
probability of failing to be deployed; the more deployers
more contention for surrogates and higher probability of
failure, and surrogates capacity and network
characteristics.

e Unused allocations occur whenever a resource is
allocated but does not start providing a service since its
deployment is cancelled due to not finding enough
resources. It can be a problem if they represent a large
percentage of resource occupancy time.

e Traffic created is proportional to number of
requests, number of surrogate nodes, requests size,
interactions per request, monitoring request rate and
reallocation interval. We want to measure traffic at every
deplorer’s location, and total traffic created on the
network.

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 13, 2008 at 11:29 from |IEEE Xplore. Restrictions apply.

4.2. Simulation Topology, Surrogates and
Deployer Parameters

We have simulated both deployment mechanism using
the ns-2 network simulator [13], on it we have configured
a wide area network with 5 top level regions, each region
has an exchange point connected to 2 international
exchange points by 1 Mbit/50ms delay links, each of the
5 international exchange points is connected to 2 other
international exchange points by 1Mbit/100ms delay
links. Surrogates and deployer are evenly distributed in
all regions connected to local exchange points by 4
Mbits/20ms delay links. There are 25 service regions and
25 surrogates, one at each service regions. Surrogates
parameters are: 1000 Mbytes storage, 10 Mbits service
traffic capacity, 1 region at distance 1, 2 regions at
distance 2, 4 regions at distance 4, and so on. There are 5
deployers one at each wide area top level regions, each
deployer has deployment requests with a Poisson arrival
rate with interval media ranging from 1 request every 50
seconds to 1 request every 8 seconds. Figure 2 shows this
scenario.

®

4 Mhits / 26 msee link
1 Mbits 7 50 msce, link
B Mhits / 100 mse. link

@ sumope
@ Deployer

Figure 2 - Topology configuration used for
simulation

We are not evaluating the effect of different allocation
algorithms, though deployment efficiency depends on the
option chosen. Allocation algorithms that find smaller
surrogates sets for an application specification permit
more applications to be deployed. Allocation algorithms
that coordinate allocation among different applications
can optimise overall service level increasing deployment
efficiency. Also depending on how often allocation
calculation is done, the reallocation interval, application
networks will adapt making use of enough resources. In
figure 3 we show which allocation algorithm is being

390

implemented on these simulations for both type of

mechanisms.

Centralized Configuration | Multicast Injection Allocation
Allocation Algorithm Algorithm

Deplovyer { Resource Agent {

:: select_nodes {

Foreach service region
{among those with enough
resources, allocate on nearer
surrogate}

]

::deploy_timeout {
If some region not serviced
{send cancel-request]

J

:ireceive_mcast_injection {

If enough resources && near
some service regions
{multicast_service_match}

J

:rreceive_service_match {

If peer_agent nearer than this to
some service region (stop service in
that region)

J

/
::deploy_timeout {

If not every region serviced
{stop-local-service}

/
/

Figure 3 - Allocation Algorithms in Simulation
4.3 Deployed Application Networks Parameters

Deployer entities accept deployment requests with
these application network specification parameters:

e Per node storage, the require storage at each
surrogate for application data and code. It can be the
whole data set size or a fraction of it, downloading on
demand least used data.

e Total traffic, represents the expected total network
traffic caused by client to server interactions. It can be
expressed as traffic-region pairs. Deployers in this
simulation will assume traffic is equally distributed from
all regions.

e Network regions, where service is to be provided,
currently we are considering it is a list of AS numbers.

¢ Maximum distance, between service nodes and client
regions, represents required service level. Selecting
larger distances means worse services are tolerated.
Currently, distance is the number of Internet hops
between client regions and surrogates.

e Number of nodes providing service, it determines
fault tolerance and availability of service, however it
represents a higher cost.

e Service duration, it will express a determination to
make use of surrogates for a specified period, which can
be changed later.

On the simulations every application network to be
deployed is specified to request 100 Mbytes storage per
surrogate, 5 Mbits traffic capacity, service is required at 5
random regions (all with equal probability), service has
to be provided from 5 surrogates, maximum distance
between surrogate and client is | hop, therefore each

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 13, 2008 at 11:29 from |IEEE Xplore. Restrictions apply.

service can only be serviced by those five surrogates at
each requested region, and service life time has a
negative exponential distribution with an average of 100
seconds. It is a very low value for normal Internet service
life times, this value intent to represent the extreme case
of very popular flash-crowd services.

5. Results

We run simulations of both SNMP per node
configuration and multicast injection with deployment
request rates of each deployer from 1 request every 50
seconds to 1 request every 8 seconds. We set deploy
cancel timeouts at 3 seconds for both types of
mechanisms. We run simulations of centralized
configuration deployment with monitoring intervals of 5
and 30 seconds.

Simulations were run for 2000 seconds time, leaving
200 seconds for warm-up before start collecting data.

5.1. Impact of Deployment Resource Demand

We have obtained the number of successfully deployed
applications for different deployment loads. Deployment
load represents the number of average application
deployment request per second multiplied by the service
time of an average application. With five deployer each
with deployment requests with a Poisson arrival rate with
interval media ranging from 1 request every 50 seconds
to 1 request every 8 seconds, total deployment load range
from 10 average applications to 60 average applications.
(1 request every 50 seconds * 100 seconds duration ecach
average application service * 5 deployers = 10 average
applications load). With 25 surrogates each with 10
Mbits of bandwidth resources, a maximum of 50 average
applications can be deployed.

In figure 4 as expected success ratio keeps quite high
for moderate deployment loads and decreases for high
deployment loads. Since we are allocating surrogates
only when they are one hop away from the region
requested, the rate of successfully deployed applications
keeps quite below the maximum number of applications
(50) that can deployed on those surrogates.

SNMP centralized configuration has worst behaviour
at high load than multicast injection because it makes use
of stale information. Deployers consider many surrogates
as fully allocated and reject deployment requests. If we
increase the monitoring rate from 30 seconds to 5
seconds the number of successfully deployed applications
increases, however at the cost of higher monitoring
traffic. With multicast injection surrogates allocate

391

resources autonomously, increasing success rate. As it
has been discussed this mechanism can lead to a high
number of allocations that are cancelled without being
used because not enough surrogates are found.

As well stale resource information in SNMP per-node
configuration deployment causes deployer entities to
select nodes that have been allocated, and not to consider
for allocation nodes that have already available resources.
Because multicast injection does not use stale
information it is more responsive and adaptable than per
node configuration deployment.

ST
‘5 - SNMP (5 sec)
+ SNMP(30 sec)
=
san
x
935
=
£
oW
=3
L 25
%N .
a
"3 15
a /
v %
s
f

0 0 0 0

® Total As\ﬂlg_App R:q Load *

Figure 4 ~Deploy Success vs. Resource Demand

In figure 5 unused allocations, as percentage of total
possible allocations, has been plot against deployment
load. Unused allocations occurs in both cases when
surrogates are allocated and released shortly afterwards
without providing any service in that period, due to being
unable to find enough surrogates for deployment. It has
very low values for SNMP centralized configuration
mechanism, since deployment cancellations only take
place when two deployers content for same surrogates at
the same time, which has low probability on the
simulated topology that contains only five surrogates.
Multicast injection shows higher unused allocations
values, however they represent only a very small
percentage of total resources. It seems 1o increase
exponentially as deployment request load increases,
however at highest simulated request loads, 60 average
applications deployment load which is above the total
capacity, it only represents a 3.3 % of total resources.
This is so because service lifetimes (media 100 secs.) are
much higher that cancellation timeouts (3 secs.),
therefore for a given request load most of the time
surrogates are servicing applications, and cancellations
consume very low resources levels.

In figures 6 and 7 we present traffic created by each
type of mechanisms on every deployers location and the
total traffic created on the network by all deployers as the
sum over all links. Per node configuration generates quite
a lot of traffic at deployer locations, whereas multicast
injection requires much smaller connectivity at deployers.

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 13, 2008 at 11:29 from |IEEE Xplore. Restrictions apply.

Multicast injection produces a large amount of network
traffic on the whole network that increases with demand.
Centralized configuration generates traffic to monitor
status of each surrogate. It does not increase as request
load goes up. However it increases at the monitoring
interval is increased, which is required to obtain fresh
information from surrogates. Multicast injection
generates most of its traffic by multicasting service
specifications requests. It grows with increased request
loads, but it keeps very low values at deployer locations.
Total traffic created by multicast injection grows linearly
as number of deployment request load, but it does not
represent a large percentage of total network capacity.

oMl

N SNMP

>

{
1
l

Unused Allocations (%)

o USSR |

wi .- e e -
k B n

Q 10 K l‘.ﬂ 4‘0 50
Total Avg_App Req Load
Figure 5 - Unused Allocations vs. Resource Demand

1800

oMl

g

SNMP (5 sec)
+ SNMP (30 sec)

]

g

g

g

Deployer Traffic (bits/sec)

H]

0 - _AJD>V o 40 52
Total Avg_App Req Load

Figure 6 - Deployer Traffic

5.2. Impact of Number of Deployers

We have run the same simulation varying the number
of deployer entities from 5, 10 and 20. To keep total
deployment load constant we have decreased each
deployer request rate proportionally by 1, 2 and 4.

In figure 8 we see how many application networks are
successfully dcployed as the number of deployment
entities changes from 5 to 20 at different deployment
loads. With a moderate request load of 30 applications
(all deployers request 60% of resources) every
deployment mechanisms provides a constant success ratio
as the number of deployment entities increases. However
when we consider a total request load equivalent to 100%
of resource available, SNMP centralized configuration

392

deployment mechanisms decreases its success ratio as the
number of deployment entities increases, it is worst for
low monitoring rates. It occurs due to increase resource
contention with increased number of deployment entities.
In figure 9 SNMP centralized configuration deployment
increases total network traffic proportionally to the
number of deployment entities. This increase is due to
the monitoring traffic.

Multicast injection scales better with number of
deployment entities, since the total network traffic
created is not proportional to the number of deployment
entities.

A

2

<

&
I
[

&

{0~ MiLoad 0

- Mi-Losd.8

... SNMPSsec-Load!.0
v SNMP-Sa8c-Lo8d.6

- SNMP-30sec-Load1.0
- SNMIP-3080¢-LoRd 6

<

Deployement Sucess Ratio
A

2

°
°

El P

xum Deployel:;
Figure 8 - Success Ratio vs. # Deployers

g
&

Ml

i

< SNMP (5 sec)
| - SNMP (30 sec)

g
g

S0

28
8

8
8

Total Network Traffic (bits/sec)

0

1 "

* Total A;‘g_App ﬁ&q Load =
Figure 7 - Total Network Traffic

6. Related work

There is little research on how provisioning is
accomplished. Mechanisms for dynamic deployment are
being studied at the Xbone project [20] at ISI, at the
Darwin project [6] at CMU, and at the Globus project
[9], a joint effort of various universities and research
centres. The Xbone project is developing a system for
overlay dynamic deployment. It allows virtual networks
to be set up on the Internet to behave as virtual private
networks or to isolate experimental services from the
Internet. The Xbone is developing a protocol for dynamic
deployment using multicast expanded searches and
unicast secure configuration. Darwin project has
developed a resource allocation protocol, Beagle, to

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 13, 2008 at 11:29 from |IEEE Xplore. Restrictions apply.

dynamically deploy virtual meshes, collection of
networking resources. One of its main uses is multiparty
videoconferencing with quality of service set up. Globus
has developed a protocol for advance reservation and co-
allocation of resources in computational grids. It allows
grid applications to obtain the set of required resources
for its execution with QoS guarantees.

Commercial CDNs must have implemented such
deployment mechanisms; however there is no published
document on their operation, though we presume they
will have implemented the SNMP centralized approach.

102001

2002 1 —— MI-Load0.6 =

’J —»~MI-Load1.0 i
e SNMP-Bsec-Load1.0 . |
-]

!

I

!

~o SNMP-5sec-Load.6
SNMP-30sec-Load1.0
SNMP-30sec-Load.6

73002 4+

Total BW (bits/sec)

n 5 w i a 3

Num Deployers

Figure 9 - Total Traffic vs. # Deployers

The Content Networks Internetworking IETF working
group is currently specifying requirements for a
distribution signalling protocol (2] which will allow a
web content to be distributed and serviced from a number
of surrogates on different CDN. However it will
implement, as all internetworking protocols, only a
minimum set of functionality for basic interoperability.

In either kind of research arcas, there has not been
any published performance evaluation of deployment
mechanisms as the one undertaken in this paper.

7. Summary & Future Work

Our simulations show that multicast injection is more
scalable that SNMP per node centralized configuration,
specifically it overcomes these centralized configuration
deployment drawbacks: 1) bandwidth needed at SNMP
based deployers' locations to obtain the state of surrogates
up-to-date is orders of magnitude larger than that needed
for deployment with multicast injection method; 2)
computation resources needed at deployer entities are
much larger for SNMP based deployment that for
multicast injection due to centralized resource allocation
algorithm to be implemented; 3) as well SNMP per node
configuration is not scalable with the number of deployer
entities, the more deployment entities, the higher
contention and traffic required to obtain fresh resource
status information.

393

Multicast injection achieves at least equal success
ratio for any deployment request load while generating
much less traffic at deployers’ location. It even achieves
higher success ratio at deployment request load near and
above the maximum capacity of resource agents.
Additionally we have observed that multicast injection
incurs in a negligible penalty of unused allocated
resources caused by its distributed allocation. Percentage
of unused allocations is low at even very high
deployment load, therefore thrashing will not happen or
it will be prevented simply by input load limiting
mechanisms.

Further work we have planned is evaluating the effect
of different allocations constraints, i.e. allocation
permitted on surrogates that are farther from the service
region, which will increase the number of surrogates that
can be allocated, but at the cost of service level decreases.
We also expect to study heuristics to improve and/or
accelerate allocations of different specifications, i.e. when
number of surrogates required differs from number of
service regions. Finally a good characterization of service
regions is an important research to realize application
network provisioning with proposed dynamic deployment
mechanisms, work such as that of Krishnamurthy [12] on
clustering of web clients is a good starting point in that
direction.

8. References

[1] Akamai Inc. "FreeFlow", Dic 1999, http://www.akamai.com
[2] Amini L., Thomas S., Spatscheck O., "Distribution Peering
Requirements for Content Distribution Internetworking”, IETF
Inet Draft, draft-amini-cdi-distribution-reqs-00.txt, Feb. 2001.
[3] Aron M., Druschel P., Zwaenepoel W. “Cluster reserves: A
mechanism for resource management in cluster-based network
servers”, Proc. ACM SIGMETRICS 2000.

[4] Campbell A.T., De Meer H.G., Kounavis M.E., Miki K.,
Vicente J.B., Villela D.. " A Survey of Programmable
Networks", ACM SIGCOMM Comp. Comm. Rew, April 1999.
[S]1 Cao P.,. Zhang J., Beach. K.. "Active Cache: Caching
Dynamic Contents on the web", Proceedings of IFIP
International Conference on Distributed Systems Platforms
(Middleware'98), September 1998.

[6] Chandra P. et. Al, "Darwin: Customizable Resource
Management for Value-Added Network Services", 6 th IEEE
Intl. Conference on Network Protocols (ICNP98), 1998.

[7] Cisco, “Cisco Provisioning Center White Paper™ July 2000.
http://www.cisco.com/warp/public/cc/pd/nemnsw/pver/tech/pro
vs_wp.htm

[8] Clark I. “A distributed decentralised information storage
and retrieval system”. 1999.
http://freenet.sourceforge.net/Freenet.ps

[9] Foster I,. Kesselman C., Lee C., Lindell B., Nahrstedt K.,
Roy A., "A Distributed Resource Management Architecture that

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 13, 2008 at 11:29 from |IEEE Xplore. Restrictions apply.

Supports Advance Reservation and Co-Allocations”, In
International Workshop on Quality of Service, 1999.

[10] Kelly T., Reeves D., "Optimal Web cache sizing: scalable
methods for exact solutions”, Proceeding 5 th Web Caching and
Content Distribution Workshop, Lisbon, May 2000.

[11] Korupolu M.R., Dahlin M., "Coordinated Placement and
Replacement for Large-Scale Distributed Caches", Proceeding
of IEEE Workshop on Internet Applications. July 1999.

{12] Krishnamurthy B., Wang J., "On Network -Aware
Clustering of Web Clients”, ACM SIGCOMM, August 2000.
[13] McCanne S., Floyd S., "CCB/LBNL/VINT Network
Simulator nsv2", http://www.mash.cs.berkeley.edu/ns/ Aug
1998.

[14] Mitzel D., Estrin D., Shenker D., Zhang L., "A Study of
Reservation Dynamics in Integrated Service Packet Networks",
Proc. IEEE Infocom, April 1996.

[15] Pandey R., Barnes J.F., Olsson R., "Supporting Quality Of
Service in HTTP Servers”, Proceeding of the 17 th SIGACT-
SIGOPS Symp. on Prpc of Distributed Computing, Junc 1998.
[16] Rabinovich M., Aggarwal A.. "RaDaR: A Scalable
Architecture for a Global Web Hosting Service", WWW8
Conterence, Toronto May 1999.

[17} Raman S. and. McCanne,S., "A model, analysis, and
protocol framework for soft state-based communication,” in
ACM Sigcomm, 1999, September 1999.

[18] Tennenhouse D.L., Wetherall D.J., "Towards an active
networks architecture”, Proceedings Multimedia Computing
and Networking, San Jose CA, 1996.

[19] Tomlinson G., et al., "Extensible Proxy Service
Framework" Inet-Draft draft-tomlinson cpsfw- 00.txt, July
2000.

[20] Touch J., Hotz S., "X-bone: a System for Automatic
Network Overlay Deployment”, Third Global Internet Mini

Conference in conjunction with Globecom 98, Nov. 1998,

394

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 13, 2008 at 11:29 from |IEEE Xplore. Restrictions apply.

