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Abstrac t -The electrical bioimpedance (EBI) measurement of varying biological systems Z(,t) (e.g. the heart, 

the lungs, …) by means of electrical impedance spectroscopy (EIS) remains an open challenge today. Briefly 

stated, the bioimpedance is widely assumed to be time-invariant when it is measured with the frequency sweep 

EIS approach. Hence, time-varying changes are thus ignored or treated as a noise source. In this work, we 

attempt to model the time-variant effects and obtain a simple (periodically) time-varying [(P)TV)] electrical 

circuit model with (P)TV parameters from experimental in vivo EBI data using the model proposed by Fricke-

Morse. The aim is then to illustrate that a limited number of harmonic components of the electrical circuit 

parameters, which corresponds to an integer number of the bio-system periodicity, can be used to have a realistic 

evolution of the bioimpedance over time as well as in frequency. 

 

I. Introduction 

 

Nowadays, techniques for tissue evaluation through, i.e. electrical methods, provides non-destructive valuable 

information for the characterization of in vitro, in vivo and ex vivo post mortem tissues. During the past few 

years, a non-invasive and nondestructive technique that has become more and more popular is the electrical 

impedance spectroscopy (EIS). EIS has been recently applied in a wide field of applications, where the 

determination of the passive electrical properties of materials was of interest. In the case when the materials 

under study are biological, the characterization of the biological tissues by means of the EIS is known as 

electrical bioimpedance (EBI). The characterization of biological materials by means of EBI provides relevant 

physiological information about the properties of tissues as a function of the excited frequency, which is related, 

at a macroscopic level, to the physiological states of tissues. 

 

When performing the modeling of living tissues or organs, there are many different approaches to represent 

electrically these biological systems. As thoroughly explained in the literature [1], the electrical impedance of 

biological systems can be modeled using an equivalent electrical circuit. One of the most adopted is the Fricke-

Morse circuit model due its simplicity and direct physical interpretation [2]. Fricke-Morse modeling approach 

consists in considering the tissue as a suspension of millions of cells surrounded by an extracellular liquid as 

given schematically in Fig.1. 

 

 
Figure 1: Simplified modeling of a biological tissue corresponding to the Fricke-Morse model as a two resistor 

and one capacitor (2R−1C) electrical circuit. The phospholipid molecules that compose the cell membrane are 

highly frequency dependent due to its high capacitive response. As a result, the low frequency current mainly 

flows through the extracellular liquid while the high frequency current flows through intra-/extra cellular liquid. 
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Assuming the 2R-1C model shown in Fig.1, the relation between the current through the tissue, i(t), and the 

voltage across the tissue, v(t), is given in the time domain by the following first order Ordinary Differential 

Equation (ODE): 
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where 
e i ma R R C , 

eb R  and  e i mc R R C   are the model parameters that are assumed to be constants (in a 

first stage). Note that given the model parameters a, b and c in Eq. 1, the circuit parameters
eR , 

iR  and 
mC  can 

readily be found as: 
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where 
eR  is related to the resistance of the extracellular liquid, 

iR  is the resistance of the intracellular liquid and 

mC  models the capacitance of the cell membrane. The electrical bioimpedance,  Z  , which is a function of 

the (angular) frequency   and can straightforwardly be obtained from the model parameters of the ODE model 

in Eq. 1, viz. 
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with j2=-1 the imaginary unit of complex numbers. Converting the ODE model in Eq. 1 to the frequency domain 

using the Fourier transform gives Eq. 3, where    ( ) /Z V I    with    ( )V F v t   the voltage spectrum 

and    ( )I F i t   the current spectrum (    ( )X F x t   with ( )x t the time signal and  F  the Fourier 

transform operator). 

 

However, in practice the Fourier integral transformation cannot be performed because of two major reasons: (i) 

the current and the voltage signals, ( )i t  and ( )v t , are only available in a certain time window of the 

measurements, say [0, ]t T , with T the measurement time; (ii) the input-output signals are only accessible as 

sampled signals,  si nT and  sv nT , with 
sT  the (constant) sampling period of the input-output signals and n  

an integer. Therefore, the Fourier integral should be replaced by the (normalized) Discrete Fourier Transform 

(DFT): 
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with { , }, { , }, / sx i v X I V N T T    the number of time domain samples that are collected during the 

measurement process and the index k  in  X k  in Eq. 4 is the frequency bin corresponding to the thk DFT 

frequency 2 /k k T  . In practice, the DFT of a signal can efficiently be computed by the Fast Fourier 

Transform (FFT), which is, nowadays, offered by numerous numerical packages. 

 

Reaching the steady state situation can be a weak assumption when characterizing the properties of time-varying 

bio-systems, as for example for the in vivo myocardium. It can be seen from Fig.1 in [3] that the transients fully 

die out after 40 µs. Hence, when performing electrical impedance spectroscopy measurements with a periodic 

signal, the gathered measurements of the current and voltage signals might fall in steady state conditions. The 

reader is referred to [4] to obtain insight in the approaches for measuring time-varying bioimpedance. 

 

(1) 

(2) 

(3) 

(4) 
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I. Simplified modelling of time-varying bioimpedance systems 

 

Adopting the Fricke-Morse 2R−1C electrical model shown in Fig.1, the relation between the current flowing 

through the tissue, ( )i t , and the voltage drop across it, ( )v t , is given in the time domain by the following 1st 

order Ordinary Differential Equation (ODE): 
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Once the time-varying circuit parameters, i.e.  eR t ,  iR t  and  mC t  in (1), are frozen at a certain time, say at 

*t t , the frozen impedance spectrum (FIS), denoted by the subscript f in  ,fZ t , can be computed from (1). 

The FIS,  *,fZ t , follows easily from (1) at *t t  and is mathematically written down as: 
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Although the frozen impedance spectrum is continuous over time, there exists no direct mathematical 

relationship between the current spectrum  I   flowing through the tissue, the voltage spectrum  V   across 

the tissue and the frozen impedance spectrum  ,fZ t . The mathematical property that relates  V   and  I   

is through the instantaneous impedance spectrum [5], denoted as  ,iZ t , and differs in general from the frozen 

impedance spectrum at *t t  [6–8]. Nevertheless, it can be proven that for slowly varying biological tissues the 

difference between the two impedance concepts (frozen and instantaneous) is negligible [7]. 

 

 

II. Experimental results and discussion: extracting the periodic features from the time-evolution of the 2R-

1C model parameters of in vivo myocardium 

 

Fig.2 illustrates the estimated time-varying Fricke-Morse circuit parameters (i.e.  eR t ,  iR t and  mC t ) using 

differential impedance analysis (DIA) [9–11] for the 10 cycles of in vivo myocardial impedance. The estimated 

cardiac cycle periodicity is ccT  = 0.946 s. The periodic reconstruction of the circuit parameters, which is shown 

in grey in the figure, i.e. 
cc( ) ( )e et tR RT  , cc( ) ( )i it tR RT  , 

cc( ) ( )m mt tC CT  , are obtained as follows. 

First, the mean periodicity of the time-variation is estimated. Next, the DFT of the 10 cardiac cycles, 
cc10T T , 

is calculated. Then, only the harmonics corresponding to an integer number of the cardiac cycle 

cc cc cc cc cc(..., 2 / , 1/ ,0 / ,1/ ,2 / ,...)T T T T T  are retained, and the leftovers of the DFT spectrum are set to zero. 

Finally, the reconstructed periodic time domain signal is then finally obtained using the inverse of the 

reconstructed DFT spectrum. 

 

It follows from Fig. 2 that the circuit parameters  eR t  and  iR t  vary more or less periodically over time. 

Indeed, the periodic changes dominate the arbitrary time-variations. As for the case study presented, the periodic 

features in the in vivo myocardium are due to the morphological change of the myocardial cells during the 

different cardiac phases, which influence the intra-extracellular resistances shown in Fig. 1. The cells in the heart 

undergo a contracting as well as a relaxing phase within each cardiac process. The corresponding frequency 

spectrum (A-B, bottom) exhibits the characteristic frequencies related to these periodic phenomena occurring in 

the heart.  

 

(5) 

(6) 
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Figure 2: The time-evolution of the in vivo myocardium electrical circuit parameters  eR t ,  iR t  and  mC t  

of the 2R-1C circuit shown in Fig.1. Time (top) and frequency (bottom) dependencies of the estimated circuit 

parameters (black) and the periodic reconstruction (periodicity of 
ccT  = 0.946 s) (grey) (A-C). DC-values are not 

shown in the DFT-plot for convenience (except for  mC t ). 

 

It can be observed from Fig. 2 that the Periodic Reconstruction (PR) of the data follows quite well the estimated 

time-waveforms of the Fricke-Morse model parameters. Only a significant difference in the first cycle can be 

observed, where the periodically reconstructed signal is lagging w.r.t. the measured one. This is because during 

the measurement, the myocardium was not perfectly stable (heart rate variability was present) while the system’s 

periodicity 
ccT  was assumed to be constant. However, this occurrence is not present in the other 9 consecutive 

cycles. This plot motivates the use of (periodically) time-varying [(P)TV] tools to model, better analyze and 

simulate the behavior of the bio-system within one or several cycle(s) [4]. Once the periodicity of the cycle is 

known or estimated, the PR of (1)-(2) can readily be constructed from the harmonics in Fig. 2 (bottom). The 

obtained frozen PTV model,  ,fZ t , is continuous in frequency as well as in the time variable. 

 
 

Figure 3: Time dependencies of, respectively, (black) the time-varying model parameters 

       e i ma t R Rt t C t ,    eb t tR and         e i mtR tc t R t C , (grey) the PTV model parameters 

       PTV PTV PTV

PTV e i ma t R R Ct t t ,    PTV

PTV eb t R t and         PTV PTV PTV

PTV e i mtc R tR C tt  . 

 

Since it turned out from Fig.2 (A-C) that the periodic variations are dominant in the data, we will impose the 

periodicity in the model parameters and the bioimpedance. The main reason for this is that a (Linear) 

Periodically Time-Varying [(L)PTV] model is also usable outside the measurement window (by definition), 

while there is no guarantee that the non-periodic time-variations are the same outside this measurement interval. 

This statement is justified in Fig.3 by the fact that the arbitrary variations differ from one cardiac cycle to the 

other (10 cardiac cycles are depicted), while the periodic variations are still dominating over most of the signal. 

In order to extract the PTV part of the time-varying ODE model in Eq. 5, the PTV model parameters, 

   PTV PTV cca t a t T  ,    PTV PTV ccb t b t T  and    PTV PTV ccc t c t T  , are obtained using the periodic 
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reconstruction, as explained above. The results from the periodic reconstruction of the PTV ODE parameters are 

shown in Fig. 3. 

 

It can be seen from the temporal and frequential representation of the impedance spectrum in Fig.4 that the PR of 

the data describes fairly well the measured time-varying impedance. However, it is difficult at this stage to 

know, by visual inspection, how accurate the periodic reconstruction is w.r.t. the time evolution of the estimated 

myocardial impedance. 

 

 
Figure 4: 10 cardiac cycles of the magnitude and phase spectrum of the time-varying electrical bioimpedance 

and its PTV reconstruction derived from Fig. 3. 

 

To determine a measure of discrepancy between the estimated myocardial impedance and the PR in vivo 

myocardial impedance model, the Root Mean Squared Error over Time (RMSEoT) is calculated as: 
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The RMSEoT introduced in Eq. 7 and shown in Fig. 5 allows one to ease the comparison of 2D magnitude and 

phase spectra, showing the frequency distribution of the averaged power-error over time. 

 

(7) 
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Figure 5: Magnitude and phase spectrum originating from the PR of an in vivo myocardial impedance fit. The 

bottom figures are respectively the RMSEoT of the magnitude and the phase spectrum over the 10 cardiac 

cycles. 

 

III. Conclusions 

 

When performing the experiments of time-varying impedance spectra, e.g. to characterize pathological in vivo 

tissues, the non-stationary nature of the bio-system under study has usually been discarded, as, for example, the 

case in [12–14]. Special attention should be paid when measuring (P)TV bioimpedance spectra using frequency-

sweep EIS technique. The total measuring time to acquire a complete spectrum might be larger than the 

bioimpedance periodicity, limiting the accuracy of current frequency sweep-based impedance monitoring 

systems [15]. From the reported results, it can be concluded that it is preferable to benefit from the intrinsic 

(periodic) non-stationary information of the bioimpedance, e.g. to study accurately the influence of the cardiac 

and respiration activities in human thorax measurements, or to obtain information about morphological changes 

with the goal of detecting differentiation in stem cell cultures. In a view of the time dependencies shown, it has 

been demonstrated that is feasible to use only a limited number of harmonics to describe the in vivo myocardial 

impedance. The root mean square error over time (RMSEoT) for the periodically reconstructed model is 

bounded to 1  and 0.2º in the frequency band 1 kHz – 1 MHz. 
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