Proceedings of the 2013
International Conference on
Computational and Mathematical
Methods in Science and Engineering
Almeria, Spain

June 24-27, 2013

AN A W UL
‘ **y‘ " 1 4
*H'\ **\‘%
(d, ¢v~ ¢
Do Pl e
i‘*t) b M fb
-b\ *b

*

(wwig h‘

CMMSE

VOLUMES LILILIV & V

Editors: lan Hamilton & Jesus Vigo-Aguiar

Associate Editors:
H. Adeli, P. Alonso, M.T. De Bustos, M. Demiralp, J.A. Ferreira, A. Q. M. Khaliqg,
J.A. Lopez-Ramos, P. Oliveira, J.C. Reboredo, M. Van Daele,

E. Venturino, J. Whiteman, B. Wade

Proceedings of the 2013
International Conference on
Computational and Mathematical
Methods in Science and Engineering

Cabo de Gata, Almeria, Spain

June 24-27, 2013

CMMSE

Computational and Mathematical
Methods in Science and Engineering

Editors
I. P. Hamilton & J. Vigo-Aguiar

Associate Editors

H. Adeli, P. Alonso, M.T. De Bustos,
M. Demiralp, J.A. Ferreira, A. Q. M. Khaliq,
J.A. Lépez-Ramos, P. Oliveira, J.C. Reboredo,
M. Van Daele, E. Venturino, J. Whiteman, B. Wade

ISBN 978-84-616-2723-3

@Copyright 2013 CMMSE

Printed on acid-free paper

@CMMSE Preface- Page ii

Multiresolution analysis for two-dimensional interpolatory schemes
Fernandez, L.; Fortes, M.A.; Rodriguez, M.L.cccoooueiiiiiiiiies e 615

On the characterization of markerless CAR systems based on mobile phones
Fernandez, V.; Ordufia, J.M.; MOIllO, P.............oouuuuueeeeeeiieiiieeeeeeeees e 618

A mathematical model for controlled drug delivery in swelling polymers
Ferreira, J.A.; Grassi, Gudifio, E.; de OliVEIra, P.ooeeeeeuuveeeeeeeeeeeeeeeeeeeeeeeennn 630

Numerical simulation of a coupled cardiovascular drug delivery model
Ferreira, J.A.; Naghipoor, J.; de OlIVEIra, P.cccccoeeeieeeesiiiieeeeees e 642

SABR/LIBOR market models: pricing and calibration for some interest rate
derivatives

Ferreiro, A.M.; Garcia, J.A.; Lopez-Salas, J.G.; Vazquez, C.ccccccovvvvevvvveenaaeecnn, 654
Nonpolynomial approximation of solutions to delay fractional differential
equations

Ford, N.J.; Morgado, M.L.; RebEIO, M...............eemeeeeeeeeeeeeeeee e e 666

Filling holes with shape conditions
Fortes, M.A.; Gonzalez, P.; Palomares, A.; Pasadas, M.cccccovveeeeeiieiieiieeinnnnnn. 676

Performance analysis of SSE instructions in multi-core CPUs and GPU

computing on FDTD scheme for solid and fluid vibration problems
Francés, J.; Bleda, S.; Marquez, A.; Neipp, C.; Gallego, S.; Otero, B.; Beléndez, A..... 681

Performance analysis of multi-core CPUs and GPU computing on SF-FDTD
scheme for third order nonlinear materials and periodic media
Francés, J.; Bleda, S.; Tervo, J.; Neipp, C.; Marquez, A.; Pascual, I.; Beléndez, A. 693

Parallel implementation of pixel purity index for a GPU cluster
Franco, J.M.; Sevilla, J.; Plaza, A.J. ... e 705

Genetic meta-heuristics for batch scheduling in multi-cluster environments
Gabaldon, E.; Guirado, F.; Lerida, J.L.cccoooiiioiiieeeee e 709

Performance evaluation of convolutional codes over any finite field
Galiano, V.; Gandia, R.; HEITANZ, V............cooeeeeieeiieeeeeeeeeeeee e ettt 721

Accelerating an evolutionary algorithm for global optimization on GPUs
Garcia Martinez, J.M.; Garzon, E.M.; Ortigosa, P.M.cccocoeoioiioieiieeeeee 732

Radiation induced color centers in Silica: a first-principle investigation.
Giacomazzi, L.; Richard, N.; Martin-Samos, L..............ouuueeeeeiiiiiiiiiee e 738

A volume averaging and overlapping domain decomposition technique to
model mass transport in textiles
Goessens, T.; Malengier, B.; Constales, D.; De Staelen, R.H.ccccoveeiiiviennennn. 742

Pyramid method for GPU-aided finite difference method
Golovashkin, D.; KOCHUIOV, A. ... ettt ettt e e e e e aaaaeees 746

A predator-prey model with weak Allee effect on prey and ratio-dependent

functional response
Gonzalez-0Olivares, E.; FIOrES, J.D..............coueueeieeiieieeeeeeeeee e ettt 757

Page 9 of 1797

Proceedings of the 13th International Conference
on Computational and Mathematical Methods

in Science and Engineering, CMMSFE 2013
24-27 June, 2013.

Performance analysis of SSE instructions in multi-core CPUs
and GPU computing on FDTD scheme for solid and fluid
vibration problems

Jorge Francés', Sergio Bleda', Andrés Marquez', Cristian Neipp', Sergi
Gallego', Beatriz Otero? and Augusto Beléndez!

L Dpto. de Fisica, Ingenieria de Sistemas y Teoria de la Sefial,
Universidad de Alicante, E-03080, Alicante (Spain)

2 Dpt. d’Arquitectura de Computadors,
Universitat Politénica de Catalunya, ES-08034, Barcelona (Spain)

emails: jfmonllorG@ua.es, sergio.bleda@ua.es, andres.marquez@ua.es,
cristian@ua.es, sergi.gallego@ua.es, botero@ac.upc.edu, a.belendez@ua.es

Abstract

In this work a unified treatment of solid and fluid vibration problems is developed
by means of the Finite-Difference Time-Domain (FDTD). The scheme here proposed
introduces a scaling factor in the velocity fields that improves the performance of the
method and the vibration analysis in heterogenous media. In order to accurately re-
produce the interaction of fluids and solids in FDTD both time and spatial resolutions
must be reduced compared with the set up used in acoustic FDTD problems. This
aspect implies the use of bigger grids and hence more time and memory resources. For
reducing the time simulation costs, FDTD code has been adapted in order to exploit the
resources available in modern parallel architectures. For CPUs the implicit usage of the
streaming SIMD (Singe Instruction Multiple Data) extensions in multi-core CPUs has
been considered. In addition, the computation has been distributed along the different
cores available by means of OpenMP directives. Graphic Processing Units (GPU) have
been also considered and the degree of improvement achieved by means of this parallel
architecture has been compared with the highly-tuned CPU scheme by means of the
relative speed up. The speed up obtained by the parallel versions implemented were up
to 7 and 30 times faster than the best sequential version for CPU and GPU respectively.
Results obtained with both parallel approaches demonstrate that parallel programming
techniques are mandatory in solid-vibration problems with FDTD.

Key words: FDTD, GPU, CPU, OpenMP, SSE, vibration
MSC 2000: 68U20, 65L12, 68W10

©CMMSE Page 681 of 1797 ISBN: 978-84-616-2723-3

PERFORMANCE ANALAYSIS OF SSE INSTRUCTIONS IN MULTI-CORE CPUs AND GPU COMPUTING...

1 Introduction

Kane S. Yee published in 1966 the initial FDTD scheme [1]. During the next two decades
the scientific community do not show too much interest in this method due to its high
computational requirements. However, the growing of the computer power in the last three
decades has permitted that FDTD became a reference in different fields of science such as
electromagnetism [2], optics and acoustics. This new scenario has allowed to develop new
applications and also new formulations that cover a wider range of problems. The first
attempts of FDTD in acoustics were published by Botteldooren [3], LoVetri [4], Wang [5]
and its application to solid mechanics was performed by Virieux [6] and Cao [7] in the
field of seismology. The formulation of FDTD for solids can be separated in two different
schemes. The former is based on the discretization of the Newton’s second law and the
Hook’s law; the latter is based on the vectorial and scalar potentials derived from the two
general laws of solid-mechanics mentioned below. Regarding this second approach there are
several contributions [8-10]. In this work, the first scheme is developed in order to model
solid and fluid vibrations. The formulation based on the scalar and vectorial potentials only
has been developed efficiently for homogeneous media, due to the difficulties derived from
the boundary conditions in the interfaces between solid and fluid [11].

On the other hand, the direct application of the finite-difference approach to the New-
ton’s second law and the Hook’s law allows to model the interaction between fluids and
solids, due to the fact that the derivation of the initial FDTD scheme for acoustics is a
particular case from these laws. The vibration analysis in fluids and solids require reduced
values for time and spatial resolutions, since the propagation in solids use to be faster than
in fluids such as air for instance. In addition, FDTD scheme computes the field distribution
as a function of time, thus sometimes a big number of time steps is required in order to
ensure steady state. FDTD also requires a discretization of the simulation region. The size
of this grid affects directly the time simulation costs and also the memory requirements of
the method. In order to reduce the time simulation costs in seismology some works related
with GPU computing have been developed [12].

In this work, a unified treatment of fluid and solid FDTD analysis is performed. The
formulation has been slightly modified from [13] in order to model efficiently the vibration
fields for fluid-solid interaction problems. Moreover, a rigorous analysis of the performance
of the 2D FDTD in both parallel architectures multi-core CPU and GPU is performed.
Both parallel implementations of the method are compared with a sequential code that
takes advantage of the auto-vectorization available in modern compilers being faster that the
usual sequential codes. Moreover, the parallel CPU version takes advantage of the Streaming
SIMD Extensions (SSE) available in modern microprocessors. The SSE set instructions has
been directly used in order to exploit the potential of modern CPUs. In addition, parallel
strategies have been considered in order to use all the available cores in the CPU, thus
OpenMP directives have been also applied. This fine-tuned CPU version of the FDTD

©CMMSE Page 682 of 1797 ISBN: 978-84-616-2723-3

J. FRANCES, S. BLEDA, A. MARQUEZ, C. NEIPP, S. GALLEGO, B. OTERO AND A. BELENDEZ

scheme has been compared with a massively parallel CUDA code for GPU computing. The
idea is to accurately estimate how fast is a GPU against a CPU that exploits all its available
resources. This analysis has been also performed for the standard FDTD scheme applied
to optics [14] but it has not been done yet for the solid-fluid scheme to the best of our
knowledge.

2 Finite-Difference Time-Domain method for the analysis of
vibration problems

The fundamental constitutional equations for the propagation of elastic waves in solids can
be derived in vectorial notation from the Newton’s second law and the Hook’s law obtaining
the following well known identities:

or

Fri AL(V-v)+ pu(Vv+vV), (1)
ov
pa = V- v, (2)

where 7 is the stress tensor, I is the identity matrix, A, 4 and p are the two Lamé constants
and the density respectively. The velocity vector is denoted by v. The Eqgs. (1)-(2) describes
the propagation in linear, homogeneous and non-lossy solid media. Basically, in solid media
there are two types of waves, the p-waves or longitudinal waves and the s-waves also known
as the transversal waves. The velocity of propagation of both waves is different and defined

as follows:
o= 2 o=k (3)

where ¢, and ¢, are the p-wave and s-wave velocities, respectively. It is important to note
that those materials with null second Lamé parameter p (shear modulus) behave as fluids
with a compressibility modulus defined as k = —A. The presence of heterogeneities and the
p and s waves deal to different ondulatory phenomena such as the Rayleigh’s and Love’s
waves.

In this work a modified set of equations are considered based on a scaling of the velocity
components. For the specific case of 2D simulation (x,y) the normal stresses from Eq. (1)
can be expressed as follows

OTaz oV, A 0V,

_ Ve AOVy 4
ot “ox " 7y oy)
oy OV, XV,
at @ oy + Zy Oz’ (5)

©CMMSE Page 683 of 1797 ISBN: 978-84-616-2723-3

PERFORMANCE ANALAYSIS OF SSE INSTRUCTIONS IN MULTI-CORE CPUs AND GPU COMPUTING...

Au

-
’\sz,yy Uz o,
V' J
Au ® j+1/2
Uy Twy
v © Qi+l

‘ i i+1/2 i+l
X

Figure 1: FDTD lattice for solids.

whereas the shear stress can be defined as:

OTay 2 (Ovy Ovy
at—%<@+aﬂ‘ (©)

The velocity components can be split from Eq. (2) as follows:

Ve OTua OTay AVy Oty 0Ty
o % or TPoy ot oy TP or (7)

where V; = v;Zp with i = 2,y and Zy = pc, = /p (A +2u). The scaling of the velocity
components has many advantages such as the possibility of handle closer values for the
velocities in both solids and fluids. Note that usually the movement of the particles in
solids tend to be smaller than in a fluid. On the other hand, this normalization improves
the finite error precision in FDTD equations since avoids the round-off errors committed by
the processor due to handling numbers with huge differences in their modulus.

This formulation can be easily related with the pressure-velocity scheme for fluid media
considering k = —X and p = —1/2(7yq + Tyy)-

Figure 1 shows the lattice configurations of the FDTD method for analyzing the veloc-
ities and stress components. Reformulating Eqgs. (4)-(7) by the FDTD method gives

FalTH = P+ VPL (Vx\?ﬂm . ny?_l/lj) n
+VCL (Vyl2 12 = Vallyoryz) s (8)
Tyy 7;1 = Tyym}H +VPL (Vy12j+1/2 - Vy’ijl/Q) +
+VCL <Vw’?+1/2,j - Vx’?fl/lj) ; (9)
Txy|?:11/2,j+1/2 = Twy‘?:1l/2,j+1/2 +VSL <V$’?+1/2,j+1 = Valiya,;+

©CMMSE Page 684 of 1797 ISBN: 978-84-616-2723-3

J. FRANCES, S. BLEDA, A. MARQUEZ, C. NEIPP, S. GALLEGO, B. OTERO AND A. BELENDEZ

+ Vy|?+1,j+1/2 - Vy Zj+1/2> ’ (10)
Vit = Valiey + VPL (realfyjog — Taely o+

+ Taylih1/2,541/2 — Try’?+1/2,j—1/2) ; (11)

y’?ﬁiz = Vyw;:{?z +VPL (Tyymjﬂ - Tyymﬁ‘
+ Tyalih1/2, 54172 — Tyz|?—1/2,j—1/2> ; (12)
where
Atc s\ 2 At

VPL = Au”, VSL=VPL (cp) , VCL = Az’ (13)

The spatial and time resolution of FDTD are denoted by Awu and At, where square cells
are considered (Au = Az = Ay) (see Fig. 1). Regarding stability and dispersion, FDTD
schemes must ensures the Courant-Friedrichs-Lewy (CFL) that for the specific case of solid-
fluid interaction is defined as:

Cl maxAt Cs,min
g = GmarBt g p_ CGemin o 4, 14
\/EAU N fmax\/iAU ()

where ¢ ,,4, is the maximum value of the longitudinal velocity in the domain and ¢s y,ip the
lowest tangential velocity [13,15]. The boundaries of the domain have been truncated by
means of a Perfectly Matched Layer (PML) that solves the problems due to artifacts and
reflections on the boundaries which are very common in finte-difference schemes [13,16].

3 Computational optimization

In this section the strategies considered for accelerating FDTD for solid-fluid vibration
analysis are detailed. In this work an Intel i7-950 processor with 8MB of cache, a clock
speed of 3.06 GHz and the possibility of handle efficiently eight threads has been used.
Regarding GPU computing, a GTX470 GPU with Fermi architecture is considered for the
parallel implementation of the FDTD for solid-fluid vibration analysis. The basic computing
unit in this type of hardware consists of 32 threads and this arrangement is defined as
a warp. The GPU is capable of swapping warps into and out of context without any
performance overhead. This functionality provides an important method of hiding memory
and instruction latency on the GPU hardware. The different warps invoked are also arranged
into blocks of threads.

3.1 Multi-core CPU and SSE instructions

The SIMD instructions follow the parallel computation model and is the most cost-effective
way of accelerating floating- or double-point performance in modern processors. Here, only

©CMMSE Page 685 of 1797 ISBN: 978-84-616-2723-3

PERFORMANCE ANALAYSIS OF SSE INSTRUCTIONS IN MULTI-CORE CPUs AND GPU COMPUTING...

Initializate Host
(7 V.Amp static data)
|
Tax le Valtvrjoy Velitajog Vallyoije Initializate structure variables

| on GPU global memory

|
Copy static data to
GPU memory

B E—
€c
BMMX Register
vy, Single value (4byte) word

(a)

Figure 2: a) Illustration showing the scheme for solving Eq. (8) in CPU. b) Flowchart of
GPU parallel programming for FDTD for fluid-solid vibration analysis.

single precison has been considered for FDTD simulations, since single precision is accurate
enough for FDTD applications. In order to successfully apply the SIMD instructions, load
operations must be done under a set of aligned bytes [17]. For that reason, the allocation
of the memory for a matrix with e, rows and e, columns is done as a single aligned column
vector by means of a new array class fully implemented in C++ [18]. Thus each position is
reached taking into account that the storage order is by columns. For simplicity, the scheme
of how Eq. (8) is computed by means of the MMX registers and OpenMP is shown in Fig. 2a.
The updating process for the rest of the components follow the same scheme. For simplifying
the notation, also the PML notation has been supressed but it is also included in the opti-
mization process. For instance, the update of 7., requires several aligned loads that store
4 consecutive values of the terms involved: Vw’?+1/2,j7 Vx’?—l/zj? Vy\zj_l/wvymjﬂ/? Note
that the physical parameters that define the media are also stored in the MMX registers.
The next step is to perform the arithmetic operations by means of the MMX registers using
the intrinsics functions (.mm_sub ps(_m128 a, - m128 b), mm add ps(_mi128 a, _ml128
b) or mmmul ps(_mi128 a, _mi128 b) for instace). In addition, OpenMP has been con-
sidered in order to parallelize the updating of each field component. Modern CPUs contain
several cores that can be used by means of shared memory schemes in order to split the
computational load amongst the different cores. By means of OpenMP directives, each
component has been parallelized distributing the whole computation by columns. As can
be seen in Fig. 2a, each thread is in charge of computing a set of columns of each field
component, whereas each thread uses extensively the vectorial SSE instructions along the
rows direction.

©CMMSE Page 686 of 1797 ISBN: 978-84-616-2723-3

J. FRANCES, S. BLEDA, A. MARQUEZ, C. NEIPP, S. GALLEGO, B. OTERO AND A. BELENDEZ

3.2 Graphic Processing Units (GPUs)

Regarding the SF-FDTD implementation and GPU computing, a number of blocks related
with the number of rows and columns are invoked by means of the kernel functions and an
array of 192x2 threads are launched per block [19].

Besides the potential of the CUDA kernel, it is necessary to divide the whole computa-
tion process in several kernels focused on computing each component of the vibration field.
Fig. 2b summarizes the invocation path of the kernels related with the FDTD implementa-
tion. Firstly, an initialization in host of the fields to be computed is perfomed. Secondly,
the allocation of these componentes is done inside the GPU, those fields that must be filled
such as the physical parameters that models the media are copied to the GPU memory.
Thirdly, the FDTD computation is performed by a set of kernels that updates each compo-
nent of the vibration field (stress and velocities). Finally, the fields are downloaded to the
host. In this flow chart the post-process is omitted, but mandatory downloads of the 7 and
V components must be considered in order to compute the specific desired outputs. The
time costs of this process has been also considered in order to compute the speed up in the
results section.

4 Results

Firstly, the computational results are summarized in Fig. 3. The simulation grid is modified
as a function of the number of rows (e,) and columns (e.). More specifically, Fig. 3a-b
shows the time simulation cost and the speed up respectively for a set of simulations with
er = 500 varying the number of columns. The speed up has been computed considering
as sequential version an auto-vectorized code. This auto-vectorized code is expected to
be the fastest sequential code achievable by an programmer without advanced knowledge
on parallelization techniques. The same results for e, = 1000 and e, = 2000 are shown
in Fig. 3c-d and Fig. 3e-f respectively. As can be seen the time simulation costs grows
exponentially with the simulation size and in all cases the GPU and the fine-tuned CPU
version are faster than the sequential version. The speed up obtained from the CPU parallel
code optimized with SSE instructions and OpenMP behaves quite constant as a function of
e. and a slight maximum can be identified for the specific case of e, = 500 and for e, ~ 0.3
keells. This local maximum disappears in Fig. 3d and Fig. 3f since it belongs to an optimal
usage of the cache memory available in the microprocessor. As the simulation size becomes
greater the simulation does not fit in the cache and the speed up remains constant. The
overall speed up obtained by this version is closer to 7 compared with the sequential auto-
vectorized version. On the other hand, the GPU CUDA version remains more homogeneous
as a function of the simulation size and the speed ups are quite near to 30 respect of the
auto-vectorized sequential version.

In order to accurately compare the GPU and the SSE4+OpenMP CPU version, the rel-

©CMMSE Page 687 of 1797 ISBN: 978-84-616-2723-3

PERFORMANCE ANALAYSIS OF SSE INSTRUCTIONS IN MULTI-CORE CPUs AND GPU COMPUTING...

Seq
SSE+OpenMP SSE+OpenMP
=== CUDA CUDA
(a) (b)
— 50 o, 40
E S “
£ 2 20 r
: £l
& 0 e 0
0 1 2 3 3.2 0 1 2 3 3.2
ey (keells) e (keells)
(c) ()
— 100 — 40
g 50 g 20
£ £
= 0 ==2 H
0 1 2 332 0 1 2 3 3.2
e (keells) e, (keells)
(e)) ()
— 250 0
£ 200 &) —
2 100 T 20(l"
E)
=0 = === 0
0 1 2 3 3.2 0 1 2 33.2
er (kcells) er (kcells)
)
< 10 T T T T T T
A
=)
O
% —
&, L -
§ —_—c, =500 _ _ _ e, =1000 e, =2000
B 0 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.2
e (keells)

Figure 3: Computational results: (a), (c) and (e) show the time simulation as a function of
the number of cells for the specific case of e, = 500, e, = 1500 and e. = 2000 respectively.
(b), (d) and (f) represents the speed up for the same situation. (g) Relative speed up
between the fine-tuned CPU and GPU codes.

©CMMSE Page 688 of 1797 ISBN: 978-84-616-2723-3

J. FRANCES, S. BLEDA, A. MARQUEZ, C. NEIPP, S. GALLEGO, B. OTERO AND A. BELENDEZ

x1074
200 — —r
100
er (cells) 0 — 10
-100
-200 8
100
er (cells) ¢ 6
-100
- 200 4
100
er (cells) 2
-100
_2?(1)00 0 - 100 0 - 100 0 - 100 0 100 0

e (cells) ec (cells) e (cells) ec (cells)

Figure 4: Modulus of the the normalized velocity as a function of the space and time: (a)
Nstep = 400, (b) ngtep = 500, (¢) ngtep = 600, (d) ngtep = 700, (€) ngtep = 800, (f) nstep = 900,
(8) nstep = 1000, (h) ngep = 1100, (i) ngep = 1200, (j) nstep = 1300, (k) ngep = 1400, (1)
Ngtep = 1500

©CMMSE Page 689 of 1797 ISBN: 978-84-616-2723-3

PERFORMANCE ANALAYSIS OF SSE INSTRUCTIONS IN MULTI-CORE CPUs AND GPU COMPUTING...

ative speed up between them has been computed and shown in Fig. 3g. As can be seen
the GPU version is near to 7 times faster than the fine-tuned CPU code and this behavior
remains constant as a function of the simulation size. The effect of the cache size in the
SSE4+OpenMP CPU version can be also seen in Fig. 3g for e, =~ 0.3. The slight differ-
ences in the relative speed up curves reveals that the GPU version is more competitive for
bigger simulation sizes, reaching values of near to 7. This value is significantly different
from the speed up values obtained in Fig. 3b, 3d and 3f. These results illustrates that a
fine-tuned CPU version can be competitive against a massively computational architecture
such as GPU in which the number of cores is hundred times greater than in a single CPU.
Nevertheless, the authors consider that GPU codes are mandatory in this type of applica-
tions in which the requirements in terms of grid size and time steps can be unaffordable for
sequential codes and even to multi-core processors.

Fig. 4 shows a sequence of the modulus of the scaled velocity as a function of the grid
size and the time-simulation steps. The pressure source is located near the upper right
corner. In the center of the domain there is a ring filled with a solid material (A = 1.95
GPa, 1 = 36 MPa and p=900 kg/m3). It can be easily seen that the propagation inside
the solid is faster rather in the fluid and also that different pheonomena can be identified
inside the ring. More specifically, Fig. 4d-f shows in the upper right side of the ring a set
of transversal waves that are reflected along the ring boundaries. The shear waves cannot
travel in fluid media thus, only longitudinal waves travels in the fluid hole inside the ring.
This sequence reveals in a qualitatively way the potential of this scheme and are consistent
with those obtained in [13]. The set-up of the FDTD method is the following: e, = 650,
e. = 300, Au = 3.7 mm, At = 1.77 ps and fiax = 40 kHz.

5 Conclusions

In this work a unified scheme for FDTD analysis of vibrations on fluid and solid media is
considered. A scaling factor has been introduced in the formulation in order to improve
its implementation and also for optimizing the vibration analysis in heterogenous media.
The formulation has been implemented in parallel hardware architectures such as multi-core
CPU and GPU. The CPU optimized version takes advantage of the SSE instructions and
also of the multiple cores available by means of OpenMP directives. The results reveal
that a fine-tuned CPU version can be competitive compared to GPU codes, since it reaches
speed ups closer to 7 compared to the auto-vectorized sequential version. Nevertheless,
GPU computing is mandatory for massively computations due to the fact that the speed
up obtained is up to 30. It’s worth to note that the speed up obtained from GPU codes can
vary dramatically as a function of the sequential code selected. In this work a comparison
between the multi-core CPU code acclerated with SSE and OpenMP is compared with
the GPU CUDA based code in order to establish accurately the degree of improvement

©CMMSE Page 690 of 1797 ISBN: 978-84-616-2723-3

J. FRANCES, S. BLEDA, A. MARQUEZ, C. NEIPP, S. GALLEGO, B. OTERO AND A. BELENDEZ

achieved revealing that GPU is slightly more than 5 times faster than the fine-tuned CPU
version. Finally, FDTD applied to the analysis of elastic waves in solids and fluids has
been demonstrated to have a low computational intensity, thus needing parallel strategies
in order to reduce the time simulation costs. The authors are considering to extend the
current work to 3-D and also to include the new AVX instructions available in modern
multi-core CPUs.

Acknowledgements

The work is partially supported by the “Ministerio de Economia y Competitividad” of
Spain under project FIS2011-29803-C02-01, by the Ministry of Science and Technology of
Spain number contract TIN2007-60625, and by the “Generalitat Valenciana” of Spain under
projects PROMETEO/2011/021 and ISIC/2012/013

References

[1] K. S. YEE, Numerical solution of initial boundary value problems involving Mazwell’s
equations in isotropic media, IEEE Trans. Antennas Propag. 14 (1966) 302-307.

[2] A. TAFLOVE AND S. C. HAGNESs, Computational electrodynamics: The Finite-
Difference Time-Domain method, Artech House, Norwood, MA, 2004.

[3] D. BOTTELDOOREN, Finite-difference time-domain simulation of low-frequency room
acoustic problems, J. Acoust. Soc. Am. 98 (1995) 3302-3308.

[4] J. LOVETRI, D. MARDARE, G. SOULODRE, Modeling of the seat dip effect using the
finite-difference time-domaim method, J. Acoust. Soc. Am. 100 (1996) 2204-2212.

[5] S. Z. WANG, Finite-difference time-domain approach to underwater acoustic scattering
problems, J. Acoust. Soc. Am. 99 (1996) 1924-1931.

[6] J. VIRIEUX, P-SV wave propagation in heterogeneous media; velocity-stress finite-
difference method, Geophysics 51 (1986) 889-901.

[7] S. H. CAa0 AND S. GREENHALGH, Finitedifference simulation of P-SV-wave propaga-
tion: a displacement-potential approach, Geophysical Journal International 109 (1992)
525-535.

[8] M. SATO, Y. TAKAHATA, M. TAHARA AND I. SAKAGAMI, Ezpression of contour

vibration modes of a square plate by scalar and vector velocity potentials, Acoustical
Science and Technology 23 (2002) 346-349.

©CMMSE Page 691 of 1797 ISBN: 978-84-616-2723-3

PERFORMANCE ANALAYSIS OF SSE INSTRUCTIONS IN MULTI-CORE CPUs AND GPU COMPUTING...

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

M. SATO, Formulation of the FDTD method for separating the particle velocity vectors
of an elastic wave field into longitudinal and shear wave components, Acoustical Science
and Technology 25 (2004) 382-385.

M. SAto, Comparing three methods of free boundary implementation for analyzing
elastodynamics using the finite-difference time-domain formulation, Acoustical Science
and Technology 28 (2007) 1346-3969.

J. FRANCES, J. RAMIS AND J. VERA, A 8D FDTD scheme for analysis of the elastic
wave fields in solids, In Proceedings of the ICSV16, 5-9 July, Krakéw, Poland (2009)
1-8.

T. OKAMOTO AND H. TAKENAKA, Large-scale simulation of seismic-wave propagation
of the 2011 Tohoku-Oki M9 earthquake Proceedings of the International Symposium
on Engineering Lessons Learned from the 2011 Great East Japan Earthquake (2011)
349-360.

N. JIMENEZ GONZALEZ, Simulacién de tejidos vegetales mediante diferencias finitas,
Tesis de Master, EPSG-UPV, 2009

J. FRANCES, S. BLEDA, C. NEIPP, A. MARQUEZ, I. PASCUAL AND A. BELENDEZ,

Performance analysis of the FDTD method applied to holographic volume gratings:
Multi-core CPU versus GPU computing, Comput. Phys. Comm. 184 (2013) 469-479.

C. T. SCHROEDER, W. R. ScoTT, On the stability of the FDTD algorithm for elastic
media at a material interface, IEEE Transactions on Geoscience and Remote Sensing
40 (2002) 474-481.

C. J. RANDALL, Absorbing boundary condition for the elastic wave equation: Veloci-
tystress formulation, Geophysics 53 (1989) 1141-1152.

T. SHREEKANT, T. HUFF, Internet streaming simd extensions, IEEE Computer Soci-
ety Press 32 (1999) 26-34.

J. FRANCES, S. BLEDA, S. GALLEGO, C. NEIPP, A. MARQUEZ, I. PASCUAL AND A.
BELENDEZ, Development of a unified FDTD-FEM library for electromagnetic analysis
with CPU and GPU computing, J. of Supercomputing 164 (2013) 28-37.

J. FRANCES, S. BLEDA, M. L. ALvAREZ, F. J. MARTINEZ, A. MARQUEZ, C. NEIPP,
A. BELENDEZ, Analysis of periodic anisotropic media by means of split-field FDTD
method and GPU computing, In Proc. of SPIE 84980 (2012) 84980K-84980K-9.

©CMMSE Page 692 of 1797 ISBN: 978-84-616-2723-3

