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ABSTRACT 
 
Origin-Destination (OD) trip matrices, which describe the patterns of traffic behavior 
across the network, are the primary data input used in principal traffic models and 
therefore, a critical requirement in all advanced systems that are supported by Dynamic 
Traffic Assignment models. However, because OD matrices are not directly observable, 
the current practice consists of adjusting an initial or seed matrix from link flow counts 
which are provided by an existing layout of traffic counting stations. The availability of 
new traffic measurements provided by Information and Communication Technologies 
(ICT) applications allows more efficient algorithms, namely for the real-time estimation 
of OD matrices based on modified Kalman Filtering approaches exploiting the new 
data. The quality of the estimations depends on various factors, like the penetration of 
the ICT devices, the detection layout and the quality of the initial information. 
Concerning the feasibility of real-time applications, another key aspect is the 
computational performance of the proposed algorithms for urban networks of sensitive 
size. This paper presents the results of a set of computational experiments with a 
microscopic simulation of a network of the business district of Barcelona, which 
explore the sensitivity of the Kalman Filter estimates with respect to the values of the 
design factors, and its computational performance.  
 
Keywords: Dynamic OD Estimation, Dynamic User Equilibrium (DUE), Traffic 
Detectors Layout, Kalman Filtering  
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INTRODUCTION 
 
Traffic assignment models have the objective of assigning a trip matrix onto a network, 
in terms of a route choice mechanism, in order to estimate the traffic flows in the 
network. Therefore, they all use Origin-Destination (OD) trip matrices as major data 
input for describing the patterns of traffic behavior across the network. All formulations 
of static traffic assignment models (Florian and Hearn [1], as well as dynamic, Ben-
Akiva et al. [2]) assume that a reliable estimate of an OD is available. However, OD 
matrices are not yet directly observable, even less so in the case of the time-dependent 
OD matrices that are necessary for Dynamic Traffic Assignment models; consequently, 
it has been natural to resort to indirect estimation methods. The main modeling 
hypothesis of these indirect estimation methods, or matrix adjustment methods, can be 
stated as follows: if traffic flows in the links of a network are the consequence of the 
assignment of an OD matrix onto a network, then, for a set of measured link flows, the 
problem of estimating the OD matrix that generates such flows can be considered as the 
inverse of the assignment problem (Cascetta [3]). Since the earlier formulation of the 
problem by Van Zuylen and Willumsen [4], the matrix adjustment problem has been a 
relevant research and practical problem. The current practices consist of using an initial 
OD estimate, the OD seed or OD target as input, and adjusting them from the available 
link counts provided by an existing layout of traffic counting stations and other 
additional information whenever it is available. Adjustments can be considered as 
indirect estimation methods, based either on discrete time optimization approaches 
(Codina and Barceló [5], Lundgren and Peterson [6]) or on adaptations of Kalman 
Filtering, [7], approaches (Ashok et al. [8], Antoniou et al. [9], Barceló et al. [10]).   
 
In this paper we assume that the usual traffic data collected by inductive loop detectors 
(i.e. volumes, occupancies and speeds) are complemented by accurate measurements of 
travel times and speeds between two consecutive sensors, based on new technologies, 
able to capture the electronic signature of specific on-board devices, such as a Bluetooth 
device on-board a vehicle. Data captured by each sensor is sent to a central server by 
wireless telecommunications for processing. This raw data after a suitable filtering and 
cleaning preprocessing, Barceló et al. [10], [11] and [12], is the main input to a new 
Kalman Filter approach for estimating time-dependent OD matrices. The proposed 
approach, which exploits the explicit travel time measurements from Bluetooth (BT)  
detectors, is based on a reformulation, [11], [12], of the Kalman Filter approach for 
freeways explored in Barceló et al, [10], that extends the approach to urban networks 
where alternative paths are available and route choice is relevant. This new approach 
exploits the measurements of travel times in order to reduce the number of state 
variables as well as to simplify the model.  
 
The computational results reported in [11], and especially in [12] probed in general 
terms the consistency and robustness of the new approach, with respect to its capability 
of reconstructing a known OD matrix in synthetic experiments. However, the results 
raised some questions, that could determine the utility of the procedure in real time 
applications, with respect to their dependency on the detection layout, in terms of the 
number and location of the ICT sensors, the % penetration of the ICT technologies, that 
is Bluetooth on board devices in our case, and the computational performance for 
networks of significant size. In this paper we explore the consistency of the estimated 
OD conducting a set of simulation experiments in the network of the Central Business 
District of the City of Barcelona. The experiment setting has been designed using three 
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main design factors: the detection layout, in terms of number and location of the ICT 
detectors, the % of vehicles equipped with Bluetooth devices, and the quality of the 
initial information that is the target OD matrix. In all experiments especial attention has 
been paid to the computational times. 
 
FACTOR 1: SETTING UP THE DETECTION LAYOUT  
 
In Barceló et al. [13] we dealt with the problem of how to choose a detection layout, for 
a matrix reconstruction of good quality, when most likely used OD paths and flows can 
be collected. The link detection layout problem was formulated by Yang and Zhou [14] 
as a set covering problem on links with additional constraints. An analysis of the 
advantages and disadvantages of various alternative formulations, in terms of the 
quality of the adjusted OD matrix can be found in the paper by Larsson et al. [15]. 
 
However, when dealing with sensors that capture the electronic signature, as the 
detectors of Bluetooth devices on board vehicles, the link detector location problem 
must be formulated in different terms by taking into account that these detectors are 
more efficiently located at intersections and not at links, where they can capture a 
higher number of vehicles.  Assuming that a Bluetooth sensor is located, as in Figure 1, 
at the intersection, in such a way that its detection lobule intercepts all equipped 
vehicles crossing the node on paths (1), (2), (3) and (4), the candidate intersections 
would be those intercepting a higher number of equipped vehicles. 
 
 
 
 
 
  
 
 
 

 
Figure 1 - Flows intercepted from paths crossing a node  

 
 
The detector location problem becomes then a node covering problem, Bianco et al. 
[16], instead of a link covering problem. In Barceló et al. [13] we explored a mixed 
formulation combining network topological aspects, as in [16], with an adaptation of 
Yang’s rules [14]. In this paper we are considering that in practice the location of 
traditional detectors, e.g. loop detectors, has been set up in the past, determined by the 
needs of traffic management sytems, therefore the possibility of locating new sensors 
only affects the new ICT sensors. In consequence the detection layout problem 
addressed in this paper only concerns the location of new ICT sensors that measure the 
travel times between two of them. The modified set covering formulation, used to 
determine the layouts for the computational experiments, is a modification of the model 
in Barceló et al. [13]. In this case, we propose a new formulation that includes a 
multiobjective function balancing the total flow captured and the number of intercepted 
paths in such a way that, if we maximize the multiobjective function, we are indirectly 
maximizing the set of covered OD pairs. Since our objective is balancing the total flow 

(1) (2) 

(3) 
(4) 
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captured and the number intercepted paths, the model includes two additional sets of 
constraints in order to: 
 

• Ensure a minimum number of detectors on each path, to achieve the objective of 
measuring travel time along the likely used paths, identified from a Dynamic 
User Equilibrium assignment using an historical OD matrix, and 

• Impose a condition of minimum linear distance between two detectors, which 
can be technologically justified to minimize the likelihood of improper detection 
due to signal overlapping.  

 
The proposed set covering formulation used in this paper has been: 
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In practice, budgetary limitations can impose a bounding constraint on the maximum 
number 𝑙  of detection stations that can be located on a network. Formulation (1) always 
provides a feasible solution although not all OD pairs and paths are covered. The 
percentages of total flow, OD pairs covered and paths intercepted provide a measure of 
the quality of the proposed layout. 
 
Experimental Design: Definition of Factor 1 Levels 
 
The first design factor used is the detection layout defined in terms of the number of the 
Bluetooth detectors inside the selected urban area, and their location.  A set of 
computational experiments has been conducted with various networks.  Due to the 
space limitations we discuss here only the results for the largest considered network, the 
Barcelona’s BCD district (Eixample), consisting of 2111 sections, 1227 nodes (grouped 
in intersections), 120 generation centroids, 130 destination centroids and a total of 877 
non-zero OD pairs.. Computational experiments have been conducted with a calibrated 
Aimsun model available from other projects it has been used to simulate a set of 
scenarios, each one corresponding to a level of Factor 1, the detection layout obtained 
solving model (1) for a value of the design parameter 𝑙. Under the assumption that 
Bluetooth sensors are located at inner intersections of the urban area, a measure of the 
quality of the layout, in terms of number and location of the detectors, [13], is 
determined by the indices: % of the total intercepted flow, % of OD pairs covered and 
% of DUE paths intercepted. Table 1 summarizes the numerical results for p = 2, m=150 
meters and values of 𝑙 that have been defined incrementally.  
 

BT 
Sensors 

QUALITY OF THE LAYOUT 

%INTERSECTIONS % TOTAL FLOW TOTAL OD PAIRS % OD PAIRS TOTAL PATHS % PATHS 

10 <1% 46.93 586 66.82 1551 51.07 

15 1.25% 59.34 636 72.52 1781 58.64 

30 2.5% 80.66% 747 85.18 2319 76.36 

45 3.75% 92.12 808 92.47 2672 87.98 

60 5% 98.38 857 97.72 2895 95.32 

75 6.25% 99.75 875 99.77 2980 98.12 

90 7.5% 99.97 877 100 3032 99.84 

 
Table 1 Summary of numerical results of the quality of Bluetooth sensor location in Eixample 

 
Table 1, summarizes the quality of the BT detection layout when it is incrementally 
increased. The layout covering is characterized in terms of the percentage of equipped 
intersections in the scenario, percentage of captured OD pairs, historic OD flows and 
DUE paths intercepted twice by the BT layout. The minimum number of BT sensors at 
nodes in the interior area, to cover 95% of DUE OD paths at least twice (p=2) in the 877 
OD pairs is 60, and the total captured flow is higher than 98%.  
 
SPACE-STATE MODEL FOR DYNAMIC ESTIMATION 
 
The space-state formulation based on Kalman Filtering, whose robustness is tested in 
this paper, is the recursive linear Kalman-Filter for state variable estimation, discussed 
in Barceló et al. [11], [12], adapted to exploit the travel times and traffic counts 
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collected respectively by tracking Bluetooth equipped vehicles and conventional 
detection technologies. 
 
The proposed approach assumes flow counting detectors and ICT sensors located in a 
cordon at each possible point for flow entry (centroids of the study area) and ICT 
sensors located at intersections in urban networks covering links to/from the intersection 
as in Figure 1. Flows and travel times are available from ICT sensors for any time 
interval length higher than 1 second. Trip travel times from origin entry points to sensor 
locations are measures provided by the detection layout. Therefore, they are no longer 
state variables but measurements, which simplify the model and make it more reliable. 
  
A basic hypothesis is that equipped and non-equipped vehicles follow common OD 
patterns. We assume that this holds true in what follows and that it requires a statistical 
contrast for practical applications. Expansion factors from equipped vehicles to total 
vehicles, in a given interval, can be estimated by using the inverse of the proportion of 
ICT counts to total counts at centroids; expansion factors are assumed to be shared by 
all OD paths and pairs with a common origin centroid and initial interval.  
 
The proposed linear formulation of the Kalman Filtering approach uses deviations of 
OD path flows as state variables, as suggested by Ashok and Ben-Akiva [8], calculated 
in respect to DUE-based Historic OD path flows for equipped vehicles. But our 
approach differs in that we do not require an assignment matrix. We use instead the 
subset of the most likely OD path flows identified from a DUE assignment. The DUE is 
conducted with the historic OD flows, and the number of paths to take into account is a 
design parameter. A list of paths going through the sensor is automatically built for each 
ICT sensor from the OD path description, ICT sensor location and the network 
topology. In this way, once an equipped car is detected by ICT sensor j, the travel time 
from its entry point to sensor j is available and it is used for updating time varying 
model parameters that affect OD paths (state variables) which are included in the list. 
 
We model the time-varying dependencies between measurements (sensor counts of 
equipped vehicles) and state variables (deviates of equipped OD path flows), adapting 
an idea of Lin and Chang [18], for estimating discrete approximations to travel time 
distributions.  Their estimation of these distributions is made on the basis of flow 
models which induce nonlinear relationships that require extra state variables, leading to 
a non linear KF approach. Since our approach exploits the travel ICT time 
measurements from equipped vehicles, we can replace the nonlinear approximations by 
estimates from a sample of vehicles. The main advantage is that no extra state variables 
for modeling travel times and traffic dynamics are needed, since sampled travel times 
are used to estimate discrete travel time distribution (H bins are used for adaptive 
approximations). Additionally, travel times collected from ICT sensors are incorporated 
into the proposed model and it is not necessary that vehicles reach their destination, 
since at any intermediate sensor that they pass by, the travel time measured from the 
entry point (centroid) to that sensor updates the discrete travel time approximation. No 
information about trajectories of equipped vehicles is used in this version.  
 
The demand matrix for the period of study is divided into several time-slices, 
accounting for different proportions of the total number of trips in the time horizon.  
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The approach assumes an extended state variable for M+1 sequential time intervals of 
equal length ∆t, M is the maximum number of time intervals required for vehicles to 
traverse the entire network in a congested scenario. 
 
The solution provides estimations of the OD matrices for each time interval up to the k-
th interval. State variables ( )kgijc∆  are deviations of OD path flows ( )kgijc  relative to 
historic OD path flows ( )kg ijc

~  for equipped vehicles. A MatLab prototype algorithm has 
been implemented to test the approach (named KFX2). 
 
Let I be the total number of origin centroids, identified by index i, i = 1,..,I; J the total 
number of destination centroids, identified by index j, j = 1,…,J; Q the total number of 
ICT sensors, identified by q=1,…Q,  where Q = I+P, I ICT sensors located at origins, 
and P ICT sensors located in the inner network; and K the total number of most likely 
used paths between origins and destinations. Let Qi(k) and qi(k) be respectively the 
number of vehicles and equipped vehicles entering from centroid  i at time interval k. 
Conservation equations from entry points (centroids) are explicitly considered. Without 
Qi(k), a generic expansion factor has to be applied. 
 
State Equations  
 
Let (k)Δg be a column vector of dimension IJK containing the state variables ∆gijc(k) 
for each time interval k for all most likely OD paths (i,j,c). The state variables ∆gijc(k)  are assumed to be stochastic in nature, and OD path flow deviates at current time k are 
related to the OD path flow deviates of previous time intervals by an autoregressive 
model of order r <<M; the state equations  are: 

( ) ( ) ( ) ( ) (2)k1wkw1k wΔgDΔg
r

1w
++−=+ ∑

=
 

Where w(k) are zero mean with diagonal covariance matrix Wk, and D(w) are  IJKxIJK  
transition matrices which describe the effects of previous OD path flow deviates ∆gijc(k-
w+1) on current flows ∆gijc(k+1) for w = 1,…,r . In the implementation tested we 
assume simple random walks to provide the most flexible framework for state variables, 
since no convergence problems are detected. Thus r=1 and matrix ( )wD  is the identity 
matrix.  
 
Observation Equations  
 
The relationship between the state variables and the observations involves time-varying 
model parameters (congestion–dependent, since they are updated from sample travel 
times provided by equipped vehicles) in a linear transformation that considers: 
• The number of equipped vehicles entering from each entry centroid during time 

intervals k, k-1, k-M, ( )kiq .  

• H<M time-varying model parameters in form of fraction matrices, ( )[ ]ku h
ijcq .  

Where the ( )kuh
iq  are the fraction of vehicles that require h time intervals to reach sensor 

q at time interval k that entered the system from centroid i (during time interval
( ) ( )[ ]thkthk ∆−∆−− ,1 ); and the ( )kuh

ijcq  represent the fraction of equipped vehicles 
detected at interval k whose trip from centroid i to sensor q might use OD path (i,j,c) 
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( ) (4)  
2

1 v(k)g(k)F(k)g(k)
E(k)

AU(k)T

+∆=







+∆








=∆

(k)v
(k)v

kz

lasting h time intervals of length ∆t to arrive from centroid i to sensor q, where i = 1,…,I 
, j = 1,…, J , Mh 1=  , Qq 1= . The H adaptive fractions that approximate h

iqu and 
h
ijcqu  are updated from measures provided by ICT sensors. Direct samples of travel times 

allow the updating of discrete approximations of travel time distributions, making it 
unnecessary to incorporate models for traffic dynamics. Time-varying model parameters 

h
iqu  to account for temporal traffic dispersion in affected paths h

ijcqu , have to satisfy 
structural constraints, where H<M: 

                
( )

( ) QqKcJjIiku

HhQqKcJjIiku

ij

H

h

h
ijcq

ij
h
ijcq

,...1    ,....1    ,....1    ,....1     1

...1   ,,...1    ,....1    ,....1    ,....1   0

max

1

max

=====

=====≥

∑
=

 (3) 

At time interval k, the values of the observations are determined by those of the state 
variables at time intervals k, k-1, …k-M.  
 
 
 
Where (k)v  are white Gaussian noises with covariance matrices kR . U(k) consists of 
diagonal matrices ( )MkUkU −,),(   containing ( )ku h

ijcq . For )( hkU − is a matrix with 
the estimated proportion of equipped vehicles whose travel time from the access point 
to the network takes h intervals and goes through the q sensor at interval k. E(k) is a 
row matrix of dimension I containing 0 for columns related to state variables in time 
intervals  Mkk −− ,,1  and defining conservation of flows (sum of OD path flows for 
each entry) at k. And A is a matrix that adds up sensor traffic flows from any possible 
entry, given time-varying model parameters at interval k. )F(k  maps the state vector 

)g(k∆  onto the current blocks of measurements at time interval k: counts of equipped 
vehicles by sensors and entries at centroids, accounting for time lags and congestion 
effects. Deviate counts at k mean the observed counts minus the historical demand 

( )kg ijc
~  counts, given the current traffic conditions according to time-varying model 
parameters.  
 
EXPERIMENTAL DESIGN: Factors 2 and 3 
 
To test the robustness of the proposed space-state formulation based on Kalman 
Filtering exploiting the ICT measurements provided by Bluetooth sensors, a set of 
computational experiments has been conducted for each combination of levels of the 
three design factors. The computational experiments have been conducted with an 
Aimsun microscopic simulation model of the test network, including   an emulation of 
loop detectors and Bluetooth sensors in order to reproduce the data collection. The 
computational experiments assume that loop detectors are located only at the entry 
centroids of the study area, no additional counts are assumed from loop detectors inside.  
 
The levels of design factor 2 correspond to the assumed values of the market penetration 
of the Bluetooth technology. As discussed in [10] and [11] the current penetration in 
many European and eastern countries is in average higher than the 15%, in Barcelona 
the measured values reported by manufacturers is greater than 30%, and show a steadily 
increasing trend. Therefore, to be on the safe side, we have considered values in the 
range 10%-50% and, only for comparison purposes, a hypothetical scenario with 100% 
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penetration. However, we should not forget that the actual percentage of vehicles 
equipped with Bluetooth devices is a variable fraction of the total number of vehicles in 
the area, which depends on many socioeconomic factors and may change with the time 
of the day, therefore, to expand the sample of Bluetooth data at entry points additional 
loop detectors are necessary, or a common expansion factor equal to the inverse of the 
penetration rate in the study area has to be used.  
 
To determine the levels of design Factor 3 a synthetic Historical Origin-Destination 
matrix has been used. This OD matrix has been estimated to represent the transition to 
the congested situation according to the MFD (MacroFundamental Diagram, Daganzo 
and Geroliminis, [19]) which provides an overall picture of the flow-density 
relationship. The horizon study is 1h and 15 minutes and the OD is sliced into five 15-
minute slices with the same OD pattern --each one accounting for 20%, 28%, 20%, 12% 
and 20% of the total number of trips, 59774 -- to emulate demand variability. 
 
Figure 2 depicts the methodological framework for the definition of simulation 
experiments. The assumed OD matrix is the result of perturbing the true historical 
matrix to define the levels of Factor 3. 

 
Figure  2. Methodological Design of the Computational Experiments by Simulation 

 
The fixed OD pattern considered in the historical OD matrix provides a simple way to 
build perturbed matrices, by changing OD pattern in subsets of origin centroids, that 
will be the assumed ‘false’ historical matrices in the simulation experiments, to test if 
the KF algorithm is able to converge to the ‘true’ historical OD matrix. We do not 
impose any restriction related to fixed OD pattern across time-slices in the KF 
formulation. 
 
Tuning parameters (not considered as design factors) are not discussed in this paper, 
although the tuning for a network requires a good knowledge of the network, Barceló et 
al. [12]: 

• Deviate tuning parameter (ν1) is set to 0.5 when deviates are considered or 0 
otherwise. 

• Interval length Δt. (∆t = 180 seconds has been used) 
• The time-interval for modeling purposes in the KF approach is 3 min 
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Design factors in computational experiments are then: 
 

Factor 1. The quality of the BT detection layout in the interior of the study area, 
defined in Table 1.  

Factor 2. The variable percentage of BT equipped vehicles, with levels of 10%, 
20%, 30%, 50% and 100%. 

Factor 3. The initialization of the state variables ( )0ijcg∆  is set to 0. That is, OD 
path flows are equal to the assumed historical OD path flows for all time intervals, 
and the OD paths are the most likely used paths from a DUE assignment. The levels 
of Factor 3  depend on the following situations: 
a) Level NoHA: No deviates are computed, no a priori information about the 

historical matrix (reliable or not) is considered. 
b) Level HA0: The perturbed matrix is the true historical matrix and deviates of the 

state variables are computed assuming an equal fraction of use of all the OD 
paths belonging to an OD pair and true historical OD flow affected by (ν1). This 
is an excellent initialization point. 

c) Level HAx: The perturbed matrix is the maximum entropy without a priori 
information applied to the marginal generation totals of the true historical matrix 
and deviates of the state variables are computed assuming an equal fraction of 
use of all the OD paths belonging to an OD pair and perturbed matrix affected 
by (ν1). This is an awful initialization point. 

 
Collected Performance Indicators 
 
Target OD flows per interval are compared with estimated OD flows per interval at OD 
pair level by means of Theil’s coefficient, a measure on how close two time series are; 
bounded between 0 and 1, U=0 representing a perfect fitting, and U=1 an unacceptable 
discrepancy. Values of U>0.2 recommend rejecting the fit. Theil’s coefficient (U) can 
be computed for each OD pair or for a subset of OD pairs (i.e., defined by the quartiles 
of hourly historical OD flows). If all feasible OD pairs are considered, then a global 
Theil measure of fit, GU, is computed as: 

( )

∑ ∑∑ ∑
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(5) 

 
Other performance indicators used either at OD pair, or set of OD pair levels, are the 
normalized root mean square error (RMSEN), a weighted indicator for subsets of OD 
pairs (usually subset of OD pairs whose hourly flow is in 25% of higher flows) and a 
weighted global indicator for the whole set of OD pairs (GRMSEN, sum of squared 
differences between target and estimated path flows per interval, relative to total target 
flows during the simulation horizon): 
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(6) 

Where G is the number of time intervals G=25 (since 1h15min is the considered time 
horizon) and IJ is the number of OD pairs, IJ=877 in our test network. 
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COMPUTATIONAL RESULTS 
 
Table 2 summarizes the computational results for the set of experiments. Values in the 
table are for the proposed global performance indicators, U and RMSEN, and the 
coefficient of determination R2. Each sub-table corresponds to a level of Factor 3 and all 
levels of Factors 1 (Rows) and 2 (Columns). Sub-tables (2A), (2B) and (2C) describe 
respectively the results for experiments with Level HA0, HAx and NoHA of Factor 1, 
and combinations of all levels of Factors 1 and 2.   

Factr 1  
 # BT 
Inner 
Sensors 

(2A) Factor 3 Level HA0 
Factor 2 % of BT 

10% 20% 30% 50% 100% 
GU RMSEN R2 GU RMSEN R2 GU RMSEN R2 GU RMSEN R2 GU RMSEN R2 

10 0.74 
(0.48) 

230% 
(135%) 

88.5% 
(82.6%) 

0.64 
(0.38) 

213% 
(92%) 

90.7% 
(85.7%) 

0.56 
(0.32) 

193% 
(78%) 

92.5% 
(88.3%) 

0.49 
(0.25) 

147% 
(53%) 

93.2% 
(89.3%) 

0.34 
(0.15) 

86% 
(32%) 

93.6% 
(89.8%) 

30 0.74 
(0.48) 

230% 
(136%) 

89.9% 
(85.0%) 

0.64 
(0.38) 

213% 
(93%) 

92.2% 
(88.3%) 

0.56 
(0.32) 

193% 
(78%) 

93.5% 
(90.1%) 

0.49 
(0.25) 

148% 
(54%) 

94.1% 
(90.9%) 

0.35 
(0.16) 

87% 
(33%) 

94.5% 
(91.5%) 

45 0.74 
(0.48) 

230% 
(136%) 

90.0% 
(85.4%) 

0.64 
(0.38) 

214% 
(93%) 

91.5% 
(87.2%) 

0.56 
(0.32) 

193% 
(78%) 

93.0% 
(89.4%) 

0.49 
(0.26) 

148% 
(55%) 

93.6% 
(90.2%) 

0.35 
(0.17) 

87% 
(34%) 

94.0% 
(90.7%) 

60 0.74 
(0.48) 

231% 
(136%) 

90.4% 
(86.1%) 

0.65 
(0.39) 

214% 
(94%) 

91.9% 
(87.9%) 

0.56 
(0.33) 

193% 
(79%) 

93.1% 
(90.3%) 

0.49 
(0.26) 

149% 
(55%) 

93.7% 
(90.3%) 

0.35 
(0.17) 

88% 
(35%) 

94.0% 
(90.8%) 

75 0.74 
(0.48) 

230% 
(135%) 

90.8% 
(86.7%) 

0.65 
(0.38) 

214% 
(94%) 

92.2% 
(88.3%) 

0.56 
(0.32) 

193% 
(79%) 

93.3% 
(89.8%) 

0.49 
(0.26) 

149% 
(55%) 

93.9% 
(90.6%) 

0.35 
(0.17) 

88% 
(34%) 

94.1% 
(91.0%) 

90 0.74 
(0.48) 

231% 
(136%) 

90.5% 
(86.2%) 

0.65 
(0.39) 

214% 
(94%) 

92.2% 
(88.5%) 

0.56 
(0.33) 

194% 
(79%) 

93.1% 
(89.6%) 

0.49 
(0.26) 

149% 
(55%) 

93.8% 
(90.5%) 

0.35 
(0.17) 

88% 
(35%) 

94.0% 
(90.9%) 

 
Factr 1  
 # BT 
Inner 
Sensors 

(2B) Factor 3 Level HAx 
Factor 2 % of BT 

10% 20% 30% 50% 100% 
GU RMSEN R2 GU RMSEN R2 GU RMSEN R2 GU RMSEN R2 GU RMSEN R2 

10 0.70 
(0.53) 

247% 
(136%) 

74.7% 
(70.1%) 

0.60 
(0.43) 

264% 
(95%) 

76.8% 
(72.6%) 

0.54 
(0.37) 

295% 
(78%) 

78.2% 
(75.3%) 

0.47 
(0.31) 

265% 
(59%) 

79.1% 
(76.3%) 

0.39 
(0.23) 

206% 
(39%) 

79.4% 
(76.7%) 

30 0.70 
(0.53) 

247% 
(136%) 

77.2% 
(74.3%) 

0.60 
(0.44) 

265% 
(95%) 

79.4% 
(77.1%) 

0.54 
(0.37) 

295% 
(79%) 

80.2% 
(78.6%) 

0.48 
(0.32) 

265% 
(60%) 

80.9% 
(79.3%) 

0.39 
(0.24) 

206% 
(41%) 

81.3% 
(80.0%) 

45 0.70 
(0.54) 

248% 
(137%) 

77.5% 
(75.1%) 

0.61 
(0.44) 

265% 
(96%) 

78.5% 
(75.8%) 

0.54 
(0.37) 

295% 
(80%) 

79.6% 
(77.9%) 

0.48 
(0.32) 

265% 
(61%) 

80.4% 
(78.8%) 

0.39 
(0.24) 

206% 
(42%) 

80.8% 
(79.4%) 

60 0.70 
(0.53) 

247% 
(137%) 

78.2% 
(76.1%) 

0.61 
(0.44) 

264% 
(97%) 

79.2% 
(76.8%) 

0.54 
(0.38) 

294% 
(80%) 

79.9% 
(78.2%) 

0.48 
(0.32) 

264% 
(61%) 

80.7% 
(78.9%) 

0.39 
(0.24) 

205% 
(43%) 

81.0% 
(79.5%) 

75 0.70 
(0.53) 

247% 
(136%) 

79.1% 
(77.5%) 

0.60 
(0.44) 

264% 
(96%) 

80.0% 
(78.0%) 

0.54 
(0.37) 

293% 
(80%) 

80.6% 
(79.1%) 

0.48 
(0.32) 

264% 
(61%) 

81.4% 
(79.9%) 

0.39 
(0.24) 

204% 
(42%) 

81.6% 
(80.4%) 

90 0.71 
(0.53) 

247$ 
(137%) 

78.8% 
(77.0%) 

0.60 
(0.44) 

264% 
(97%) 

80.2% 
(78.4%) 

0.54 
(0.37) 

293% 
(80%) 

80.5% 
(79.1%) 

0.48 
(0.32) 

264% 
(61%) 

81.4% 
(79.9%) 

0.39 
(0.24) 

204% 
(43%) 

81.4% 
(80.3%) 

 
Factr 1  
 # BT 
Inner 
Sensors 

(2C) Factor 3 Level NoHA 
Factor 2 % of BT 

10% 20% 30% 50% 100% 
GU RMSEN R2 GU RMSEN R2 GU RMSEN R2 GU RMSEN R2 GU RMSEN R2 

10 0.78 
(0.53) 

234% 
(143%) 

79.9% 
(72.2%) 

0.70 
(0.45) 

219% 
(103%) 

81.9% 
(74.7%) 

0.63 
(0.40) 

202% 
(91%) 

83.5% 
(77.1%) 

0.57 
(0.34) 

159% 
(68%) 

84.4% 
(78.2%) 

0.46 
(0.27) 

103% 
(51%) 

84.7% 
(78.8) 

30 0.78 
(0.53) 

234% 
(143%) 

81.2% 
(74.3%) 

0.70 
(0.45) 

220% 
(103%) 

83.3% 
(77.0%) 

0.63 
(0.40) 

202% 
(91%) 

84.5% 
(78.7%) 

0.57 
(0.34) 

159% 
(69%) 

85.3% 
(79.7%) 

0.46 
(0.28) 

103% 
(52%) 

85.7% 
(80.4%) 

45 0.78 
(0.53) 

234% 
(144%) 

81.6% 
(75.1% 

0.70 
(0.45) 

220% 
(104%) 

83.0% 
(76.7% 

0.63 
(0.40) 

202% 
(92%) 

84.4% 
(78.7%) 

0.57 
(0.34) 

159% 
(69%) 

85.3% 
(79.8%) 

0.46 
(0.28) 

103% 
(54%) 

85.6% 
(80.4%) 

60 0.78 
(0.53) 

234% 
(144%) 

82.1% 
(75.8% 

0.70 
(0.45) 

220% 
(104%) 

83.5% 
(77.4%) 

0.63 
(0.40) 

202% 
(92%) 

84.7% 
(78.9%) 

0.57 
(0.34) 

159% 
(69%) 

85.5% 
(80.0%) 

0.46 
(0.28) 

103% 
(53%) 

85.9% 
(80.6%) 

75 0.78 
(0.53) 

234% 
(143%) 

82.7% 
(76.6% 

0.70 
(0.45) 

220% 
(104%) 

84.0% 
(78.1%) 

0.63 
(0.40) 

202% 
(91%) 

85.1% 
(79.5%) 

0.57 
(0.34) 

159% 
(69%) 

86.0% 
(80.7%) 

0.46 
(0.27) 

103% 
(52%) 

86.3% 
(81.2%) 

90 0.78 
(0.53) 

234% 
(143%) 

82.7% 
(76.6% 

0.70 
(0.45) 

220% 
(104%) 

84.3% 
(78.7% 

0.63 
(0.40) 

202% 
(91%) 

85.3% 
(79.8%) 

0.57 
(0.34) 

159% 
(69%) 

86.2% 
(81.0%) 

0.46 
(0.28) 

104% 
(52%) 

86.4% 
(81.5%) 

 
Table  2.  Experimental results, global values of performance indicator GU, RMSEN, R2 for all 

combinations of levels of design Factors 1, 2 and 3. Values in parenthesis correspond to 4th 
Quartile OD flows. 
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Level HA0 of Factor 3 is the best initialization possible it is recommendable for sites 
whose available historical matrix is reliable. Level HAx of Factor 3 is the worst possible 
initialization and could be used in sites when no historical matrix is available. Results 
for Level NoHA of Factor 3 when the formulation does not include deviates that is no a 
priori historical information is used show that GU indicator has a poor behavior, but R2 
and RMSEN show a better performance. If historical matrices are not reliable, its use is 
not recommendable. A deeper statistical analysis of results in Table 2 reveals that: 
 
• When the a priori information of the historical OD matrix is reliable (reflected in the 

perturbed matrix) the quality of the fit is improved as it is reflected in all goodness of 
fit indicators.  

• The coefficient of determination between estimated and observed OD flows 
increases slightly when the number of BT inner sensors increases and Theil’s 
coefficient and RMSEN (either global or belonging to the fourth quartile OD flows) 
become stable. 

• When the %BT equipped vehicles decreases all performance indicators decrease, 
showing that the effect of BT rates is stronger than the detection layout or the quality 
of the a priori historical matrix, although non-additive factor effects on RMSEN 
indicator are appreciated. 

• The Kruskall-Wallis nonparametric statistical test for means of the R2, coefficient of 
determination of the fit, shows that the gross effect of the number of inner BT 
sensors is not significant at a confidence level of 95%, but the gross effects of the 
BT% of equipped vehicles and the quality of the a priori historical matrix show 
statistical significance, either globally or considering the most important OD pairs, 
for R2 indicator (see Figure 3). 

 
Figure 3. Boxplot for R2 of OD flows in 4rt quantile vs #BT Inner Sensors (Factor 1), %BT 

Equipped Vehicles (Factor 2) – And levels of Factor 3. 
 
• The same nonparametric test for the global RMSEN indicator, shows that the gross 

effects of the number of inner BT sensors is not significant at a confidence level of 
95%, but the gross effects of the BT% of equipped vehicles and perturbation level 
are significant.  

• Similar results are obtained for the global GU indicator.  
• The general linear model for analysis of variance/covariance for Factors 1 to 3, after 

validation of the auxiliary regression models, shows that: 
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o GU for Q4 OD pairs is affected by %BT equipped vehicles and the 
reliability of the a priori historical matrix (to compute deviates). 

o GU is affected by all 3 factors being %BT equipped vehicles the most 
important and Factor 3 the second.  

o RMSEN for OD pairs with flows in the fourth quartile is affected by all 3 
factors and %BT equipped vehicles at the conventional 95% level of 
confidence is the most important. See Figure 4. Similar results can be 
observed for GU. 

 
Figure 4. Influence on RMSEN of  Factor 2 (%BT Equipped Vehicles) and Factor 3. Fourth 

quartile OD pairs (left). All OD pairs (right) 
 

o The R2 coefficient for fitted and observed OD flows in the fourth quartile 
depends on the 3 factors. A covariate treatment for Factor 1 (Number of BT 
sensors, NbBTIS) and Factor 2 (% of BT devices, PerEqBT) gives, a 
validated additive NbBTIS + second degree polynomial (PerEqBT)+Factor3 
ancova model. The graphics in Figure 5,  for the fourth quartile total OD 
flows illustrate the dependency of R2 on the levels of Factor 1 (NbBTIS), 
Factor 2 (PerEqBT) and Factor 3. The left tridimensional display clearly 
discriminates the role of the quality of the a priori information as defined in 
Factor 3. 
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Figure 5. R2 Fitted vs Target OD flows (1h 15min) according to #BT Inner Sensors (Factor 1) 
and %BT Equipped Vehicles (Factor 2) – A priori Historical Matrix use (Factor 3).  Only Q4 

OD pairs 
 
COMPUTATIONAL PERFORMANCE 
 
We pointed out in the introduction that one of the critical aspects for the practical 
application of these techniques, to support traffic management decisions, is the heavy 
computational loadings that usually require these methods. A review of the literature, 
see for instance [8], [9], [18] or [20], shows that most of the experimental results have 
been obtained either for toy networks, or for two widely accepted test beds, the Central 
Artery/Third Harbor Tunnel network in Boston, a medium-scale network, with 211 
links and 183 nodes and 10 OD pairs; and the Irvine, CA traffic network, which consists 
of three freeway corridors (I-5, I-405, Highway 133) and other main arterials, it includes 
61 OD zones, 326 nodes and 626 links. We are not aware of computational experiments, 
based on similar approaches, in urban networks like the one used in this paper, both in 
terms of number of links, nodes and OD pairs, and of network complexity, reflected by 
the number of significant paths between OD pairs. Unfortunately there are no references 
on the computational times, but a paper by Bierlaire and Critin, [21], allows us to 
assume that they should be unacceptably high, as they investigate alternative numerical 
implementations with the purpose of reducing significantly the computational burden. 
Unfortunately the results measured in terms of mflops do not allow a direct comparison. 
Therefore a critical question for us was to investigate whether the alternative KF 
approach, exploiting the ICT measurements, could be fast enough to open the door to 
actual real-time applications. 
 
We have conducted our experiments in a Windows 7 – 64 bits – 8 GB RAM -Intel Core 
i7-2600 (8M,3,40 GHz) 4C/8T. In Table 3, the total CPU time for executions consisting 
on reading  the microsimulation emulation of real-time data measurements and, interval 
by interval, perform a Kalman iteration. There are 25 intervals of 3 min in the defined 
1h 15min time-horizon. Each Kalman iteration takes 7.6 to 10.2 CPU sec depending on 
the number of BT Sensors and the number of BT equipped vehicles. For a 10 intervals 
forecasting (half an hour), the CPU time ranges from 1 to 2 min and makes the proposal 
suitable for real-time applications. 
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CPU time 
(sec) 

Factor 2: % BT Equipped Vehicles 
10 20 30 50 100 

 10 245 260 265   
 30 290 295 290 295 290 
Factor 
1: Nb 
BT 
Sensors 

45 - 330 315 380 350 
60 - 335 350 370 380 
75 340 350 370 395 405 
90 435 375 - - - 

Table 3. KFX2 CPU Time in seconds for a time-horizon of 1h15min discretized in  
3 min subintervals 

 
CONCLUSIONS 
 
The computational experiments presented in this paper probe the robustness and quality 
of the real-time OD estimates of the proposed KF approach exploiting ICT 
measurements. Robustness has been tested in terms of the three main factors 
determining the quality of the results: the number and layout of the ICT sensors, the 
percentage penetration of the ICT technology and the quality of the initial OD 
information. The experiments have been conducted with a realistic network of 
significant size as Barcelona’s CBD network. The importance of the results relies in the 
possibility of applying a linear KF approach for estimation of dynamic OD matrices in a 
real-time traffic management system, since a half hour forecast is reliable in less than 2 
minutes of calculations, using standard software as Matlab. Obviously an ad hoc 
implementation could significantly reduce these times. 
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