
Noname manuscript No.
(will be inserted by the editor)

A Robot Learning from Demonstration Framework to Perform
Force-based Manipulation Tasks

Received: date / Accepted: date

Abstract This paper proposes an end-to-end learn-
ing from demonstration framework for teaching force-
based manipulation tasks to robots. The strengths of
this work are many-fold: first, we deal with the prob-
lem of learning through force perceptions exclusively.
Second, we propose to exploit haptic feedback both
as a means for improving teacher demonstrations and
as a human-robot interaction tool, establishing a bi-
directional communication channel between the teacher
and the robot, in contrast to works using kinesthetic
teaching. Third, we address the well-known what to im-
itate? problem from a different point of view, based on
the mutual information between perceptions and ac-
tions. Lastly, the teacher’s demonstrations are encoded
using a Hidden Markov Model, and the robot execution
phase is developed by implementing a modified version
of Gaussian Mixture Regression that uses implicit tem-
poral information from the probabilistic model, needed
when tackling tasks with ambiguous perceptions. Ex-
perimental results show that the robot is able to learn
and reproduce two different manipulation tasks, with a
performance comparable to the teacher’s one.

Keywords Programming by demonstration · Imita-
tion learning · Haptic perception ·Mutual Information ·
HMM · GMR · Robotic Manipulation

1 Background and Related Work

One of the main challenges in Robotics is to develop
robots that can interact with humans in a natural way,
sharing the same dynamic and unstructured environ-

ments. Learning from demonstration (LfD)1 is a type
of human-robot interaction (HRI) whose purpose is to
transfer knowledge or skills to the robot. Here, a hu-
man user carries out examples of a given task while a
robot observes these executions and extracts relevant
information for learning, representing and reproducing
the taught task under unknown conditions [1,2].

HRI requires suitable communication channels for
conveying information between a human and a robot
[3,4]. In LfD, most existing works rely on vision or on
motion sensors as input channels to the robotic system.
As for vision-based input, positional information about
the objects in the scene is captured with a set of cam-
eras, which are also used to locate and follow markers
placed on the teacher’s body [5,6]. Most state-of-the-
art approaches consider vision as the best choice for
extracting information from teacher examples, as hu-
man beings do in everyday tasks [7,8]. However, vision-
based systems must deal with typical problems as oc-
clusion, appearance changes and complex human-robot
kinematics mapping, which can be partly solved by us-
ing motion sensors instead. Such type of sensors allows
to track the teacher’s motion more precisely and to es-
tablish a simpler mapping, which make them appropri-
ate to teach tasks to humanoid robots [5,9–11].

In contrast to these works, we are concerned with
learning from force-based perceptions. Force conveys
relevant information for several tasks where vision or
motion sensors can not provide sufficient data to learn
a motion or a set of primitives. In many daily tasks, peo-
ple use force-based perceptions to perform successfully.
Examples include assembly processes, opening doors,
pulling drawers, cutting slices of bread, etc. Robots

1 Also known as programming by demonstration or imita-
tion learning.

cetto
Text Box
Leonel Rozo · Pablo Jiménez · Carme Torras

2

Fig. 1 Entire learning framework. (Top) Task learning stage. (Bottom) Robot execution stage. The filtering module consists
of the signal processing to achieve a high fidelity bidirectional communication channel. The feature selection block corresponds
to the proposed solution for the What to Imitate? problem through mutual information analysis.

may also take advantage of force-torque information for
learning this kind of tasks. Evrard et al. [12] proposed
a learning structure similar to ours, where a humanoid
robot learns to carry out collaborative manipulation
tasks (object-lifting along a vertical axis) using force
data. An extension of this research [13], combines LfD
and adaptive control for teaching the task, endowing
the robot with variable impedance and an adaptive al-
gorithm to generate different reference kinematic pro-
files depending on the perceived force. Kormushev et
al. [14] proposed to use a haptic device for defining the
force profile of contact-based tasks (ironing and door
opening) while the robot follows a previously learned
trajectory. This cited work uses kinesthetic guidance
and does not exploit haptic feedback as a tool for im-
proving teacher demonstrations, thus avoiding several
challenging problems arising when clean and realistic
signals are to be displayed to the human during the
demonstrations. We contribute a complete force data-
based learning framework that includes filtering pro-
cesses and high-fidelity haptic feedback. This estab-
lishes a force-based bidirectional communication chan-
nel, which has seldom been exploited as a human-robot
interaction tool in LfD in contrast to kinesthetic-based
teaching and vision-based systems.

Another point to be addressed in LfD is related to
the learning level of the task. Teacher demonstrations
may be encoded at a symbolic level, where the task is
often represented as state-action pairs in a graph-like
structure [15,16], or as motion primitives following hier-
archical approaches [17,18]. At trajectory level, on the
other hand, the aim is that the robot extracts a gen-
eralized trajectory (movement) from slightly different
teacher executions [19–21]. Unlike the cited works, our
contribution mixes concepts from these two levels as

the same goal may be reached from different trajecto-
ries or initial states of the task. We propose to encode
the demonstrations through a set of states using a Hid-
den Markov Model (HMM) and to execute the skill
using a modified version of Gaussian Mixture Regres-
sion (GMRa) that exploits the temporal coherence of
the task at hand.

Regardless of the particular approach, researchers
have to deal with three main problems: what to imi-
tate?, how to imitate? and when to imitate? [22]. The
first question refers to extracting the most relevant in-
formation of the task necessary to learn and reproduce
it successfully. The second key question addresses the
problem of how the robot can reproduce the task based
on the teacher executions. The third problem is related
to the timing of the learning phase based on the robot
perceptions (observations). In this paper, we propose to
solve the first issue through Mutual Information (MI)
analysis, and to tackle the second problem through an
HMM/GMRa-based framework, as shown in Figure 1.

This paper is organized as follows: Section 2 de-
scribes our experimental setup and the two manipula-
tion tasks taught to the robot. Section 3 explains how
we tackle the what to imitate? problem by extracting
the most relevant features of the tasks via MI. After, in
Sections 4 and 5, the learning and reproduction phases
are described respectively, first, illustrating the statis-
tical encoding of the demonstrations by using an HMM
and then, showing how the implicit temporal informa-
tion in HMM is exploited at the execution stage (the
entire process is shown in Figure 1). Section 6 shows
computational and robot execution results. Finally, the
conclusions of this paper and future work are presented
in Section 7.

A Robot Learning from Demonstration Framework to Perform Force-based Manipulation Tasks 3

2 Experimental Setups

To test our learning framework based on force percep-
tions, we constructed an experimental setup to teach a
robotic manipulator to carry out two different manipu-
lation tasks using exclusively haptic data. In both sce-
narios a human user holding the end-effector of a 6-DoF
haptic interface (Delta device from Force Dimension)
teleoperates a robotic arm (RX60 from Stäubli) which
has a force-torque sensor (Shunk FTC-050) placed on
its wrist.

Force-based perceptions are feedback to the teacher
in order to establish a bidirectional communication chan-
nel during the demonstration stage. This implies to
work at a minimum frequency of 1000 Hz to have a
high fidelity force reflection and a stable teleoperation
system, which greatly depend on the executed processes
between the position sensing of the haptic device and
when the sensed force is reflected on it. Our experimen-
tal setup takes such requirement into account and guar-
antees a high bandwidth communication in the haptic
loop.

Two different tasks are proposed to test and ana-
lyze the performance of the proposed framework. Their
particular features are described below.

2.1 Ball-in-box Task

In this task the robot holds a plastic container with
a steel sphere inside it, as shown in Figure 2. At the
demonstration phase, the teacher repeatedly carries out
the task to be learned, which consists of taking the ball
out of the box through the hole, following a specific mo-
tion strategy: Starting at some predefined initial posi-
tions, the ball is driven towards the wall adjacent to the
hole, and then forced to roll along this wall to the hole
(see Figure 2). During the demonstrations, the teacher
feels at the end-effector of the haptic device the force-
torque sensed at the robotic wrist. Note that the teacher
has an additional information source by watching the
scene directly. No visual data are provided to the robot.
We like to emphasize that this particular manipulation
task has been chosen because it is well-defined and sim-
ple enough to permit analyzing each stage of the pro-
posed LfD framework separately and in depth.

2.1.1 Filtering Processes

A first experimental finding derived from the use of
haptic feedback in this bidirectional learning frame-
work is the need for filtering. Several people tested
the experimental setting, by teleoperating the robotic

Fig. 2 Experimental scenario of the ball-in-box task. (At the
bottom right corner) Initial positions of the ball for the train-
ing phase and motion strategy followed by the teacher. Num-
bering is counterclockwise.

arm through the haptic interface while receiving force-
torque feedback from the sensor mounted on the robotic
wrist. Initially, they teleoperated the robot while feel-
ing both the container’s mass and the ball’s dynamics.
Then, they carried out the same task just feeling the
ball’s dynamics. All the participants argued that the
presence of the container’s mass was a very distracting
factor making the task more difficult to teach. Thus,
filtering and dynamic compensation are necessary to
obtain better demonstrations and to improve the bidi-
rectional communication channel, as explained below.

Formally, the force-torque signals from the sensor
can be expressed as:

F /T s = F /T b + F /Tm + ε (1)

where F /T b corresponds to the ball dynamics, F /Tm

represents the container mass and ε is the noise (where
we include the container vibrations). For achieving a
clean and stable communication channel between the
human and the robot, it is necessary to display only rel-
evant force-torque signals to the teacher, that is, those
corresponding to the dynamics of the ball inside the
container. Therefore force-torque produced by noise and
the container’s mass must be removed before sending
force information to the haptic controller.

Since the box is not a perfectly rigid structure, it vi-
brates as the robot moves. These unwanted vibrations
introduce noise in the teleoperation system, leading to
unstable behavior. To avoid this, we implemented a
low-pass digital filter that cuts out all vibration sig-
nals on the force-torque sensor in such a way that the

4

ε effects in Equation 1 are greatly reduced, in a simi-
lar way as done in [23] for suppressing residual vibra-
tions in flexible payloads carried by robot manipula-
tors. We computed the signals’ fundamental frequency
by subjecting the container – with the ball inside –
to vibrations through a force applied perpendicularly
to the container’s base, at the front edge of it. Then,
the frequency spectrum of the generated data was an-
alyzed, from which we obtained the fundamental fre-
quency (7.5Hz) as the cutoff frequency of our low-pass
filter. Using MATLAB R⃝’s FDAtool, we designed the
filter by implementing the Constrained Least Squares
technique whose order was 75 [24].

2.1.2 Dynamic Compensation

During the demonstration stage, most of the people act-
ing as teachers declared that having to compensate the
container’s mass while executing the demonstrations
makes it considerably harder to focus on the task’s goal.
Therefore, we model the effects of the container’s mass
dynamics on the force-torque signals with the aim of
removing them and just sending perceptions conveying
the ball’s motion (similarly as in [25,26]). Considering
the system shown in Figure 3, let p denote the position
of the center of gravity of the container, ω its angu-
lar velocity, m its mass, I its moment of inertia, F /T s

and F /T e the sensor and external forces/torques re-
spectively, and rs and re the vectors from the center
of gravity of the container to the sensor and external
forces frames. Then, using the Newton-Euler equations,
we obtain:
∑

F = mp̈ = mg + F e + F s

∑

T = Iω̇ + ω × Iω = T s + rs × F s + T e + re × F e

If we assume very low linear and angular accelera-
tions as well as very low angular velocities, we obtain
the following approximation:

F s = −mg − F e (2)

T s + rs × F s = −T e − re × F e (3)

Determining the force and torque values generated
by the container’s mass via the sensor measurements
without the ball inside, and using the former equations,
it is possible to remove these undesirable force-torque
signals from sensor readings and to return just the ball
dynamics effects. The users agree that the felt force-
torque values at the end-effector after compensation are
realistic enough as to provide a clear understanding of
how their actions translate into motions of the ball.

Fig. 3 Dynamic compensation model for removing con-
tainer’s mass effects from the force-torque perceptions sent
to the haptic controller.

2.2 Pouring task

The second task consists of pouring drinks. Here, the
robotic arm holds a 1 liter plastic bottle full of tiny
metallic spheres, which play the role of a fluid (this so-
lution was adopted to avoid spilling liquid during tests).
The teacher teleoperates the robot in order to demon-
strate how to pour 100 ml drinks into a plastic glass,
as shown in Figure 4. Every sample of the task starts
from an unique predefined initial pose of the bottle,
which is also the stop configuration once the robot has
poured a drink. Initially, the bottle is completely full,
and the teacher carries out several demonstrations until
the bottle is empty. Thus, the initial force-torque values
for each example vary according to how much “fluid”
has been poured previously. It is worth to highlight that
such changes in the input variables at the beginning of
the demonstrations are similar to those observed in the
ball-in-box task for each initial position of the sphere
inside the container.

Again, it was necessary to implement a smooth-
ing filter to reduce the noise from the sensor readings,
this time generated by the tiny metallic spheres. On
the other hand, the dynamic compensation model pre-
sented previously was also used here for removing the
bottle mass effects from the sensor readings, in order
to feedback the teacher with only the external forces-
torques generated by the “fluid” at the demonstration
phase. Note that in this task, the teacher is also able
to watch the scene directly, thus he/she can know the
location of the glass in the robot workspace. Such in-
formation is not provided to the robot during the exe-
cution phase because the glass position is predefined in
advance and fixed across the examples.2

2 Note that a camera system may also be used to know the
location of the glass in the robot frame, so that the demon-
strations would also be dependent on this parameter.

A Robot Learning from Demonstration Framework to Perform Force-based Manipulation Tasks 5

Fig. 4 Experimental scenario of the pouring task. The
teacher demonstrates the robot how to pour 100 ml drinks
into a plastic glass by teleoperation.

Tamosiunaite et al. [27] tackled the same task us-
ing reinforcement learning, which was applied to im-
prove the initial encoding obtained from human demon-
strations modeled through dynamic motion primitives.
Thus, this task allows to show that the proposed frame-
work can be used for learning more realistic force-based
skills like the ones that an inexperienced human wish
to teach to a home service robot [28].

3 Feature Selection through Mutual

Information

The what to Imitate? problemmeans to determine which
information of the demonstrations is relevant for learn-
ing the task at hand successfully [29]. Most works tackle
this problem by analyzing the variability across demon-
strations of the task at trajectory level. Those parts
with large variances do not have to be learned precisely,
whereas low variance suggests that the corresponding
motion segment is significant and deserves to be learned
[14,30]. This approach exploits variance for construct-
ing task constraints [31] as well as for determining se-
cure interaction zones in a robot coaching framework
[32]. However, the cited works do not focus on the rela-
tive relevance of each individual input dimension for the
task to be learned. But irrelevant or redundant informa-
tion may actually be present across input dimensions,
which can increase the computational cost of the learn-
ing stage and make the task harder to learn. The point
is to select the most relevant subset of input variables.
The benefits in computational cost and noise reduction
during the learning stage do outperform a hypotheti-
cal and marginal loss of information. Furthermore, this
approach is compatible with the previously described
variance-based analysis criterion.

In literature, two types of approaches tackle the
problem of selecting a subset of variables from the orig-
inal data. Feature selection methods keep only useful
features and discard others, while feature transform tech-
niques construct new variables out of the original ones
[33]. In LfD, feature selection may be preferable to trans-
forms because it could be essential to retain some of
the original features. For instance, in active learning,
the robot may let the teacher know which perceptions
it has selected, in order to get feedback about how well
or how convenient its selection was according to the
human knowledge of the task. Such human assistance
will not be available if the robot carries out the selec-
tion from input transforms. This fact may occur in [30],
where the authors propose to project the human sam-
ples onto a latent space obtained from a principal com-
ponent analysis to diminish redundancies, where the
transformed variables do not have a clear interpreta-
tion for a human teacher anymore. Also, this analysis
is applied to the input variables of the problem, with-
out taking into account how these influence the output
variables. In addition, when the number of irrelevant
perceptions exceeds the number of relevant inputs by
orders of magnitude, learning a transform reliably may
require excessive amounts of training data.

Since our framework may be used as the basis of
LfD structures, it is more generic and suitable if it
may provide clear information about what the robot
considers that should be imitated. Thus, feature selec-
tion methods are preferred in this context. Here we use
the Mutual Information (MI) criterion, which allows to
establish which input variables give more information
with respect to their effects on the outputs (i.e., how
force-torque perceptions affect the teacher actions). In
contrast to other techniques (e.g., correlation criterion),
MI detects non-linear dependencies between inputs and
outputs [34]. The purpose of this method in feature se-
lection [35] is the reduction of the output data uncer-
tainty provided by each input variable. In our context,
depending on how the uncertainty of the output data is
reduced, a robot perception gives more or less informa-
tion about the desired actions. Note that this approach
has shown satisfactory results in sensor fusion [36] and
vision-based positioning of a robotic arm [37].

In order to apply MI analysis to our resulting train-
ing data (after filtering and dynamic compensation), let
us define the MI value between two continuous variables
x and y as follows (more details in [38]):3

I(x;y) =

∫

x

∫

y

p(x, y) log
p(x, y)

p(x)p(y)
(4)

3 The basic division and product rules of log can be applied
for numerical stability.

6

 Fx Fy Fz Tx Ty Tz 0.3

0.5

0.7

Inputs

M
I

ω1 ω2 ω3

 Fx Fy Fz Tx Ty Tz 0.3

0.5

0.7

Inputs
M

I

ω4 ω5 ω6

(a) MI for all the input-output pairs.

 Fx Fy Fz Ty Tz 0.2

0.4

0.6

Inputs

M
I

ω1 ω2 ω3

 Fx Fy Fz Ty Tz 0.2

0.4

0.6

Inputs

M
I

ω4 ω5 ω6

(b) Conditional MI given Tx.

 Fx Fy Fz Tz 0.2

0.3

0.4

0.5

Inputs

M
I

ω1 ω2 ω3

 Fx Fy Fz Tz 0.2

0.3

0.4

0.5

Inputs

M
I

ω4 ω5 ω6

(c) Conditional MI given Tx and Ty.

Fig. 5 MI values at each variable selection phase for the ball-in-box task.

 Fx Fy Fz Tx Ty Tz 0.2

0.4

0.6

Inputs

M
I

q1 q2 q3

 Fx Fy Fz Tx Ty Tz 0.2

0.4

0.6

Inputs

M
I

q4 q5 q6

(a) MI for all the input-output pairs.

 Fx Fy Fz Ty Tz 0.1

0.3

0.5

Inputs

M
I

q1 q2 q3

 Fx Fy Fz Ty Tz 0.1

0.3

0.5

Inputs

M
I

q4 q5 q6

(b) Conditional MI given Tx.

 Fx Fy Ty Tz 0.1

0.2

0.3

0.4

Inputs

M
I

q1 q2 q3

 Fx Fy Ty Tz 0.1

0.2

0.3

0.4

Inputs

M
I

q4 q5 q6

(c) Conditional MI given Tx and Fz.

Fig. 6 MI values at each variable selection phase for the pouring task.

−0.08 −0.06 −0.04 −0.02 0−0.02

−0.01

0

0.01

0.02

Tx (Nm)

T
y

(N
m

)

Pos 1
Pos 2
Pos 3
Pos 4
Pos 5
Pos 6
Pos 7
Pos 8
Pos 9
Pos 10
Pos 11

Fig. 7 Torques map representing clusters for each initial po-
sition of the ball inside the container. Plotting the first sam-
ples of the variables most relevant to the current task, Tx vs.
Ty, it is observed they do describe where the ball is in the
box.

3.1 Ball-in-box Task

Let us define the inputs of this manipulation task as
the wrench ϑ = {Fx, Fy, Fz , Tx, Ty, Tz}, i.e., the
sensed forces and torques in the robot’s frame, and
the outputs as the joint velocities of the robot defined
by ω = {ω1, . . . ,ωNq

}, where Nq is the number of
joints of the robot. Using equation 4, the MI value is
computed for each input-output pair using entire data
streams obtained at the demonstration phase. Both the
marginal and joint probabilities are approximated using
histogram-based densities, which are computed from
discrete partitions of the dataspace.4 The quantization
error in the conversion from continuous variables to dis-
crete ones is bounded by some constant value which de-
pends only on the number of partitions that divide the
continuous space [39].

Figure 5(a) shows the different MI values for all the
input-output pairs in the task. In general terms, the
input variables Fy and Tz show less relevance whereas
Tx and Ty are the most correlated variables with the

4 Other type of non-parametric density may also be used,
such as Parzen windows.

outputs. This does make sense as they are the variables
that give the most useful information for knowing where
the ball is inside the box (see Figure 7). These results
confirm what we intuitively expected about which in-
put variables were the most relevant for this task. Note
that this technique can be also applied in more complex
problems where the important perceptions can not be
easily detected. Nonetheless, once MI values have been
computed, the problem is to select a subset Ω of k
perceptions from the original set Ψ of n inputs, that
is “maximally informative” about the robot actions. In
this context, the computed MI values provide a ranking
that can be used for selecting the most relevant input.
However, to choose the remaining k − 1 perceptions,
the redundancy among inputs must be taken into con-
sideration. To achieve this, we resort to a greedy se-
lection algorithm known as “mutual information-based
feature selection deduced from uniform distributions”
(MIFS-U) [39], which was adapted to our learning
framework as described in Algorithm 1. The core of this
technique is to select the rest of variables by maximiz-
ing I(y;xi|xs), this means to choose the input xi that
provides most information about y given xs. In this
approach, the computation of the conditional mutual
information is approximated as follows:

I(y;xi|xs) = I(y;xi)−
I(y;xs)

H(xs)
I(xs;xi), (5)

where H(xs) represents the entropy of xs (details in
[39]). Note that the algorithm can be extended to a
multidimensional output case assuming a set of Nm in-
put variables X = {x1, . . . ,xNm

} and output datas-
pace Y = {y1, . . . ,yNn

} of dimensionality Nn.
For this task, we set k = 3 and carried out the

MIFS-U to choose the perceptions to be used in next
stages of the learning framework. The selected variables
were the subset Ω = {Tx, Ty, Fx}, as shown in Fig-
ures 5(b) and 5(c). It should be noted that the MI val-

A Robot Learning from Demonstration Framework to Perform Force-based Manipulation Tasks 7

Algorithm 1 MIFS-U
1: Initialization: Set Ω ← {}, and Ψ ← X
2: Compute MI:Obtain I(yj ,xi), ∀xi ∈ X, and ∀yj ∈ Y

3: Mean MI: I(Y ,xi) = 1

Nn

∑Nn

j=1 I(yj ,xi), ∀xi ∈ X

4: Select the most relevant input: Find the input
xs = argmax

xi∈X
I(Y ,xi), and set Ω ← {xs}, Ψ \ {xs}

5: Greedy selection:
for t = 1→ k − 1 do

5.1: Compute the conditional MI I(Y ,xi|xs), ∀xi ∈ X
5.2: Find xs = argmax

xi∈X
I(Y ,xi|xs), and set Ω ←

{xs}, Ψ \ {xs}
end for
6: Output the set Ω

ues for Fx and Fz are very similar for most outputs
initially (see Figure 5(a)), however, MIFS-U automati-
cally chooses Fx and discards Fz . This is in accordance
to intuition, since Fz is the force along the vertical axis
in the robot frame, which represents the gravitational
force of the ball. Such force generates the torques about
the axes x and y, thus there is a high correlation be-
tween Fz and {Tx, Ty}.

3.2 Pouring Task

In this task the input variables also are the wrench ϑ,
but the output variables are the joint robot position de-
fined by q = {q1, . . . , qNq

} at instant t+1 for the given
ϑ at t. Such change of output variables for this task
is aimed at showing the generic significance of the pro-
posed learning framework for different representations
of the task state. Again, the MI value was computed
for all the input-output pairs (as shown in Figure 6(a))
in order to select the most important input variable,
Tx in this case. Note that Tx and Fz display nearly
the same MI value for all the robot joints. This is an
expected result because Fz is the vertical force in the
robot frame representing the gravitational component
of the load (i.e., the bottle and fluid masses), while Tx

is approximately the torque generated by such a load.
This means that both variables are providing similar
information with respect to the robot movements, be-
cause they significantly vary as the fluid comes out of
the bottle.

Subsequently, Algorithm 1 was applied to select the
remaining k − 1 variables (with k = 3), from which
the resulting “most informative” set of inputs was Ω =
{Tx, Fz, Ty}. The selection process and the values of
the conditional mutual information are shown in Fig-
ures 6(b) and 6(c). There is an interesting aspect to
highlight from this result: the third selected variable
Ty shows slight variations when the robot rotates the
bottle to pour a drink, which are likely produced by
the location change of the center of mass of the load

due to the “fluid dynamics” into the bottle. Note that
such dynamics may be hardly modeled as reported in
[27], but the algorithm was able to detect that Ty was
non-linearly correlated to the robot motion encapsulat-
ing part of the fluid dynamics (also confirmed after a
detailed analysis of the data streams). In sum, MI is
shown to be a good and advisable tool for extracting
the perceptions that are relevant in a LfD framework.

An interesting aspect to highlight is that MIFS-U of-
ten gives more preference to redundant variables over ir-
relevant ones during the selection process, as also noted
in [40]. In this case the variables Tx and Fz provide
nearly the same information about the task, but both
are chosen even being redundant, because their rele-
vance with respect to the outputs keeps high despite
one of them has been selected previously. We consider
that such behavior is not a drawback in the LfD con-
text, because our aim is to extract the relevant percep-
tions of the task (even if several of them provide similar
information). Nonetheless, this fact opens an attractive
issue of research to be tackled in near future works.

3.3 Automatic selection of input variables

As shown previously, the number of inputs to be se-
lected was predefined in advance, however it would be
desirable to have a measure to decide on the optimal
number of components selected by MIFS-U. In this di-
rection, let us define a new variable ζt that computes
the ratio at iteration t between the information a can-
didate input variable xt

c provides and the one already
given by the current subset of selected perceptions Ωt

as follows,

ζt =
I(Y ,xt

c|xs)

I(Y ,Ωt)
, (6)

where xt
c = argmaxxi∈X I(Y ,xi|xs) and I(Y ,Ωt) =

∑t
j=1 I(Y ,xj

s|x
j−1
s). Such conditional mutual informa-

tion ratio shows how much information the next input
to be selected provides taking into consideration the
accumulated conditional MI given by the current se-
lected variables. In this sense, it is desired that ζt is
greater than a predefined threshold 0 < φ ≤ 1, which
controls what is the minimum information ratio that
allows to select one more input variable (i.e., the min-
imum mutual information that a variable should pro-
vide). It is worth mentioning that this new selection
criterion would modify step 5 in Algorithm 1, where
the greedy selection is now controlled by ζt, which is
evaluated at each iteration before selecting the next in-
put. Thus, the algorithm keeps selecting variables while

8

the condition ζt ≥ φ is satisfied. Note that the higher
φ, the more selective the algorithm.

We again subjected the training data of both ma-
nipulation tasks to MI analysis, but this time using the
modified version of Algorithm 1 with φ = 0.3. Regard-
ing the ball-in-box task, the resulting subset of selected
inputs was again Ω = {Tx, Ty, Fx}, supporting the
analysis explained in Section 3.1. In contrast, for the
pouring task, the resulting selected perceptions were
Ω = {Tx, Fz}. This tells us that Ty might not pro-
vide enough information about the robot actions when
Tx and Fz have been already selected. We will assess
the framework performance using these last subsets of
input variables in Section 6.

4 Learning the Task

Previous research in LfD [41], has proposed to use Gaus-
sian Mixture Models (GMM) for encoding manipula-
tion tasks. However, this algorithm does not extract
temporal information from data, and time must explic-
itly be considered as an input variable if required by
the type of task to be learned (as in Calinon et al. [30]).
Force-torque signals tend to show very large time dis-
crepancies, which may be tackled using techniques as
dynamic time warping, but increasing the complexity
of the learning framework. To avoid including this ex-
plicit temporal dependency in the model we resort to
HMM, which treats and exploits the sequential patterns
in the data and it is therefore more appropriate to en-
code the features of our tasks without using time as
an additional input variable, which would significantly
constrain the generalization capabilities. HMM can be
interpreted as an extension of GMM in which the choice
of the mixture component for each observation depends
also on the choice of the component for the previous ob-
servation. This technique has been widely used in sev-
eral computer science areas as speech recognition [42],
human motion patterns encoding [43] and LfD applica-
tions [32,44], among others.

Most of LfD works using HMM address the prob-
lem by learning trajectories from human demonstra-
tions [12] or by encoding a task with predefined states
as in assembly processes that can be represented at a
symbolic level [45]. However, our problem differs from
these and other works in the following points:

– The task goal may be achieved by executing differ-
ent trajectories depending on the initial conditions
of the task (e.g., initial position of the ball inside
the container for the ball-in-box task or the fluid
quantity inside the bottle for the pouring skill).

– We do not use time as an additional input variable.

Formally, given our experimental setting described
in Section 2 and following the notation of [46], let us
denote a training datapoint as dm

p ∈ ℜD, with m =
1, 2, . . . ,M and p = 1, 2, . . . , P , where M is the num-
ber of demonstrations, P is the number of datapoints
collected along demonstration m, and D is the total
number of input and output variables. We used an N -
states ergodic HMM defined as λ = (A,B,π) where:

– A = {aij} is the state transition probability matrix,
with 1 ≤ i, j ≤ N .

– B = {bj(k)} is the observation symbol probabil-
ity matrix, with 1 ≤ k ≤ (M ∗ P) and assuming
continuous observation densities defined as normal
distributions N (O;µj,Σj).

– π = {πi} is the initial state probability vector, with
1 ≤ i ≤ N .

– N is the number of model states.

The main idea is to adjust the model to maximize
P (O|λ), where O = {O1, O2, . . . , OT } is an obser-
vation sequence with each Ot corresponding to a train-
ing datapoint dm

p . The Baum-Welch method is used to
achieve such an objective (more details in [46]). In or-
der to describe the procedure for re-estimation of HMM
parameters, it is necessary to define the following vari-
ables:

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)

∑N
i=1

∑N
j=1 αt(i)aijbj(Ot+1)βt+1(j)

(7)

γt(i) =
N
∑

j=1

ξt(i, j) (8)

where α and β are called forward and backward vari-
ables, respectively, and are defined as:

α1(i) = πibi(O1)

αt+1(j) =

[

N
∑

i=1

αt(i)aij

]

bj(Ot+1)

βT (i) = 1

βt(i) =
N
∑

j=1

aijbj(Ot+1)βt+1(j)

From equations 7 and 8, the HMM parameters are
iteratively estimated as follows:

πi = γ1(i)

aij =

∑T−1
t=1 ξt(i, j)

∑T−1
t=1 γt(i)

µjk =

∑T
t=1 γt(j, k)Ot
∑T

t=1 γt(j, k)

∑

jk
=

∑T
t=1 γt(j, k)(Ot − µjk)(Ot − µjk)⊤

∑T
t=1 γt(j, k)

A Robot Learning from Demonstration Framework to Perform Force-based Manipulation Tasks 9

−0.02 −0.01 0 0.01 0.02−0.04

−0.02

0

0.02

Ty

T
x

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4−0.5

0

0.5

1

ω6

ω
5

(a) 3-states HMM trained with positions {1,2,3,4}

−0.02 −0.01 0 0.01 0.02 0.03−0.1

−0.05

0

0.05

Ty

T
x

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.40.4−1

−0.5

0

0.5

ω6

ω
5

(b) 3-states HMM trained with positions {7,8,9,10}

Fig. 8 Resulting HMM for two different training datasets of the ball-in-box task. Top: Input space composed of the most
relevant inputs {Tx,Ty}. Bottom: Output space composed of robot joint velocities playing the most important role for the
given task. For both cases, the hidden left-to-right structure is obtained after convergence (having an ergodic HMM at the
beginning).

These equations permit obtaining a suitable trained
HMM that represents the teacher demonstrations sta-
tistically through a states model capturing the robot
motion for given force-based perceptions and taking
temporal coherence into account from the resulting ma-
trix A.

4.1 Ball-in-box Task

For encoding this task, inputs are the force-torque sensed
at the robotic wrist and outputs are the velocity com-
mands ωl at each robot joint ql with l = 1, . . . , Nq. Note
that joint velocities were chosen as outputs because
they do represent the robot actions to be performed
according to the force-torque perceptions. As explained
in Section 3, we found the subset Ω of selected inputs
as those needed to learn the task successfully, because
they showed to contain the most relevant information
about the task outputs. Thus, each training datapoint
is defined as dm

p = {Tx, Ty, Fx, ω1, . . . , ωNq
}.

In other words, λ is encoding the joint distribu-
tion P (Ω,ω). To understand better this idea, Figure 8
shows the HMM convergence for two different datasets:
Figure 8(a) displays a 3-states HMM trained with sim-
ilar demonstrations starting from positions {1,2,3,4},
while Figure 8(b) shows another 3-states model trained
with samples starting from positions {7,8,9,10}. Ob-
serve how the hidden left-to-right structure is obtained
after convergence (having an ergodic HMM at the be-
ginning), which is the appropriate topology for learning
these datasets separately. For both cases, the resulting
vector π gives as initial state the blue Gaussian, that

corresponds to the first movement carried out by the
teacher (i.e., when the user orients the robot in such
a way that the ball rolls towards the wall adjacent to
the hole). In Figure 8(a), blue and red states intersect
each other in input space, covering the same segments
of trajectories. In this case, the temporal information
is essential to determine what velocity command has
to be provided, which is not clear using a GMM-based
approach.

4.2 Pouring Task

In order to show the flexibility of the proposed frame-
work, we use a different representation of the task state
for learning the pouring skill. Specifically, inputs are the
selected subset of variables Ω previously obtained in
Section 3 and the current joint positions q at time step
t.5 Outputs are the desired robot state to be achieved
at t + 1. Thus, each training datapoint is defined as
dm
p = {Tx, Fz, qt1, . . . , qtNq

, qt+1
1 , . . . , qt+1

Nq
}. Then,

in this case the model is encoding the joint distribution
P (Ω, qt, qt+1).

Figure 9 shows two single HMM encoding different
sets of demonstrations of the pouring task. The dis-
played projection of the models corresponds to the most
relevant input Tx and the robot joint q6 that is rotated
to pour the drinks. Note that there is one state encap-
sulating the start and end of the skill at the same time

5 It should be noted that qt was not considered in the MI-
based analysis because it is known that qt+1 is highly corre-
lated to its values at time step t because the dynamics of the
task.

10

−2.3 −2.1 −1.9 −1.7 −1.5 −1.3−80

−60

−40

−20

0

20

Tx

q
6

(a) 3-states HMM encoding the 2nd set of pouring sam-
ples

−1.2 −1 −0.8 −0.6 −0.4 −0.2−85

−65

−45

−25

−5

15

Tx

q
t 6

(b) 3-states HMM encoding the 4th set of pouring sam-
ples

Fig. 9 Resulting HMMs for two different set of demonstra-
tions of the pouring task.

(i.e., the green Gaussian), while the red ellipse is en-
coding when the fluid comes out from the bottle while
the robot slightly rotates q6. The complete model of
this skill and the reproduction results are shown and
analyzed later on.

5 Task Reproduction

Since the tasks are neither strictly learned as a sequence
of discrete actions nor as simple trajectories, it is nec-
essary to find a suitable way to reconstruct the output
commands, given a perception and the resulting trained
HMM. To achieve this goal, a modified version of GMR
(here named GMRa) is used for computing the robot
actions to be sent to the controller as the desired robot
state to be achieved, as described next.

Recent works [11,41] proposed to use GMM/GMR
for learning tasks at trajectory level, where the main
idea is to model data from a mixture of Gaussians and
to compute predictions for a given set of queries through
regression by applying the original version of GMR. In
this approach, standard GMR averages the different ob-
servations, even if they have been observed at different
parts of the skill. Formally, for each Gaussian compo-
nent i, both input x and output y are separated by

expressing the mean and covariance matrix as:

µi =

[

µx
i

µy
i

]

, Σi =

[

Σxx
i Σxy

i

Σyx
i Σyy

i

]

Then, the conditional expectation ŷ given the input
vector x, for a mixture of N Gaussians is:

ŷ =
N
∑

i=1

βi

[

µy
i +Σyx

i (Σxx
i)−1(x− µx

i)
]

(9)

where βi =
p(i)p(x|i)

∑
N
j=1

p(j)p(x|j)
is a weight exclusively based

on the input variables (mainly force-torque data in our
tasks).

We aim at predicting the necessary robot commands
as a function of its force-based perceptions in order to
follow the taught strategy for each task as close as pos-
sible. We adopt the approach proposed by Calinon et al.
in [47], where the robot’s actions are computed from a
modified version of the well-known regression technique
GMR (which we name GMRa). This version computes
the predictions from a mixture of Gaussians (e.g., the
HMM states) taking the encapsulated temporal infor-
mation by the HMM (i.e., the variable α) into account
along with the given inputs (i.e., the robot perceptions).
In this way, our learning framework is able to handle
perceptual aliases, this means that the robot may be
able to carry out the correct action if more than one
output exist for the same perception pattern, by tak-
ing advantage of the sequential information of the task.
This makes the proposed structure more generic and
versatile, thus being useful for a wider set of manipula-
tion skills.

In GMRa, the weights are estimated using the ac-
tual values of the inputs, and also implicitly their previ-
ous values, through the transition probabilities related
to the forward variable α. Formally, the definition of
the new GMRa based on temporal information is given
by:

ŷ =
N
∑

i=1

α(i)
[

µy
i +Σyx

i (Σxx
i)−1(x− µx

i)
]

(10)

where α(i) is the forward variable for the i-th Gaussian
in the HMM. This variable expresses the probability of
observing the partial sequence, O = {O1, O2, . . . , Ot}
and of being in state Si at time t. Now, for a given force-
torque perception, the predicted command is based on
current and past observations, which makes sense for
those tasks where more than one output exists for a
given input pattern.

Note that Lee and Ott’s work [32] proposes a simi-
lar framework that encodes the demonstrations through

A Robot Learning from Demonstration Framework to Perform Force-based Manipulation Tasks 11

0 10 20 30 40−0.04

−0.02

0

t

T
x

0 10 20 30 40−0.02

−0.01

0

0.01

t

T
y

0 10 20 30 40−62

−60

−58

−56

q
5

0 10 20 30 40−48

−46

−44

q
6

0 10 20 30 40−0.5

0

0.5

1

t

ω
5

0 10 20 30 40

−0.5

0

0.5

t

ω
6

Robot execution
Teacher demonstration

Fig. 10 Top: Inputs pattern for Tx and Ty when the ball
starts at position number 3. Middle: Trajectories of joints
q5 and q6 corresponding to both teacher demonstration and
robot’s execution obtained from the velocity profiles ω5 and
ω6 shown at bottom.

an HMM and retrieves the robot actions using a time-
driven version of the classical Gaussian Mixture Regres-
sion (GMR). In contrast to the forward variable-based
weights, the weighting mechanism used by GMR exclu-
sively depends on time, and neither previous observa-
tions nor sequential information are taken into account
in this approach. Such approach might show an un-
satisfactory performance when force data present large
time discrepancies, because the explicit use of time at
the reproduction phase.

5.1 Ball-in-box Task

Figure 13 shows the robot joint trajectories and veloc-
ities obtained while the teacher demonstrates how to
take the ball out of the box, when starting at position
7. The trajectories and velocity profiles of the robot
in the execution phase are also displayed. These pre-
dictions have been computed via GMRa for the inputs
displayed in the first row of the figure and using the
HMM displayed in Figure 8(b). It can be observed that
the learning framework is able to compute the correct
velocity commands to follow the teacher’s strategy as
well as to accomplish the task’s goal. In addition, every
joint trajectory is very similar to the desired one, even
for those robot joints that are not playing a relevant
role in the task (e.g., q1 or q3).

The predictions in Figure 10 were obtained from
the HMM shown in Figure 8(a). The most relevant fea-
ture of this example is how the learning framework per-
forms successfully even when the input data lie simul-
taneously on two HMM states. Figure 8(a) shows two
overlapping states, where GMR may likely retrieve a
wrong velocity command if a given input datapoint lies
in this zone. Instead, GMRa performs correctly as it
takes not only the given perception into account, but
also the sequence of states through α.

0 100 200 300−2.2
−2

−1.8
−1.6
−1.4
−1.2

t

T
x

−2.2 −2 −1.8 −1.6 −1.4 −1.2−80
−60
−40
−20

0

Tx

q
6

0 100 200 300−80
−60
−40
−20

0

t

q
6

(a) Reproduction of the pouring task using the model trained
with the 2nd set of samples

0 100 200 300−1

−0.8

−0.6

t

T
x

0 100 200 300
−80
−60
−40
−20

0

t

q
6

−1 −0.8 −0.6
−80
−60
−40
−20

0

Tx

q
6

(b) Reproduction of the pouring task using the model trained
with the 4th set of samples

Fig. 11 Left : Torque pattern around the axis x during the
reproduction. Middle: Trajectory of the robot joint q6 that
rotates the bottle to pour the drinks. Right : Tx vs. q6 plot
showing a reproduction pattern quite similar to the ones ob-
served in the demonstrations set.

5.2 Pouring Task

Figures 11(a) and 11(b) show the obtained reproduc-
tions using the models previously displayed in Figures
9(a) and 9(b), respectively. For both executions, the ini-
tial force-torque perception was slightly different from
the ones sensed during the demonstration phase, for
which the robot performed successfully, as evidenced
from the trajectories followed by q6. Note that such tra-
jectories show that the robot comes back to the starting
configuration after having poured a drink, as expected.

These results provided a good starting point to eval-
uate the encoding and reproduction capabilities of the
proposed framework in more real force-based tasks. In
Section 6 results of the complete model encoding all the
provided demonstrations of the pouring skill are ana-
lyzed. The Matlab source codes of the proposed learning
framework will be made publicly available at the time
of publication.

6 Experimentation with the complete systems

In this section we show how MIFS-based inputs se-
lection influence the robot performance, and also we
analyze the encoding and reproduction results of the
proposed framework for both manipulation tasks pre-
viously described in Section 2.

6.1 Assessing the mutual information criterion

In order to assess the interest of using MIFS within our
learning framework, we evaluate the robot performance
in terms of the root mean squared error (RMSE) of
the joint trajectories. The objective is to observe how

12

1 2 3 4 5 60

0.5

1

1.5

2

2.5

qi

R
M

S
E

Complete set of inputs
MIFS
Most relevant input

(a) Ball-in-box task

1 2 3 4 5 60

0.5

1

1.5

qi

R
M

S
E

Complete set of inputs
MIFS
Most relevant input

(b) Pouring task

Fig. 12 Root mean squared error of robot reproductions for a given set of query vectors. Different sets of input variables are
used in order to test the robot performance for three different cases: (a) when the original input set is used (blue bar), (b)
applying MIFS (green bar) and (c) using only the most relevant input (red bar).

the robot performance varies for three different cases,
namely: (a) when all the input variables are used, (b)
when only the perceptions selected by the modified
MIFS-U compose the input space (see Section 3), and
(c) when the most relevant input is solely used. To
achieve this, three different HMMs were trained using
the aforementioned datasets, and a query vector for ev-
ery initial ball position was extracted from the demon-
strations. The mean RMSE for each robot joint was
computed across all the initial positions.

Ball-in-box task

Figure 12(a) shows the RMSE values (given in degrees)
for the three different cases. On the one hand, note that
the RMSE across all the robot joints shows nearly the
same values for cases (a) and (b), which proves that
the MIFS-based dimensionality reduction does not af-
fect the robot performance because the unselected in-
put variables do not influence the robot behavior (e.g.,
Fy and Tz are weakly correlated to the robot actions).
The RMSE even slightly decreases in case (b) for some
joints, which might mean that the removed perceptions
were introducing noise (or at least no useful informa-
tion) into the system, making a bit harder to reproduce
the task satisfactorily.

On the other hand, looking at the RMSE of the
robot joints q5 and q6 (those playing the most relevant
role to carry out this task), it is observed that in case
(c), i.e., when the learning framework uses exclusively
the most relevant perception Tx, the robot performance
deteriorates, which might indicate that the robot does
not have enough information to perform successfully.
Here, it should be mentioned that the robot is not able
to carry out the task when perceiving only Tx, because
this variable does not describe entirely the location of
the ball inside the box (see Figure 7).

Pouring task

The same set of experiments carried out to assess robot
performance for the ball-in-box task was also carried
out for this task. Again, three HMMs were trained and
a query vector of every pouring demonstration (four
in this task, as described in Section 2.2) was used to
compute the RMSE of the resulting robot joint trajec-
tories. The three same cases (a), (b) and (c) above were
used to analyze how MIFS-U may influence the robot
performance in this task. Figure 12(b) shows the mean
RMSE obtained for all the robot joints across the four
reproductions. Again, it is observed that the robot per-
formance is almost the same for cases (a) and (b), thus
MIFS-U does not deteriorate robot execution while it
reduces data dimensionality and saves computational
resources. For case (c), RMSE values are a bit greater
than the ones observed for cases (a) and (b), however,
the robot was also able to carry out the task success-
fully. This may be explained by the fact that Fz nearly
provides the same information given by Tx. They pro-
vided redundant information about the task as shown
in Figure 6, but both of them are relevant in the sense
of their correlation with the robot output commands
(see Section 3.2).

6.2 Encoding and reproduction results

Computational and experimental results of the two ma-
nipulation task are explained and analyzed in the next
paragraphs, where the models were trained using the
input dataspace reduced through MIFS.

Ball-in-box Task

To evaluate the performance of the proposed learning
framework in this scenario, the teacher carried out four
demonstrations for ten different initial ball positions

A Robot Learning from Demonstration Framework to Perform Force-based Manipulation Tasks 13

0 10 20 30 40 50 60−0.1

−0.05

0

t

T
x

0 10 20 30 40 50 60−0.02

0

0.02

t

T
y

0 10 20 30 40 50 6087

88

89

90

q
1

0 10 20 30 40 50 60−0.5

0

0.5

t

ω
1

0 10 20 30 40 50 6033

34

35

q
2

0 10 20 30 40 50 60−0.5

0

0.5

t

ω
2

0 10 20 30 40 50 60115

116

117

118

q
3

0 10 20 30 40 50 60−1

0

1

t

ω
3

0 10 20 30 40 50 60−4

−3

−2

q
4

0 10 20 30 40 50 60−0.2

−0.1

0

0.1

t

ω
4

0 10 20 30 40 50 60−70

−65

−60

−55

q
5

0 10 20 30 40 50 60−1.5
−1

−0.5
0

0.5

t

ω
5

0 10 20 30 40 50 60−55

−50

−45

q
6

0 10 20 30 40 50 60−1

−0.5

0

0.5

t

ω
6

Fig. 13 Top: The first row shows the pattern of inputs Tx and Ty when the ball starts at position number 7, and the remaining
rows display the robot joint trajectories and velocity profiles when the teacher demonstrated the task (solid blue line) and
when the robot executed its motions based on predictions given by GMRa (dashed red line). Bottom: Left image shows a
snapshot of the beginning of the learned task. The center image displays the moment where the robot has completed the first
stage of the strategy and starts to orient the box for taking the ball towards the hole. The right image shows the successful
completion of the task.

placed along the box edges. Every demonstration was
executed by teleoperating the robotic arm through the
6-DoF haptic device (as shown in Figure 2) and follow-
ing the motion strategy explained in Section 2. The
resulting training dataset consisted of all datapoints
dm
p , which were used to train several HMMs by apply-

ing the Baum-Welch method until convergence. To find
the “best” model, we resort to the Bayesian Informa-
tion Criterion (BIC), which allows to find a trade-off
between optimizing the model’s fitting and the number
of states [48]. Note that the selected HMM will be a
model that can fit the data well, with no overfitting in
BIC sense. Figure 14 displays the different BIC values
for the set of models tested, and Figure 15 shows the se-
lected 5-states HMM. The execution and generalization

capabilities were tested for some of these models using
query data extracted from the demonstrations and real
experiments. The 2-states HMM showed the worst per-
formance, this model was not able to carry out the task
starting at any place, even if it did it from a pre-trained
initial position. The HMMs with 4, 8 and 9 states could
achieve the goal from every pre-trained positions but
sometimes failed starting at non-trained initial config-
urations, showing poor generalization capabilities. Fi-
nally, the models with 5, 6 and 7 states showed very
similar performances with no clear differences, and all
of them performed the task successfully.

Observing the selected 5-states HMM, it is interest-
ing to highlight how the proposed framework is able
to learn a multiple solution task by taking advantage

14

2 3 4 5 6 7 8 9 10 11 12−7.1

−7

−6.9

−6.8x 104

Number of states

B
IC

Fig. 14 BIC values for models with different number of
states.

of the HMM properties. The model is shown in Figure
15, where the blue state in the input space covers the
beginning of all demonstrations whose initial positions
are placed on the wall opposite to where the hole is.
At these starting positions, a larger velocity command
is required to draw the ball out of its resting configu-
ration by moving the robot joint q6 (Figure 15, output
space projection). After, the green and light-blue states
represent the movements to force the ball to role to the
hole, through q5 and depending on whether the ball is
up or down with respect to the hole (i.e., positive or
negative velocity commands, respectively). The yellow
Gaussian can be considered as an intermediate state
the system goes through to reach the final state (red
ellipse) at which the velocity commands are zero (i.e.,
when the ball is getting out of the box) in input space.

As for the prediction phase, one teacher’s demon-
stration for each initial position was removed from the
training examples and used as “query data” for evalu-
ating the learning framework performance by compar-
ing its results with the teacher executions. All robot
joint trajectories obtained from velocity commands syn-
thesized by our HMM/GMRa approach are smoother
than the teacher’s demonstrations (as shown for ini-
tial positions 3 and 7 in Figures 10 and 13, respec-
tively). By observing the obtained velocity profiles for
each robot joint, one sees that they are also smoother
than teacher ones, because human user executions show
several abrupt changes, which are not over-fitted by our
learning framework. This can be attributed to the fact
of using GMRa to retrieve the velocity command, be-
cause this type of regression takes the covariance in-
formation into account for computing the estimation
of the output, outperforming techniques that only use
the mean of the Gaussians. Thus, we can conclude in
this context that the robot performs better than the
teacher. In addition, all synthesized trajectories follow
the same motion pattern as that of the teacher’s execu-
tions, which indicates that the strategy applied by the
human user was learned successfully.

Once computational results were satisfactory, we val-
idated our framework on the experimental setup. First,
the robot had to perform the task with the ball start-
ing at the already trained initial positions (see Figure
2). For all experiments, the robot was able to carry out
the task effectively. After this, a second set of tests was
executed, where the ball was located at random posi-
tions inside the container. For these tests, the robot
was also able to achieve the task’s goal, executing the
motions learned for the closest initial position, by iden-
tifying the corresponding HMM state. It was observed
that in some executions the ball reached and surpassed
the hole, without falling through it. This behavior may
be justified by the fact that we are assuming a “quasi-
static” case in our task.6 However, the robot was al-
ways able to take the ball out of the box after some
more executions, as it correctly identified the HMM
state corresponding to the current and past input pat-
terns (taking into account the temporal information).
This means that the robot generates its actions as a
function of its current and past perceptions, follow-
ing the taught motion strategy. If the robot fails to
reach the goal, the ball goes to another position in-
side the box, providing new perceptions from which the
robot can compute new movements. Videos showing ex-
ecutions of learned trajectories are available online at
http://dl.dropbox.com/u/15185273/JISR/JISR.html.

As the robot was able to accomplish the desired goal
in every test, even when the ball reached and surpassed
the hole, we evaluated the performance of the robot
executions using a time-based criterion [49]. Here, the
idea is to determine how much time the robot takes to
complete the task successfully by executing the com-
mands obtained from the proposed framework com-
pared with the three following cases: (i) the robot exe-
cutes hand-coded actions according to pre-programmed
if-then rules, (ii) the teacher carries out the task by
teleoperation following the mentioned strategy, (iii) the
robot performs random movements that may take the
ball towards the hole. Figure 16 shows execution times
for the aforementioned cases. As expected, the teacher’s
executions show to the lowest times, except for position
number 2 where the robot was faster than the human.
A relevant aspect to discuss is the fact that the robot
execution times are much larger than the teacher’s ones
for positions 3 to 8. Regarding positions 3 to 5, higher
times are due to the fact that the robot starts the task
by moving the joint q6 as expected, however it also

6 On the one hand, the model variables are force-torque and
joint velocities at the given time step, thus no information
about the past is explicitly provided. On the other hand, the
robot controller only allows position-based control, thus it is
not possible to send the desired velocity commands directly.

A Robot Learning from Demonstration Framework to Perform Force-based Manipulation Tasks 15

Projection of the 5-states HMM

−0.02 −0.01 0 0.01 0.02−0.1

−0.05

0

0.05

Ty

T
x

−1 −0.5 0 0.5−1

−0.5

0

0.5

1

ω6

ω
5

Representation of the HMM transitions

Fig. 15 Resulting 5-states HMM trained with demonstra-
tions starting at every position inside the box. Top: Input
space composed of the most relevant inputs {Tx Ty}. Mid-
dle: Output space composed of robot joint velocities playing
the most important role for the given task. Bottom: Repre-
sentation of the resulting transition probabilities matrix. As
expected, the most likely transitions from the blue state take
the robot to the light blue or green ellipses. Moreover, the
transitions from these Gaussians and the yellow one take the
system towards the final state.

moves q5 slightly which sometimes causes the ball to
go to the bottom of the box, justifying higher standard
deviations for positions 3 and 4. This is a normal ef-
fect because the first state of the learned HMM covers
non-zero angular velocities for the variable ω5. Thus, in
these cases, the robot identifies the new state where the
ball is and changes its motion strategy according to the
given input data for reaching the target.

In the case of positions 6 to 8, the robot does also
move the joint q5, however it is because the teacher
demonstrations showed that the human tries to guar-
antee “a stable motion” by taking the ball towards the
wall adjacent to the hole along the wall at the bottom
of the box. This causes that, when the ball reaches the
wall adjacent to the hole, the robot has to carry out
more movements in order to take the metalic sphere
towards the hole, since the robot must compensate the
initial inclination of the box given by the wrong motion
of q5. Thus, the high robot execution times are mainly
a consequence of two factors: first, there is a delay be-

tween the sensing and execution phases that increases
the time measures as the ball is farther from the target,
and second, the joint velocity profiles of the robot ex-
ecution show lesser magnitudes than the teacher ones
(as observed in Figures 13 and 10), implying that when
these velocity commands are translated into desired po-
sitional configurations of the robot, the joints rotation
is lower and more velocity commands are needed to ori-
ent the box.

Regarding the times shown for the hand-coded ac-
tions, several robot learned executions outperformed
the hand-coded ones (e.g., starting at positions 1, 2, 4,
7, 9 and 10). This mainly happened because the hand-
coded actions also suffered the “surpassing” effect, that
is, the ball did not go out through the hole at the first
attempt. Moreover, it is important to emphasize that
the if-then rules programming was tedious and time-
consuming, even for this simple task. On the one hand,
it was essential to determine how the input space could
be transformed to discrete regions to set the if condi-
tions. On the other hand, a tuning process was needed
to specify the velocity commands that the robot ex-
ecuted. One may think that the higher the velocity,
the less time the robot might take to accomplish the
task, however the “surpassing” effect may occur more
often, increasing the time execution significantly. Thus,
the learning-based approach is preferred because being
similarly efficient, it is friendlier and can be applied by
non-expert users.

Finally, execution times for a “random” strategy
show that trying to accomplish the goal by chance is
possible, nevertheless this implies much higher times
and variances in comparison with when the robot car-
ried out the task by using the taught strategy. These
high values occur because the random strategy does
not impose movement constraints to the robot and,
therefore, a huge set of available motions can be ex-
ecuted, leading to very varied and long trials. This con-
stitutes a reference (lower bound) for comparison pur-
poses, against which the improvement attained by dif-
ferent learning techniques and teaching strategies can
be evaluated.

Pouring Task

In order to teach the robot to pour drinks, three “com-
plete executions” of the task are provided to the robot
by teleoperation as described in Section 2. Such exe-
cutions consist of starting with the bottle full of fluid
and pouring four 100ml drinks. Note that after each
drink is poured, the initial force-torque value changes
for the next demonstration, which conditions the robot
movements as shown in Figure 17 where the gray lines

16

1 2 3 4 5 6 7 8 9 100

10

20

30

40

50

60

70

80

90

100

Initial position of the ball

T
im

e(
se

c)

Teacher execution
Robot execution
Robot hand−coded execution
Robot random execution

Fig. 16 Mean times for teacher executions, robot learned, hand-coded and random executions starting at each pre-defined
initial position of the ball inside the box.

represent the teacher demonstrations. Observe that the
less quantity of fluid, the more the robot rotates the
bottle.

The resulting training dataset was used to train a 5-
states HMM by applying the Baum-Welch method until
convergence. Note that the number of states was chosen
according to the BIC score, similarly to the ball-in-box
task. Figure 17 shows the model encoding the pouring
skill, where the yellow state covers the beginning and
the end of all the demonstrations, whereas the light
blue and green ellipses are encapsulating the phases
corresponding to when the fluid is coming out of the
bottle. The other two Gaussians can be considered as
intermediate states of the task. It is worth highlighting
that the resulting states distribution provides very good
generalization capabilities (discussed below), which are
exploited when the robot has to pour a drink starting
from a force-torque value not previously observed (e.g.,
in between two demonstrated starting values).

In order to test the reproduction performance of
the model, four demonstrations were removed out of
the training data to be used as query datapoints. All
the robot joint trajectories were quite similar to the
ones obtained from the teacher examples as well as the
input-output pattern, as shown in Figure 18(a) (corre-
sponding to the first drink). After this, the following
tests were aimed at evaluating the generalization ca-
pabilities of the trained HMM. In this case, the bot-
tle contained quantities of fluid different from the ones
used at the demonstration phase, but remaining within
the range of force-torque measured in that stage. For
all the tests where the starting force-torque perception
was covered by the initial HMM state (i.e., the yellow

−3 −2.5 −2 −1.5 −1 −0.5 0−90

−70

−50

−30

−10

10

Tx

q
6

Fig. 17 Resulting 5-states HMM trained with four different
sets of demonstrations of the pouring task. Each set of pro-
vided samples of the skill shows a different initial force-torque
value given by the quantity of “fluid” inside the bottle. Ac-
cording to these initial conditions, the less quantity, the more
the robot rotates the bottle.

ellipse in Figure 17), the robot performed successfully.
The robot joint trajectories and the input-output pat-
tern for one of these tests is shown in Figure 18(b). Nev-
ertheless, as the starting perception significantly differs
from the values encapsulated by the initial state, the
robot performance deteriorates. In others words, the ac-
tual model shows good interpolation competences but
a poor extrapolation performance. This feature will be
tackled in future work as discussed below. Nonetheless,
the obtained results evidence the generality of the pro-
posed approach as well as its usefulness in more realistic
scenarios. We thus confirm the suitability of our frame-
work to learn manipulation tasks using only force-based
perceptions.

A Robot Learning from Demonstration Framework to Perform Force-based Manipulation Tasks 17

0 20070

80

90

q
1

0 20030

40

50

q
2

0 200110

120

130

q
3

0 200−20

−10

0

t

q
4

0 200
−70

−60

t

q
5

0 200−80
−60
−40
−20

0

t

q
6

−2.5 −2−80

−60

−40

−20

0

Tx

q
6

(a) Reproduction starting from an already trained force-
torque perception

0 100 200 30070

80

90

q
1

0 100 200 30030

40

50

q
2

0 100 200 300110

120

130

q
3

0 100 200 300−20

−10

0

t

q
4

0 100 200 300

−70

−60

t

q
5

0 100 200 300−80
−60
−40
−20

0

t

q
6

−1.2 −1 −0.8 −0.6−80

−60

−40

−20

0

Tx

q
6

(b) Reproduction starting from an unobserved force-torque
perception

Fig. 18 Reproduction of the pouring task for two different
quantities of fluid. The robot joint trajectories during the
execution are shown in the three first columns. Last graph
displays the reproduction pattern for q6 as a function of Tx.

7 Conclusions and Future Work

This work presents a suitable end-to-end system for
learning manipulation skills where force-torque data con-
stitute the most relevant input source, specially in the
absence of visual information. In the first place, we
addressed the problem of conditioning a good bidirec-
tional communication channel between the teacher and
the robot when using a haptic device as an information
transferring tool. This device provides an useful inter-
action means between the human and the robot, which
becomes more relevant and necessary when the robot
is located in a remote place, for instance in space ap-
plications. In this specific area, it may be very useful
to refine already learned robot actions while feeling the
robot’s perceptions as a consequence of the teacher’s
refinement commands. In other words, haptic devices
may not be used just in the teaching process, they may
also be used as refinement tools as well, for instance as
an alternative when kinesthetic refinement is not possi-
ble for robots working in remote places. Moreover, the
inclusion of a haptic interface improves the teacher’s
demonstrations when the task relies on force-based per-
ception, because the user can feel how his/her actions
affect the robot’s surroundings.

We solved the what to imitate? problem from a new
perspective, by using MI-based inputs selection. Results
showed that this technique is appropriate to find which
input variables are the most relevant to learn a task.
This presents several advantages in LfD settings: reduc-
tion of input space dimensionality, less computational
cost and probably faster training and execution stages.
This approach can also be applied before finding the
demonstration segments with low variability that indi-

cate those sections that must be learned. Note that the
variance-based approach is more suitable for trajectory
learning (i.e., low-level encoding), whereas our solution
is more generic and may be applied to a wider set of
tasks.

The reduction of the input space obtained through
the modified MIFS-U showed not to deteriorate the
robot performance when this was compared to the re-
sults obtained from the case where the learning frame-
work used all the input variables. Moreover, as an addi-
tional contribution, the number of components to be re-
tained is now automatically determined by the selection
algorithm according to the proposed conditional mutual
information ratio. This selection criterion took advan-
tage of the conditional MI used in MIFS-U. Nonethe-
less, the threshold φ is still an open parameter that
depends on how selective the method is desired to be.
Future work will consider techniques to tune this vari-
able using the provided demonstrations.

On the other hand, our framework performs effi-
ciently when the teacher’s demonstrations exhibit a multi-
valued function behavior (e.g., the ball-in-box task),
which means there may be more than one appropriate
action – velocity command – for the same perception
(i.e., force-torque input pattern). This was achieved by
means of a GMRa tool using temporal information en-
capsulated by an HMM without explicitly considering
time as another input variable and avoiding to deal with
very large time discrepancies. Time, or rather sequen-
tial information, is already implicitly present along the
teacher’s demonstrations.

After having carefully designed and tested the sev-
eral stages of our LfD framework on the well-defined
and easy to analyze task of taking a ball out a con-
tainer, a more realistic task was designed to evaluate the
generality of the proposed approach by learning to pour
drinks based on force data exclusively. As observed, the
feature selection, encoding and reproduction methods
showed satisfactory results as well.

As future work we would like to apply force-based
skills learning to compliant robots in an active learn-
ing environment as a refinement or correction phase,
needed to improve the robot performance. This type
of robots would allow us to extend our approach to
human-robot collaborative tasks by taking advantage of
their compliance features. In this context, force-torque
perceptions about the task and the haptic communi-
cation between the partners are a rich source of infor-
mation to carry out manipulation tasks cooperatively,
where our framework may be used as the core of a learn-
ing structure oriented to this kind of scenarios.

Moreover, it was observed that, in some force-based
tasks, certain parameter strongly conditions the subse-

18

quent robot actions. For instance in the pouring task,
the robot movements were conditioned by the initial
force-torque perception (indicating the amount of fluid
in the bottle), which may be considered as a parameter
of the skill at hand. This feature opens the door to the
use of parametric learning methods to encode such type
of tasks. Specifically, we plan to enhance the proposed
learning framework by introducing such parameters in
the model through parametric Hidden Markov models
[50].

References

1. A. Billard, S. Calinon, R. Dillmann, and S. Schaal.
Springer Handbook of Robotics, chapter 59. Robot Pro-
gramming by Demonstration, pages 1371–1394. Springer,
2008.

2. B. Argall, S. Chernova, M. Veloso, and B. Browning. A
survey of robot learning by demonstration. Robotics and
Autonomous Systems, 57(5):469–483, 2009.

3. M. Goodrich and A. Schultz. Human-robot interaction:
A survey. Foundations and Trends in Human-Computer
Interaction, 1(3):203–275, 2007.

4. N. Najmaei and M. Kermani. Applications of artificial
intelligence in safe human–robot interactions. Trans. on
Systems, Man and Cybernetics, Part B, 41(2):448–459,
2011.

5. R. Dillmann. Teaching and learning of robot tasks via
observation of human performance. Robotics and Au-
tonomous Systems, 47(2-3):109–116, 2004.

6. M. Riley, A. Ude, C. Atkeson, and G. Cheng. Coach-
ing: An approach to efficiently and intuitively create hu-
manoid robot behaviors. In Intl. Conf. on Humanoid
Robots, pages 567–574, 2006.

7. D. Bentivegna, C. Atkeson, and G. Cheng. Learning tasks
from observation and practice. Robotics and Autonomous
Systems, 47(2-3):163–169, 2004.

8. D. Grollman and O. Jenkins. Dogged learning for robots.
In Intl. Conf. on Robotics and Automation, pages 2483–
2488, 2007.

9. S. Calinon and A. Billard. What is the teacher’s
role in robot programming by demonstration? toward
benchmarks for improved learning. Interaction Studies,
8(3):441–464, 2007.

10. T. Inamura, N. Kojo, T. Sonoda, K. Sakamoto, K. Okada,
and M. Inaba. Intent imitation using wearable motion
capturing system with on-line teaching of task attention.
In Intl. Conf. on Humanoid Robots, pages 469–474, 2005.

11. S. Calinon and A. Billard. Incremental learning of ges-
tures by imitation in a humanoid robot. In Intl. Conf.
on Humanoids Robots, pages 255–262, 2007.

12. P. Evrard, E. Gribovskaya, S. Calinon, A. Billard,
and A. Khedda. Teaching physical collaborative tasks:
Object-lifting case study with a humanoid. In Intl. Conf.
on Humanoids Robots, pages 399–404, 2009.

13. E. Gribovskaya, A. Kheddar, and A. Billard. Motion
learning and adaptive impedance for robot control dur-
ing physical interaction with humans. In Intl. Conf. on
Robotics and Automation, pages 4326–4332, 2011.

14. P. Kormushev, S. Calinon, and D. Caldwell. Imita-
tion learning of positional and force skills demonstrated
via kinesthetic teaching and haptic input. Advanced
Robotics, 25(5):581–603, 2011.

15. D. Grollman and O. Jenkins. From Motor to Interaction
Learning in Robots, chapter Can We Learn Finite State
Machine Robot Controllers from Interactive Demonstra-
tion?, pages 407–430. Springer, 2010.

16. S. Cabras, M. Castellanos, and E. Staffetti. Contact-
state classification in human-demonstrated robot com-
pliant motion tasks using the boosting algorithm. Trans.
on Systems, Man and Cybernetics, Part B, 40(5):1372–
1386, 2010.

17. S. Schaal, A. Ijspeert, and A. Billard. Computational
approaches to motor learning by imitation. Philosoph-
ical Trans. of the Royal Society of London. Series B:
Biological Sciences, 358(1431):537–547, 2005.

18. D. Kulić, W. Takano, and Y. Nakamura. Incremental
learning, clustering and hierarchy formation of whole
body motion patterns using adaptive hidden Markov
chains. Intl. Journal of Robotics Research, 27(7):761–
784, 2008.

19. C. Atkeson and S. Schaal. Robot learning by demonstra-
tion. In Intl. Conf. on Machine learning, pages 12–20,
1997.

20. A. Ijspeert, J. Nakanishi, and S. Schaal. Trajectory for-
mation for imitation with nonlinear dynamical systems.
In Intl. Conf. on Intelligent Robots and Systems, pages
752–757, 2001.

21. T. Cederborg, M. Li, A. Baranes, and P. Oudeyer. Incre-
mental local online gaussian mixture regression for imi-
tation learning of multiple tasks. In Intl. Conf. on Intel-
ligent Robots and Systems, pages 267–274, 2010.

22. A. Billard, Y. Epars, S. Calinon, G. Cheng, and S. Schaal.
Discovering optimal imitation strategies. Robotics and
Autonomous Systems, 47(2-3):69–77, 2004.

23. D. Economou, C. Lee, C. Mavroidis, and I. Antoniadis.
Robust vibration suppression in flexible payloads carried
by robot manipulators using digital filtering of joint tra-
jectories. In Intl. Symposium on Robotics and Automa-
tion, pages 244–249, 2000.

24. K. Dines. Constrained least squares filtering. Trans. on
Acoustics, Speech and Signal Processing, 25(4):346–350,
1977.

25. M. Uchiyama and K. Kitagaki. Dynamic force sensing
for high-speed robot manipulation using kalman filtering
techniques. In Intl. Conf. on Decision and Control, pages
2147–2152, 1989.

26. J. Garcia, A. Robertsson, J. Ortega, and R. Johansson.
Generalized contact force estimator for a robot manipu-
lator. In Intl. Conf. on Robotics and Automation, pages
4019–4024, 2006.

27. M. Tamosiunaite, B. Nemec, A. Ude, and F. Wörgötter.
Learning to pour with a robot arm combining goal
and shape learning for dynamic movement primitives.
Robotics and Autonomous Systems, 59(11):910–922,
2011.

28. M. Cakmak and A. Thomaz. Designing robot learners
that ask good questions. In Intl. Conf. on Human-Robot
Interaction, pages 17–24, 2012.

29. C. Nehaniv and K. Dautenhahn. Of hummingbirds and
helicopters: An algebraic framework for interdisciplinary
studies of imitation and its applications. Interdisciplinary
Approaches to Robot Learning, World Scientific Series in
Robotics and Intelligent Systems, 24:136–161, 2000.

30. S. Calinon, F. Guenter, and A. Billard. On learning,
representing, and generalizing a task in a humanoid
robot. Trans. on Systems, Man and Cybernetics, Part
B, 37(2):286–298, 2007.

31. S. Calinon and A. Billard. A probabilistic program-
ming by demonstration framework handling constraints

A Robot Learning from Demonstration Framework to Perform Force-based Manipulation Tasks 19

in joint space and task space. In Intl. Conf. on Intelligent
Robots and Systems, pages 367–372, 2008.

32. D. Lee and C. Ott. Incremental kinesthetic teaching of
motion primitives using the motion refinement tube. Au-
tonomous Robots, 31:115–131, 2011.

33. K. Torkkola. Feature extraction by non-parametric mu-
tual information maximization. Journal of Machine
Learning Research, 3:1415–1438, 2003.

34. I. Guyon. An introduction to variable and feature se-
lection. Journal of Machine Learning Research, 3:1157–
1182, 2003.

35. R. Battiti. Using mutual information for selecting fea-
tures in supervised neural net learning. Trans. on Neural
Networks, 5(4):537–550, 1994.

36. T. Ikeda and H. Ishiguro M. Asada. Adaptive fusion of
sensor signals based on mutual information maximiza-
tion. In Intl. Conf. on Robotics and Automation, pages
4398–4402, 2003.

37. G. Wells and C. Torras. Assessing image features for
vision-based robot positioning. Journal of Intelligent and
Robotics Systems, 30(1):95–118, 2001.

38. C. Shannon. A mathematical theory of communication.
SIGMOBILE Mobile Computing and Communications
Review, 5:3–55, 2001.

39. N. Kwak and C. Choi. Input feature selection for classifi-
cation problems. Trans. on Neural Networks, 13(1):143–
159, 2002.

40. P. Estévez, M. Tesmer, C. Perez, and J. Zurada. Nor-
malized mutual information feature selection. Trans. on
Neural Networks, 20(2):189–201, 2009.

41. L. Rozo, P. Jiménez, and C. Torras. Sharpening haptic
inputs for teaching a manipulation skill to a robot. In
Intl. Conf. on Applied Bionics and Biomechanics, pages
370–377, 2010.

42. L. Rabiner and B. Juang. Fundamentals of Speech Recog-
nition. Prentice Hall, 1993.

43. A. Billard, S. Calinon, and F. Guenter. Discrimina-
tive and adaptive imitation in uni-manual and bi-manual
tasks. Robotics and Autonomous Systems, 54:370–384,
2006.

44. D. Kulić and Y. Nakamura. Incremental learning of hu-
man behaviors using hierarchical hidden Markov models.
In Intl. Conf. on Intelligent Robots and Systems, pages
4649–4655, 2010.

45. S. Dong and F. Naghdy. Application of hidden Markov
model to acquisition of manipulation skills from haptic
rendered virtual environment. Robotics and Computer-
Integrated Manufacturing, pages 351–360, 2007.

46. L. Rabiner. A tutorial on hidden Markov models and se-
lected applications in speech recognition. In Proceedings
of the IEEE, pages 257–286, 1989.

47. S. Calinon, F. D’halluin, E. Sauser, D. Caldwell, and
A. Billard. Learning and reproduction of gestures by imi-
tation. Robotics and Automation Magazine, 17(2):44–54,
2010.

48. S. Calinon. Robot Programming by Demonstration: A
Probabilistic Approach. EPFL/CRC Press, 2009.

49. A. Steinfeld, T. Fong, D. Kaber, M.Lewis, J. Scholtz,
A. Schultz, and M. Goodrich. Common metrics for
human-robot interaction. In Intl. Conf. on Human-Robot
Interaction, pages 33–40, 2006.

50. A. D. Wilson and A. F. Bobick. Parametric hidden
Markov models for gesture recognition. Trans. on Pat-
tern Analysis and Machine Intelligence, 21(9):884–900,
1999.

