
The Fixed-Mesh ALE approach for the numerical
approximation of flows in moving domains

Ramon Codina1,∗, Guillaume Houzeaux2, Herbert Coppola-Owen1 and Joan Baiges1

1 International Center for Numerical Methods in Engineering (CIMNE),
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Abstract

In this paper we propose a method to approximate flow problems in moving domains using
always a given grid for the spatial discretization, and therefore the formulation to be presented
falls within the category of fixed-grid methods. Even though the imposition of boundary conditions
is a key ingredient that is very often used to classify the fixed-grid method, our approach can be
applied together with any technique to impose approximately boundary conditions, although we
also describe the one we actually favor. Our main concern is to properly account for the advection
of information as the domain boundary evolves. To achieve this, we use an arbitrary Lagrangian-
Eulerian framework, the distinctive feature being that at each time step results are projected onto a
fixed, background mesh, that is where the problem is actually solved.

1 Introduction

In many coupled problems of practical interest the domain of at least one of the problems evolves in
time. The Arbitrary Eulerian Lagrangian (ALE) approach is a tool very often employed to cope with
this domain motion. In this work we aim at describing a particular version of the ALE formulation that
can be used in different coupled problems, and which we will apply to two problems in fluid mechanics.

In the classical ALE approach to solve problems in computational fluid dynamics, the mesh in
which the computational domain is discretized is deformed (see for example [13, 29, 27]). This is done
according to a prescribed motion of part of its boundary, which is transmitted to the interior nodes
in a way as smooth as possible so as to avoid mesh distortion. In this work we present an ALE-type
strategy with a different motivation. Instead of assuming that the computational domain is defined by
the mesh boundary, we assume that there is a function that defines the boundary of the domain where
the flow takes place. We will refer to it as the boundary function. It may be given, for example, by the
shape of a body that moves within the fluid, or it may need to be computed, as in the case of level
set functions described in the paper. It may be also defined discretely, by a set of points. When this
boundary function moves, the flow domain changes, and that must be taken into account at the moment
of writing the conservation equations that govern the flow, which need to be cast in the ALE format.
However, our purpose here is to explain how to use always a background fixed mesh. That requires a
virtual motion of the mesh nodes followed by a projection of the new node positions onto the fixed
mesh.

The basic numerical formulation we will use consists of a stabilized finite element method to solve
the ALE flow equations and finite difference time integration schemes. However, other discretization
techniques could be applied, since the idea we want to expose is independent of the numerical method
being used. This idea consists in projecting the results of the ALE deformed mesh onto a fixed back-
ground mesh at each time step, prior to solving the flow equations. It will be shown that at the end all
the calculations can be performed on the fixed mesh, and in fact the ALE deformed mesh does not need
to be explicitly built.

We want to stress that this idea is independent on the way to impose boundary conditions on the
moving boundary. The way to impose this prescription is often used to classify a particular fixed-mesh
method. Since the physical boundary is contained in the domain actually discretized, these methods are
often called immersed boundary methods. Moreover, since the fixed grid used is often Cartesian, these
formulations can be found under the keywords Cartesian grid methods (see for example the reviews
[42, 36, 35]). These methods are developed for constant-in-time domains, and then extended in a more
or less ad-hoc way to time dependent domains. In spite of the fact that we want to distinguish between
the way to deal with moving domains from the way of approximately imposing the boundary conditions
on the moving boundary, we will briefly describe the particular approach we use.

The paper is organized as follows. A general overview of the FM-ALE method is presented in
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Section 2, starting with the discretization of the classical ALE formulation and then describing the
algorithmic steps of the FM-ALE alternative. These steps are further elaborated in Section 3. Even
though they are not intrinsic to the main idea of the method, there are three numerical ingredients that
are essential for the success of the formulation. These are the definition and updating of the moving
boundary, the approximate imposition of boundary conditions and the projection of data between two
different finite element meshes. These “side ingredients” have been published before [10, 8, 24], but
are here particularized to the FM-ALE method. They are described in Section 4. A simple numerical
example, but containing all the features of the formulation, is presented in Section 5. We discuss then
the application of the FM-ALE idea to two coupled problems of practical interest in Section 6. One is
the simulation of lost foam casting [26]. In this case the flow is coupled to the heat equation because of
the interface evolution, which is governed by the advance of the burning front of the molten metal used
in the casting. Therefore, the boundary velocity is given and the normal stress on the fluid is unknown.
The second problem considered is a classical free surface problem in which, once more, the free surface
position is modeled by a level set function [12]. In this case, the velocity on the free surface is unknown,
but the normal stress can be prescribed to zero (or to the atmospheric pressure). Some conclusions close
the paper in Section 7.

2 The Fixed-Mesh ALE method

In this section we describe the essential idea of the FM-ALE method. However, we start with the classi-
cal ALE formulation of the incompressible Navier-Stokes equations and their numerical approximation.

2.1 The classical ALE method and its finite element approximation

2.1.1 Problem statement

Let us consider a region Ω0 ⊂ R
d (d = 2, 3) where a flow will take place during a time interval [0, T ].

However, we consider the case in which the fluid at time t occupies only a subdomain Ω(t) ⊂ Ω0 (note
in particular that Ω(0) ⊂ Ω0). Suppose also that the boundary of Ω(t) is defined by part of ∂Ω0 and
a moving boundary that we call Γfree(t) = ∂Ω(t) \ ∂Ω0 ∩ ∂Ω(t). This moving part of ∂Ω(t) may
correspond to the boundary of a moving solid immersed in the fluid or can be determined by a level set
function, as we will see in the applications.

In order to cope with the time-dependency of Ω(t), we use the ALE approach, with the particular
feature of considering a variable definition of the domain velocity. Let χt be a family of invertible
mappings, which for all t ∈ [0, T ] map a point X ∈ Ω(0) to a point x = χt(X) ∈ Ω(t), with χ0 = I ,
the identity. Ifχt is given by the motion of the particles, the resulting formulation would be Lagrangian,
whereas if χt = I for all t, Ω(t) = Ω(0) and the formulation would be Eulerian.

Let now t′ ∈ [0, T ], with t′ ≤ t, and consider the mapping

χt,t′ : Ω(t
′) −→ Ω(t)

x′ 7→ x = χt ◦ χ
−1
t′ (x′).

Given a function f : Ω(t)× (0, T ) −→ R we define

∂f

∂t

∣

∣

∣

∣

x
′

(x, t) :=
∂(f ◦ χt,t′)

∂t
(x′, t), x ∈ Ω(t), x′ ∈ Ω(t′).

In particular, the domain velocity taking as a reference the coordinates of Ω(t′) is given by

udom :=
∂x

∂t

∣

∣

∣

∣

x
′

(x, t). (1)
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The incompressible Navier-Stokes formulated in Ω(t), accounting also for the motion of this
domain, can be written as follows: find a velocity u : Ω(t) × (0, T ) −→ R

d and a pressure
p : Ω(t)× (0, T ) −→ R such that

ρ

[

∂u

∂t

∣

∣

∣

∣

x
′

(x, t) + (u− udom) · ∇u

]

−∇ · (2µ∇Su) +∇p = ρf , (2)

∇ · u = 0, (3)

where∇Su is the symmetrical part of the velocity gradient, ρ is the fluid density, µ is the viscosity and
f is the vector of body forces.

Initial and boundary conditions have to be appended to problem (2)-(3). In the applications we
have considered in Section 6, the boundary conditions on Γfree(t) can be of two different types: a) Free
surface flows: p (or the normal stress) given, u unknown on Γfree; b) Lost foam casting: u given, p (or
the normal stress) unknown on Γfree. On the rest of the boundary of Ω(t) the usual boundary conditions
can be considered. In general, we consider these boundary conditions of the form

u = ū on ΓD,

n · σ = t̄ on ΓN ,

where n is the external normal to the boundary, σ = −pI + 2µ∇Su is the Cauchy stress tensor and ū
and t̄ are the given boundary data. The components of the boundary ΓD and ΓN are obviously disjoint
and such that ΓD ∪ ΓN = ∂Ω, and therefore time-dependent.

2.1.2 The time-discrete problem

Let us start introducing some notation. Consider a uniform partition of [0, T ] into N time intervals of
length δt. Let us denote by fn the approximation of a time dependent function f at time level tn = nδt.
We will also denote

δfn+1 = fn+1 − fn,

δtf
n+1 =

fn+1 − fn

δt
,

fn+θ = θfn+1 + (1− θ)fn, θ ∈ [1/2, 1].

Even though other options are obviously possible, we will use the simple trapezoidal rule to dis-
cretize problem (2)-(3) in time. Suppose we are given a computational domain at time tn, with spatial
coordinates labeled xn, and un and pn are known in this domain. The velocity un+1 and the pressure
pn+1 can then be found as the solution to the problem

ρ
[

δtu
n+1

∣

∣

x
n + (un+θ − un+θ

dom) · ∇u
n+θ

]

−∇ · (2µ∇Sun+θ) +∇pn+1 = ρfn+1, (4)

∇ · un+θ = 0, (5)

where now δtu
n+1

∣

∣

x
n = (un+1(x)− un(xn))/δt, being x = χtn+θ,tn(x

n) the spatial coordinates in
Ω(tn+θ). The domain velocity given by (1), with x′ = xn, is approximated as

un+θ
dom =

1

θδt

(

χtn+θ,tn(x
n)− xn

)

. (6)

Note that the order of accuracy of this approximation is consistent with the order of accuracy of (4)-(5),
that is to say, it is 2 for θ = 1/2 and 1 otherwise. We are interested only in the cases θ = 1/2 and θ = 1
(implicit schemes are required).
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Remark 1 The trapezoidal rule considered for the time integration, with a single mesh, satisfies
the so called geometric conservation law (GCL) condition. However, there are second order accurate
schemes based on multi-step time discretizations that do not satisfy it. The price to be paid is that these
schemes are usually only conditionally stable, although stability conditions are often very mild and not
encountered in practice (see for example the analyses in [1, 3, 16, 17, 38]). We will use one of such
schemes in Section 5. 4

2.1.3 The fully discrete problem

The next step is to consider the spatial discretization of problem (4)-(5). As for the time discretiza-
tion, different options are possible. Here we simply describe the stabilized finite element formulation
employed in our numerical simulations.

Let {Ωe}n+1 be a finite element partition of the domain Ω(tn+1), with index e ranging from 1 to the
number of elements nel (which may be different at different time steps). We denote with a subscript h
the finite element approximation to the unknown functions, and by vh and qh the velocity and pressure
test functions associated to {Ωe}n+1, respectively.

An important point is that we are interested in using equal interpolation for the velocity and the pres-
sure. Therefore, the corresponding finite element spaces are assumed to be built up using the standard
continuous interpolation functions.

In order to overcome the numerical problems of the standard Galerkin method, a stabilized finite
element formulation is applied. This formulation is presented in [6]. It is based on the subgrid scale
concept introduced in [28], although when linear elements are used it reduces to the Galerkin/least-
squares method described for example in [18]. We apply this stabilized formulation together with the
finite difference approximation in time (4)-(5).

The bottom line of the method is to test the continuous equations by the standard Galerkin test
functions plus perturbations that depend on the operator representing the differential equation being
solved. In our case, this operator corresponds to the linearized form of the time discrete Navier-Stokes
equations (4)-(5). In this case, the method consists of finding un+1

h and pn+1h such that

mn+θ
1

(

δtu
n+1
h

∣

∣

x
n ,vh

)

+ an+θ(uh,vh) + cn+θ(uh − udom;uh,vh) + bn+θ
1 (ph,vh) = ln+θ

1 (vh),

(7)

mn+θ
2

(

qh, δtu
n+1
h

∣

∣

x
n

)

+ bn+θ
2 (qh,uh) + sn+θ(qh, ph) = ln+θ

2 (qh),

(8)

for all test functions vh and qh, the former vanishing on the Dirichlet part of the boundary ΓD. The
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different forms appearing in these equations are given by

m1(δtuh,vh) =

∫

Ω

vh · ρ δtuh +

nel
∑

e=1

∫

Ωe

ζu1 · ρ δtuh,

a(uh,vh) =

∫

Ω

2∇Svh : µ∇Suh +

nel
∑

e=1

∫

Ωe

ζu1 ·
(

−2∇ · (µ∇Suh)
)

+

nel
∑

e=1

∫

Ωe

ζu2∇ · uh,

c(a;uh,vh) =

∫

Ω

vh · (ρa · ∇uh) +

nel
∑

e=1

∫

Ωe

ζu1 · (ρa · ∇uh) ,

b1(ph,vh) = −

∫

Ω

ph∇ · vh +

nel
∑

e=1

∫

Ωe

ζu1 · ∇ph,

m2(qh, δtuh) =

nel
∑

e=1

∫

Ωe

ζp · ρ δtuh,

b2(qh,uh) =

∫

Ω

qh∇ · uh +

nel
∑

e=1

∫

Ωe

ζp ·
(

ρa · ∇uh − 2∇ · (µ∇Suh)
)

,

s(qh, ph) =

nel
∑

e=1

∫

Ωe

ζp · ∇ph,

l1(vh) =

∫

Ω

vh · f +

nel
∑

e=1

∫

Ωe

ζu1 · f +

∫

ΓN

vh · t̄,

l2(qh) =

nel
∑

e=1

∫

Ωe

ζp · f ,

where the functions ζu1, ζu2 and ζp are computed within each element as

ζu1 = τu
[

ρ (uh − udom) · ∇vh + 2∇ · (µ∇Svh)
]

, (9)

ζu2 = τp∇ · vh, (10)

ζp = τu∇qh, (11)

and the parameters τu and τp are also computed element-wise as (see [7])

τu =

[

4µ

h2
+

2ρ|uh − udom|

h

]

−1

, τp = 4µ+ 2ρ|uh − udom|h,

where h is the element size for linear elements and half of it for quadratics.

Remark 2

• The superscript n+ θ in all the terms in (7)-(8) indicates that all the forms are evaluated with the
unknowns at n + θ, except for the term coming from the temporal derivative, whose superscript
is explicitly indicated. Likewise, the integrals are evaluated at Ω(tn+θ).

• The dependency on the advection velocity a = uh − udom has been only indicated in the from
coming directly from the convective term of the equations, namely, c(a;uh,vh). However, it
has to be noted that all the forms listed above depend on the stabilization parameters, and there-
fore depend on a as well. Moreover, the dependency of b2(qh,uh) on a is even more explicit.
However, in order to keep the notation more concise only the above mentioned dependency of
c(a;uh,vh) has been left.
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• As usual, the mesh of Ω(tn+1) is assumed to be obtained from the mesh of Ω(tn) by moving the
nodes of the latter with the domain velocityudom (often referred to as mesh velocity). This greatly
simplifies the implementation of the ALE method, since in this case the nodal values of un+1(x)
and those of un(xn) correspond to the same nodes (at time steps n+ 1 and n, respectively).

• If θ = 1/2, the unknowns of the problem can be taken as un+1/2 and pn+1/2, since δtun+1
h

∣

∣

x
n =

2δt−1(un+1/2(x) − un(xn)). All the calculations to be performed are the same as for θ = 1,
with the only modification that once un+1/2 is computed un+1 has to be updated to go to the
next time step. This analogy includes the updating of the computational domain. When θ = 1/2
we need to update this domain from n− 1/2 to n+1/2 to compute un+1/2 and pn+1/2, whereas
when θ = 1 we need to update it from n to n + 1 to compute un+1 and pn+1. For conciseness,
the latter situation is considered in the following.

• From (9)-(11) it is observed that these terms are precisely the adjoints of the (linearized) oper-
ators of the differential equations to be solved applied to the test functions (observe the sign of
the viscous term in (9)). This method corresponds to the algebraic version of the subgrid scale
approach ([28]) and circumvents the stability problems of the Galerkin method. In particular, in
this case it is possible to use equal velocity pressure interpolations, that is, we are not tight to
the satisfaction of the inf-sup stability condition. For more details about this formulation, see for
example [28, 6].

• In order to simplify a little bit the statement of the problem, we will consider thatm2(qh, δtuh) =
0. This can be justified by using a space-time finite element method with constant-in-time inter-
polation (in the case θ = 1) or by using the orthogonal-subscale stabilization (OSS) method
(see [7]).

4

2.2 The fixed-mesh ALE approach: algorithmic steps

The purpose of this subsection is to give an overview of the FM-ALE method and to describe the main
idea, leaving for the next section a more detailed description of the different steps involved.

Suppose Ω0 is meshed with a finite element mesh M 0 and that at time level tn the domain Ω(tn) is
meshed with a finite element mesh Mn (as we will see, close to M 0). Let un be the velocity already
computed on Ω(tn). The purpose is to obtain the fluid region Ω(tn+1) and the velocity field un+1. The
former may move according to a prescribed kinematics, for example due to the motion of a solid, or can
be an unknown of the problem, as in the two applications we will describe in Section 6. If the classical
ALE method is used, Mn would deform to another mesh defined at tn+1. The key idea is not to use this
mesh to compute un+1 and pn+1, but to re-mesh in such a way that the new mesh is, essentially, M 0

once again.
The steps of the algorithm to achieve the goal described are the following:

1. Define Γn+1
free by updating the function that defines it.

2. Deform virtually the meshMn toMn+1
virt using the classical ALE concepts and compute the mesh

velocity un+1
m .

3. Write down the ALE Navier-Stokes equations on Mn+1
virt .

4. Split the elements of M 0 cut by Γn+1
free to define a mesh on Ω(tn+1), Mn+1.
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5. Project the ALE Navier-Stokes equations from Mn+1
virt to Mn+1.

6. Solve the equations on Mn+1 to compute un+1 and pn+1.

In Section 3 we describe all these steps in detail. A global idea of the meshes involved in the
process is represented in Fig. 1. Note in particular that at each time steps two sets of nodes have to be
appropriately dealt with, namely, the so called newly created nodes and the boundary nodes. Contrary
to other fixed grid methods, some of which are described in the next subsection, newly created nodes
are treated in a completely natural way using the FM-ALE approach: the value of the velocity there is
directly given by the projection step from Mn+1

virt to Mn+1. Boundary nodes require either additional
unknowns with respect to those of mesh M 0 or an appropriate imposition of boundary conditions. This
issue is treated in Section 4.

Figure 1: Two dimensional FM-ALE schematic. Top-left: original finite element mesh M 0 of Ω0. Top-
right: finite element mesh Mn of Ω(tn), with the elements represented by a thick line and the elements
of M0 represented by thin line. The blue line represents Γn

free and the red edges indicate the splitting of
M0 to obtainMn. Bottom-left: updating ofMn toMn+1

virt using the classical ALE strategy. The position
of Γn+1

free is again shown using a solid blue line and the previous position Γn
free using a dotted blue line.

Bottom-right: Mesh Mn+1 of Ω(tn+1), represented by a thick line. The edges that split elements of
M0 are again indicated in red. Boundary nodes, where approximate boundary conditions need to be
imposed, are drawn in green, whereas newly created nodes are drawn in gray.

2.3 Other fixed grid methods

Other possibilities to use a single grid in the whole simulation can be found in the literature, each one
having advantages and drawbacks. As the method presented in this paper, they were designed as an
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alternative to body fitted meshes and are sometimes referred to as Embedded Mesh Methods. They can
be divided into two main groups [9], corresponding in fact to two ways of prescribing the boundary
conditions on Γfree:

• Force term. The interaction of the fluid and the solid is taken into account through a force term,
which appears either in the strong or in the weak form of the flow equations. Therefore, the
boundary conditions on Γfree are neither imposed as Dirichlet nor as Neumann boundary condi-
tions. Among this type of methods, let us cite for example the Immersed Boundary method as
a variant of the Penalty method, where punctual forces are added to the momentum equation,
and the Fictitious Domain method, where the solid boundary conditions are imposed through a
Lagrange multiplier.

• Approximate boundary conditions. Instead of adding a force term, these methods impose the
boundary conditions in an approximate way once the discretization has been carried out, either
by modifying the differential operators near the interface (in finite differences) or by modifying
the unknowns near the interface.

The Immersed Boundary Method in its original form [40] consists in adding punctual penalty forces
in the domain boundary so that the boundary conditions are fulfilled. The forces are computed from a
fluid-structure (elastic) interaction problem at the interface. The method is first order accurate even if
second order approximation schemes are used, although formal second order accuracy has been re-
ported in [32]. The more recent Immersed Interface Method achieves higher order accuracy by avoiding
the use of the Dirac delta distribution to define the forcing terms (see [33, 34, 44]).

The Penalty method is similar to the previous one in the sense that a force term is added to the
momentum equations. The difference raises in the fact that the penalty parameter is not computed from
a fluid-structure interaction as in the original immersed boundary method, but it is simply required to be
large enough to enforce the boundary conditions approximately. The force terms can be of two types,
depending on whether they are imposed as boundary or as volume forces [43] .

Another approach is the use of Lagrange multipliers to enforce the boundary conditions. However,
the finite element subspaces for the bulk and Lagrange multiplier fields must satisfy the classical inf-
sup condition, which usually leads to the need for stabilization (see [23, 2, 30]). Moreover, additional
degrees of freedom must be added to the problem. The use of Lagrange multipliers is the basis of the
Fictitious Domain Method [20, 21].

Recently, hybrid Cartesian/immersed boundary methods have been developed for Cartesian grids,
which use the grid nodes closest to the boundary to enforce boundary conditions [19, 45, 37]. The
method is second order accurate.

Most of these methods have been well tested in the literature for both steady and moving interfaces.
Generally, the last case is treated by applying directly the former at each time step. However, very few
authors have described the full formulation for moving interfaces, sometimes simply by ignoring the
problem. The fact that the boundary moves and the subsequent advection of unknowns is often not taken
into account.

To explain an obvious consequence of the boundary motion, let us discuss the treatment of the newly
created nodes. To explain the problem, let us consider point P in Fig. 1. Suppose that the boundary Γfree
corresponds in this case to the rigid boundary of a moving object. Physically, it is clear that the solution
in the fluid cannot depend on what happens inside the solid. Mathematically, this means that the values
of the unknowns at the fluid nodes are uncoupled from those at the solid nodes. Therefore, the velocity
and the pressure at the solid nodes (apart from those participating to the enforcing of the boundary
conditions) can be whatever at a certain time step n, in particular their value at node P (see Fig. 1, top-
right). Now we move on to the next time step n+1 as the solid moves. Some solid nodes can therefore
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become fluid nodes, such as node P (see Fig. 1, bottom-right). The velocity at this node at time step n
is in fact needed in the temporal term of the momentum equations and cannot be whatever. In the case
of fractional step techniques, the situation can even be worse as the previous time step pressure could
also be needed at these nodes.

A special treatment is needed for the newly created fluid nodes. In many publications, the previous
time step values are computed using ad hoc arguments, that sometimes lead to good approximations
from the practical point of view when small time steps are used. As an example, in [35] the authors
extrapolate the velocity and pressure from the nearest fluid nodes at the previous time step. In [5], the
Navier-Stokes equations are correctly expressed in an ALE framework, but the velocity is taken as the
solid velocity. It is worth to note that if the solid is deformable and has been solved together with the
fluid in a coupled way (as in the original immersed boundary method [40] or in the fluid-solid approach
in [46]), this velocity is physically meaningful. This is not the case, however, is the case of rigid bodies
or bodies with rigid boundaries. A possibility to deal with this situation is to write the Navier-Stokes
equations in a non-inertial frame of reference attached to the body, as in [25] in the context of Chimera
meshes or in [31], where an immersed boundary method is used.

We explain in the following what we believe is a consistent way of treating moving interfaces based
on a fixed-mesh ALE approach.

3 Developing the Fixed-Mesh ALE method

In this section we describe the steps enumerated previously, concentrating on those specific of the FM-
ALE method and leaving for Section 4 those that can be considered side numerical ingredients.

3.1 Step 1. Boundary function update

This step is completely problem dependent. The motion of Γfree(t) may be determined by different
ways. In a typical fluid-structure interaction problem, Γfree(t) will be part of the solid boundary, and
therefore its kinematics will be determined by the dynamics of the solid under the action exerted by
the fluid. As a particular case, the motion of the solid boundary may be directly prescribed. This is the
simplest situation and the one corresponding to the validating numerical example presented in Section 5.

In a wide variety of applications, Γfree(t) may be represented by a level set function. In Section 6 we
will describe two of these applications. The peculiarities of the level set function update in the context
of the FM-ALE approach are described in Section 4.

3.2 Step 2. Mesh velocity

Updating the boundary function defines the deformation of the domain from Ω(tn) to Ω(tn+1) (recall
that we are considering the case θ = 1, see Remark 2). Consequently, the mesh M n used at time step n
has to be deformed to adapt to the domain Ω(tn+1). This mesh deformation has to be defined by means
of a mesh velocity.

The mesh velocity on the boundary points can be computed from their position xn+1
b and xn

b , where
subscript b refers to points on Γfree. Using approximation (6), this mesh velocity would be un+1

dom,b =

(xn+1
b − xn

b )/δt. Once the velocity at the nodes of Γfree is known, it has to be extended to the rest of
the nodes. A classical possibility is to solve the Laplace problem ∆udom = 0 using un+1

dom,b as Dirichlet
boundary conditions. However, it is also possible to restrict udom 6= 0 to the nodes next to Γn+1

free ,
since in our approach mesh distortion does not accumulate from one time step to another (see Fig. 1
for a schematic of the mesh deformation). This is in practice what we do. Details about this point are
provided in the numerical examples of Sections 5 and 6.
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3.3 Step 3. Solving the flow equations I: Equations on the deformed mesh

The previous procedure defines the domain Ω(tn+1) and a mesh that we call Mn+1
virt , obtained from a

deformation of the mesh Mn. The equations to be solved there are (see (7)-(8)):

mn+1
1

(

1

δt

(

un+1
h,virt(x)− u

n
h,virt(x

n)
)

,vh

)

+ an+1(uh,virt,vh)

+ cn+1(uh,virt − udom,virt;uh,virt,vh) + bn+11 (ph,virt,vh) = ln+11 (vh), (12)

bn+12 (qh,uh,virt) + sn+1(qh, ph,virt) = ln+12 (qh), (13)

where subscript “virt” refers to the mesh Mn+1
virt on which these equations should now be solved using

the space discretization described in Subsection 2.1.3. Let us stress once again that, as it is well known
in the classical ALE approach, un(xn) is known on Mn+1

virt because the nodes of this mesh are obtained
from the motion of the nodes of Mn with the mesh velocity un+1

dom,virt.

3.4 Step 4. Splitting of elements

The key idea of the FM-ALE method is not to use Mn+1
virt to solve the flow equations at time tn+1, but

to use instead another mesh Mn+1 that will be a a minor modification of the background mesh M 0.
This mesh Mn+1 is obtained by splitting the elements of M 0 cut by Γn+1

free , as shown in Fig. 1. Meshes
Mn+1 and M0 only differ in the subelements created after the splitting just mentioned.

Mesh Mn+1 could be thought as a local refinement of mesh M 0 to make it conform the boundary
Γn+1
free . This is certainly a possibility that can be implemented as such. Let us note however that this

requires the introduction of boundary nodes at each step, as shown in Fig. 1, and the subsequent change
in the mesh graph and in the sparsity pattern of the matrix of the final algebraic system to be solved for
the arrays of nodal unknowns. As in other fixed grid methods, this computational complication can be
avoided by prescribing boundary conditions on Γn+1

free in an approximate way. Nevertheless, this issue,
in spite of its major practical importance, is not an essential concept of the FM-ALE method, and we
defer its description to Section 4.

The local refinement from M 0 to Mn+1 is needed also to perform the numerical integration of
the different terms appearing in (7)-(8). Obviously, the impact of this in the computational cost of the
overall calculation is minimum.

The splitting of elements is a strictly algorithmic step that shall not be discussed here. In the case
of 2D linear elements, Fig. 2 shows how the splitting can be done and the numerical integration points
(red points) required in each triangle resulting from this splitting.

1

2 3

Figure 2: Splitting of elements
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3.5 Step 5. Solving the flow equations II: Equations on the background mesh

Let Pn+1 be the projection of finite element functions defined onMn+1
virt toMn+1. To define it, for each

node of Mn+1 the element in Mn+1
virt where it is placed has to be identified. Once this is done, the value

of any unknown at this node can be obtained through interpolation, possibly with restrictions. The way
to construct this projection operator is a problem common to different situations in which transfer of
information between finite element meshes is required. We describe our approach in Section 4.

The velocity un in Mn+1
virt is known because its nodal values correspond to those of mesh M n.

However, its nodal values on Mn+1 have to be computed using the projection just described. The same
happens with the mesh velocity udom.

If now we define

un+1
h := Pn+1(un+1

h,virt),

the problem to be solved at time step n+ 1 is to find a velocity un+1
h and a pressure pn+1h such that

mn+1
1

(

δt−1
(

un+1
h (x)− P n+1(un

h,virt(x
n))

)

,vh
)

+ an+1(uh,vh)

+ cn+1(uh − P
n+1(udom,virt);uh,vh) + bn+11 (ph,vh) = ln+11 (vh), (14)

bn+12 (qh,uh) + sn+1(qh, ph) = ln+12 (qh), (15)

which again must hold for all velocity test functions vh and pressure test functions qh.
Note that pn+1h 6= Pn+1(pn+1h,virt). Pressure pn+1h is determined by imposing that un+1

h is divergence
free, which at the discrete level is not equivalent to impose that un+1

h,virt is divergence free.
Problem (14)-(15) is posed on Mn+1 which, as it has been said, coincides with M 0 except for the

splitting of the elements crossed by the interface. Even this difference can be avoided if instead of pre-
scribing exactly the boundary conditions an approximation is performed, for example using Nitsche’s
method, Lagrange multipliers or the strategy described in Section 4. Therefore, the goal of using a fixed
mesh during the whole simulation has been achieved.

It is observed that the projection P n+1 has to be applied to

• Pn+1(un
h,virt(x

n)). This clarifies the effect of the mesh motion in the context of fixed-mesh
methods. In particular, there is no doubt about the velocity at previous time steps of newly created
nodes.

• Pn+1(un+1
dom,virt). The mesh velocity is computed on Mn+1

virt , and therefore needs to be projected
to compute on Mn+1.

3.6 Comparison with the classical ALE approach

To conclude this section, it is important to highlight the differences between our FM-ALE approach and
a classical ALE formulation:

• Given a position of the fluid front on the fixed mesh, elements cut by the front are split into
subelements (only for integration purposes), so that the front coincides with the edges of the
subelements.

• After deforming the mesh from one time step to the other using classical ALE procedures, results
are projected back to the original mesh .
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• The front is represented by a boundary function, and not by the position of the material points at
Γfree as in a classical ALE method.

4 Side numerical ingredients

In this section we describe some numerical ingredients that, in spite of being essential in the develop-
ment of the FM-ALE method, are not inherent to its main concept. In other words, these ingredients
may be changed without altering the main concept of the method.

4.1 Level set function update

In the applications, there are several ways to define Γfree. In general, we assume that this part of the
boundary of the flow domain is defined by what we have called generically a boundary function. This
function may be defined analytically or by discrete means, for example through interpolation from
some nodes that define the location of Γfree. That would be a natural way to deal with fluid-structure
interaction problems.

In some applications, as those described in Section 6, it is convenient to represent Γfree by a level
set function (see [39] for an overview of these methods). This function, say ψ, will be the solution of
the problem

∂tψ + u · ∇ψ = 0 in Ω0 × (0, T ), (16)

ψ = ψ on Γinf × (0, T ),

ψ(x, 0) = ψ0(x) in Ω0,

where Γinf := {x ∈ ∂Ω0 | u · n < 0} is the inflow part of the domain boundary. In free surface
simulations, the initial condition ψ0 is chosen in order to define the initial position of the fluid front to
be analyzed. The boundary condition ψ determines whether fluid enters or not through a certain point
of the inflow boundary.

Due to the pure convective type of the equation for ψ, we use the SUPG technique for the spatial
discretization. Again, the temporal evolution is treated via the standard trapezoidal rule.

If ψ is taken as a step function, numerical problems may be encountered when it is transported. It is
known that small oscillations in the vicinity of sharp gradients still remain using the SUPG formulation.
These oscillations may propagate and yield to distorted front shapes, specially near corners. Compared
to similar methods, such as the volume-of-fluid (VOF) method [22], one particularity of the level set
method is that it uses a smooth function ψ. As the smoothness can be lost as the simulation evolves, the
level set function must be redefined for each mesh node as explained for example in [10].

Once ψ is computed, Γfree(t) is defined as

Γfree(t) = {x ∈ Ω0 | ψ(x, t) = 0}.

Thus, Γfree(t) is simply updated by solving the problem for ψ(x, t).
The important point to be noted is that the system is solved on the whole domain Ω0. As mentioned

earlier, we approximate this problem using a stabilized finite element method. For the discrete problem
it is necessary to extrapolate the velocity defined on Ω(t) to the rest of Ω0. The question is how to
perform this extrapolation. In principle, the advection velocity u in (16) is only needed in the neighbor-
hood of Γfree(t), since the precise transport of ψ is not needed, except for the transport of the isovalue
that defines Γfree(t). In our calculations, we have found useful to extrapolate u by solving a Stokes
problem on Ω(t)c = Ω0 \ Ω(t). This has two main advantages with respect to a simpler extrapolation
procedure, namely, the extrapolated velocity is weakly divergence free in Ω(t)c and we can impose the
correct boundary conditions for it.
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4.2 Approximate imposition of boundary conditions

Even though we have not formulated it as such, the FM-ALE method can be considered an immersed
boundary method, in the sense that Γfree(t) is a boundary that moves within a fixed domain Ω0. From
the conceptual point of view, there is no problem in imposing exactly Dirichlet boundary conditions on
this part of the boundary. However, this requires the dynamic addition of mesh nodes (see Fig. 1, where
these nodes are drawn in green), with the associated change in the sparsity of the matrix of the alge-
braic system to be solved mentioned earlier. This is why it is very convenient from the implementation
standpoint to avoid the explicit introduction of such nodes and to prescribe boundary conditions approx-
imately. We summarize next the strategy proposed in [8] to prescribe Dirichlet boundary conditions on
a generic immersed boundary, that we denote by Γ.

Let uh be the unknown solution of a problem posed in Ω ⊂ Ω0 for which we want to prescribe a
condition on Γ. Let ΩΓ be the set of elements cut by Γ, which is split as ΩΓ = ΩΓ,in ∪ ΩΓ,out, where
ΩΓ,in = Ω ∩ ΩΓ and ΩΓ,out is the interior of ΩΓ \ ΩΓ,in. Let also Ωin be such that Ω = Ωin ∪ ΩΓ,in.
For simplicity, we will assume that the intersection of Γ with the element domains can be exactly
represented by the classical isoparametric mapping. For the notation to be used, see Fig. 3 (left).

Suppose that the unknown uh is interpolated as

uh(x) =

nin
∑

a=1

Iain(x)U
a
in +

nout
∑

b=1

Ibout(x)U
b
out

= I in(x)U in + Iout(x)Uout,

where Iain(x) and Ibout(x) are the standard interpolation functions, nin is the number of nodes in Ωin,
the domain where the problem needs to be solved (including layer L0) and nout the number of nodes in
layer L−1 (see Fig. 3).

Figure 3: Immersed boundary sketch (left) and domain of extrapolation (right) in a 2D example

The objective is to compute U out. Suppose that uh needs to be prescribed to a given function ū on
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Γ. The main idea is to compute U out by minimizing the functional

J2(U in,Uout) =

∫

Γ

(uh(x)− ū(x))
2 =

∫

Γ

(I in(x)U in + Iout(x)U out − ū(x))
2 . (17)

Suppose now that the problem for uh in Ωin leads to an algebraic equation of the form

K in,inU in +K in,outUout = F in. (18)

The domain integrals in matrices K in,in and K in,out extend only over Ω. The nodal values U out are
merely used as degrees of freedom to interpolate uh in the domain Ω. If (18) is supplemented with the
equation resulting from the minimization of functional (17), the system to be solved is finally

[

K in,in K in,out

NΓ MΓ

] [

U in

Uout

]

=

[

F in
fΓ

]

, (19)

where

MΓ =

∫

Γ

Itout(x)Iout(x), fΓ =

∫

Γ

Itout(x)ū(x), NΓ =

∫

Γ

Itout(x)I in(x).

It is important to note that this implementation maintains the connectivity of the background mesh.
As it is explained in detail in [8], this method works well if the boundary Γ is not too close to

layer L0 in Fig. 3 (left). If this is not the case, the idea is to use the nodes of this layer to prescribe the
boundary conditions in an approximate way, and to impose the equation to be solved at the rest of nodes
of Ωin.

Let E be the extrapolation operator of functions defined on the elements in contact with ∂Ωin to
ΩΓ,in. The first point to consider is how to choose the extrapolation region of this operator E. There are
several possibilities, but the one we have found most accurate is the following. Let K be an element
with an edge (in 2D) or face (in 3D) F on ∂Ωin. Let KΓ be the cylinder obtained from projecting F
onto Γ in a way orthogonal to Γ. Then, E is defined as the extension from functions defined on K
to functions defined on K ∪ KΓ. The extrapolation regions obtained this way in 2D using triangular
elements are shown in Fig. 3 (right).

Suppose now that in Ωin the unknown uh is interpolated as

uh(x) =

n1
∑

a=1

Ia1 (x)U
a
1 +

n00
∑

b=1

Ib00(x)U
b
00

= I1(x)U1 + I00(x)U 00,

where Ia1 (x) and Ib00(x) are the standard interpolation functions, n1 is the number of nodes interior to
Ωin (up to layer L1) and n00 the number of nodes in layer L0 (see Fig. 3).

The objective is to compute U 00. We propose to obtain it by minimizing the functional

J ′

2(U1,U00) =

∫

Γ

(Euh(x)− ū(x))
2 =

∫

Γ

(EI1(x)U 1 + EI00(x)U 00 − ū(x))
2 ,

which leads to

M00U00 = f00 −N00U1, (20)

where

M00 =

∫

Γ

EIt00(x)EI00(x), f00 =

∫

Γ

EIt00(x)ū(x), N 00 =

∫

Γ

EIt00(x)EI1(x).
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If the matrix form of the problem for uh posed in Ωin is

K1,1U1 +K1,00U00 = F 1,

the combination of this equation with (20) leads to the final system to be solved:
[

K1,1 K1,00

N00 M00

] [

U1

U00

]

=

[

F 1
f00

]

. (21)

To conclude this subsection, let us explain how to combine methods (19) and (21). Let us first write
problem (19) as





K1,1 K1,00 0

K00,1 K00,00 K00,out

0 NΓ,00 MΓ









U1

U00

Uout



 =





F 1
F 00
fΓ



 , (22)

where the splitting of the matrices corresponds to the splitting of U in into U1 and U 00.
Problem (21) is obtained by considering the degrees of freedom of all nodes in layer L0 as param-

eters to prescribe the boundary conditions, but of course the last equation in (22) can be kept, case in
which the system to be solved is





K1,1 K1,00 0

N00 M00 0

0 NΓ,00 MΓ









U1

U00

Uout



 =





F 1
f00
fΓ



 . (23)

Clearly,U out depends onU 00, but not the other way around. If Γ is very close to ∂Ωin, the coefficients
in MΓ can be very small, but this does not affect the unknowns in the interior of the computational
domain and, in fact, MΓ can be replaced by any matrix without altering U 1 and U 00.

Method (22) is more accurate than method (23) (even though the order of accuracy is the same;
see [8]). In order to use (22) in all situations except when instability problems may appear, we have
implemented a blending of methods (22) and (23). The idea is simple. When a node in layer L0 is
detected to be very close to Γ, its degree of freedom is used to prescribe the boundary conditions, that
is to say, the row in the equation for U 00 in (22) is replaced by the corresponding row in (23). This
strategy has proved robust and effective. Since usually only a few equations need to be changed, the
overall accuracy obtained is very close to that of method (22).

4.3 Data transfer between finite element meshes

The last crucial ingredient in the FM-ALE approach is the transfer of information between meshes
Mn+1
virt and Mn+1 for each time step n (see Fig. 1). In principle, it would be possible to use a simple

interpolation operator. However, it is well known that this interpolation, for example when it is of
Lagrangian type, may suffer from overdiffusivity, in the sense that results on the new mesh may be
damped from those of the original one. Another possibility could be to use the L2 projection as transfer
operator. We explain here how to incorporate restrictions to the projection between meshes. The idea
described in the following was introduced in [24] in the context of transmission of information through
boundaries in domain decomposition methods. For a method particularly designed in the context of
immersed boundary methods for the transfer of forces, see [46].

Let us consider two meshes, M1 and M2, of a domain Ω. For simplicity, we assume that both are
conforming (matching ∂Ω). Let ni (i = 1, 2) be the number of nodes in Mi and let Φi ∈ R

ni be the
array of nodal values of a scalar variable φ. Suppose thatΦ1 is known and we want to project it ontoM2

to obtainΦ2. If P 21 ∈ MatR(n2, n1) is the transfer operator from M1 to M2 (for example the standard
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interpolation or the L2 projection), a simple choice would beΦ2 = P 21Φ1. However, suppose that we
require Φ2 to inherit a set of properties from Φ1, written in the form

R2Φ2 = R1Φ1, Ri ∈ MatR(nr, ni), (24)

where nr is the number of restrictions to be imposed. The idea we propose is to take Φ2 as close as
possible to P 21Φ1 but satisfying (24). A possibility is to solve the optimization problem

minimize
1

2
|Φ2 − P 21Φ1|

2,

under the constraint R2Φ2 = R1Φ1.

This problem can be solved by optimizing the Lagrangian L(Φ2,λ), where λ ∈ R
nr , given by

L(Φ2,λ) =
1

2
|Φ2 − P 21Φ1|

2 − λt(R2Φ2 −R1Φ1).

This leads to the system

Φ2 −R
t
2λ = P 21Φ1,

R2Φ2 = R1Φ1,

which after solving for Φ2 yields

Φ2 = P 21Φ1 +R
t
2(R2R

t
2)

−1(R1 −R2P 21)Φ1.

In the applications, the number of restrictions nr is small, so that inverting R2R
t
2 ∈ MatR(nr, nr)

is computationally affordable. In the case of the FM-ALE method, a typical restriction would be for
example to impose global conservation of momentum and of mass when projecting velocities from
mesh Mn+1

virt to Mn+1 for each n. In this case, nr = d+ 1.

5 A numerical example

In this section we will solve the flow over a moving cylinder with the proposed FM-ALE strategy. The
objective is to apply this methodology to this simple validating example, before showing more complex
applications in the next section.

The corresponding flow equations are those described in Section 2, although in this case a multi-
step time discretization will be used. In particular, we will use the second order backward differentiation
scheme (BDF2), in which the time derivative at time n+ 1 is approximated as:

∂u

∂t

∣

∣

∣

∣

n+1

≈
1

δt

(

3

2
un+1 − 2un +

1

2
un−1

)

.

The strategy described in Subsection 4.2 and [8] will be used to prescribe Dirichlet type boundary
conditions on the surface of the moving solid, in this case the cylinder.

The hold-all domain is the rectangle B = [0, 2.2] × [0, 0.44]. A background mesh of 9000 linear
triangles has been used. The considered solid is a cylinder of diameter D = 0.2, its trajectory being
defined by the position of its center:

xc(t) = 1.1 + 0.8 sin

(

2π

3
(t− 0.75)

)

,

yc(t) = 0.22.
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Figure 4: Solution at t = 3. From top to bottom: x-velocity, y-velocity, pressure.

The velocity is prescribed to (0, 0) on the walls of the rectangular domain, except for the wall
corresponding to x = 2.2, where it is left free, whereas it matches the cylinder velocity on the cylinder
surface. Note that the flow is due only to the cylinder movement. Viscosity is set to 0.001, so that the
maximum Reynolds number is Re ≈ 300 based on the cylinder diameter and the (maximum) velocity
when the cylinder is located at the central section of the rectangle. The time step size has been set to
δt = 0.05, and 60 time steps (a full period) have been performed, after which the flow is considered to
be fully developed.

Fig. 4 shows the results obtained at time t = 3. We would like to remark the smoothness of the
velocity field close to the cylinder surface.

It is also interesting to see which are the differences between the treatment of the newly created
nodes in the proposed FM-ALE approach and other usual procedures. To this end we compare nodal
values for newly created nodes at time tn (in the time step which goes from tn to tn+1) for the FM-ALE
approach (information is convected and projected) and for the more usual procedure of extrapolating
values from neighboring nodes mentioned earlier.

Fig. 5 and Fig. 6 show velocity values (before and after the convection-projection or the extrapola-
tion procedures) at tn = 2.25. It can be seen that for large incremental displacements, as those of the
time step we are considering, extrapolated values differ significantly from convected-projected values,
and are much less smooth. Also, the values before the convection-projection or extrapolation proce-
dure are smoother for the FM-ALE approach. We would like to stress that, contrary to the convection-
projection of the FM-ALE method, the extrapolation procedure lacks physical grounds.
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Figure 5: Solution at t = 2.25, extrapolation procedure. From the top to the bottom: x-velocity before
extrapolating, y-velocity before extrapolating, x-velocity after extrapolating, y-velocity after extrapo-
lating.
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Figure 6: Solution at t = 2.25, FM-ALE procedure. From the top to the bottom: x-velocity before
convection-projection, y-velocity before convection-projection, x-velocity after convection-projection,
y-velocity after convection-projection.
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6 Two applications

The purpose of this section is to describe briefly two applications that led us to the development of
the FM-ALE method. It is not our intention here to enter into the details of the problems, but rather to
formulate them to stress how to apply the methodology in these two examples. For details, the reader is
referred to [26] for Subsection 6.1 and to [12] for Subsection 6.2.

6.1 Lost foam casting

Lost foam casting is a casting technique in which the mold to be filled with molten metal is previously
filled with a solid foam. The melt burns the foam when it contacts it, creating a residue that partly
escapes through the mold walls (usually made of sand) and is partly trapped next to the boundaries of
the mold. See [41] for a description of this technique.

Let Ωm the domain that is filled by the molten metal, Ωf be the domain occupied by the foam and
Ω0 be the total domain (metal and foam). They are schematically shown in Fig. 7. Obviously, both Ωm
and Ωf depend on time.

Figure 7: Lost foam casting: Problem setting.

In this problem, apart from the Navier-Stokes equations (2)-(3), also the heat equation needs to be
solved. Let ϑ be the temperature, Cp the specific heat at constant pressure, κ the thermal conduction
coefficient and αij the heat transfer coefficient between materials “i” and “j”. The subscripts “m”, “f”
and “o” will be used to refer to the physical properties of the molten metal, foam and mold, respectively.
Likewise, Γij will be used to denote the interface between materials “i” and “j”, and the subscript inf
will refer to values at the inflow of the domain; see Fig. 7.

Let us denote by umf the velocity at which the front of molten metal advances through the foam. In
this problem, it turns out that this velocity can be computed from an energy budget. If umf is its norm,
it turns out that (see [26])

umf =
αmf(ϑm − ϑf)

ρf(cpf(ϑm − ϑf) + Emel + Evap)
, (25)

whereEmel andEvap are the melting and vaporization energies, respectively, which must be determined
from experiments.

The direction and orientation of umf is determined by imposing this velocity to be normal to the
advancing front. The key idea is to represent this front by a level set function ψ, the approximation of
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which has been described earlier. This leads to

umf = −
umf
|∇ψ|

∇ψ.

If we consider now Ω(t) = Ωm, the problem to be solved consists in solving (2)-(3) together with
the energy balance equation

ρCp

[

∂ϑ

∂t

∣

∣

∣

∣

x
′

(x, t) + (u− udom) · ∇ϑ

]

− κ∆ϑ = 0, (26)

and the boundary conditions on the interface Γmf

u = umf , (27)

−κm
∂ϑ

∂n
= αmf(ϑ− ϑf), (28)

and the appropriate boundary conditions on the rest of the boundary.
There are several remarks to be made concerning the application of the FM-ALE method to this

problem:

Remark 3

• The finite element approximation in space and the time integration of (26) is performed using the
same formulation as for the Navier-Stokes equations.

• In view of (28), temperature is needed also in the foam domain Ωf , which is also time dependent.
Thus, an equation analogous to (26) has to be solved there, with u = 0 but with a mesh velocity
computed as for Ωm.

• For the discrete problem, the transport of the level set function that determines Γmf requires the
velocity u to be extrapolated from Ωm to Ωf . As mentioned earlier, we do this extrapolation by
solving a Stokes problem in Ωf using umf as boundary conditions on Γmf .

• In order to avoid introducing new nodes (apart from those of the background mesh), Dirichlet
boundary conditions (27) need to be approximately imposed, for example using the strategy de-
scribed in Subsection 4.2. Equation (28) does not require any special treatment, as it is prescribed
weakly and evaluating surface integrals on an immersed boundary does not pose any particular
problem.

4

To conclude this subsection, we present the results of a simulation of a three-dimensional tee-shaped
casting (see [26] for more details). The only purpose of this example is to show that the methodology
proposed is feasible in real applications.

The inner diameter of the vertical cylinder is 0.08 m while the inner diameter of the others is
0.10 m. The geometry is symmetrical with respect to the ingate and therefore the filling should also be
symmetric. However, we want to observe the effects of variable foam density. In fact, the foam density
is likely to be non-uniform, especially near the injection points. The front velocity model given by (25)
is expected to take into account these effects, as the foam density appears in the denominator. Different
zones of foam density are shown in Fig. 8.

The time evolution of the velocity vectors in the molten metal region is shown in Fig. 9.
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Figure 8: Geometry and foam density for the lost foam casting example.

6.2 Free surface flows

This example can be considered a prototypical problem for the application of the FM-ALE method.
The domain Ω(t) is the region occupied by the fluid, separated from a region without fluid by a free
surface Γfree. The problem to be solved is exactly (2)-(3) with f = g, the gravity acceleration, and the
boundary condition

n · σ = 0 on Γfree.

Contrary to the previous example, now the velocity is unknown on Γfree but the stress is known. This
simplifies very much the imposition of boundary conditions since, as it has been mentioned in the pre-
vious subsection for the heat equation, boundary conditions imposed weakly on immersed boundaries
do not represent any particular computational problem.

The alternative to the free surface treatment of many problems is a two-fluid coupling, assuming that
the effect of one of the fluids over the other is negligible. In this case, Γfree plays the role of an interface,
rather than a free surface. In fact, in the applications the two-fluid approach is often more realistic, as in
the case of water-air interfaces. However, from the numerical point of view the free-surface approach
is usually more robust. We will show this in a particular example presented next. Before this, let us
comment that the major difference between the free-surface and the two-fluids approach is that the
former requires solving the flow equations on a moving domain, whereas the latter consists in solving on
the whole domain where the flow takes place, which is constant in time, with different fluid properties
in the regions occupied by the two fluids. In this second case, the stress (and the velocity) will be
continuous at the moving interface.

As an example of application, let us consider a 2D flow over a submerged hydrofoil. The hydrofoil
section considered is a NACA0012 with an angle of attack of 5◦ traveling at a speed of 1.776 m/s.
It is an example that has been studied in the laboratory by Duncan [14] and used as a benchmark for
numerical results by several authors [15, 4] .

For the two-fluid simulation, the material properties used (SI units) are ρ1 = 1000, µ1 = 0.001 for
the bottom fluid (water), and ρ2 = 1.2, µ2 = 0.000018 for the top one (air). The simulations where run
for 30 seconds with a 0.04 second time step size. The acceleration of gravity is g = 10. The Reynolds
number using water properties is Re = 1.776× 106, and the Froude number is Fr = 0.5673.

A 2D unstructured mesh that covers a rectangle sized [−6.0, 11.0]×[−4.4, 3.0] around the hydrofoil
was used. It is formed by 7415 nodes and 14364 linear triangular elements refined close to the hydrofoil
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Figure 9: Velocity vectors for the lost foam casting example.
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and to the initial position of the interface as can be seen in Fig. 10. The boundary conditions used are
prescribed inlet velocity at the left side of the rectangle, free slip at the bottom wall and at the hydrofoil,
an open boundary on the top side, and the normal traction equal to minus the hydrostatic pressure
corresponding to the initial water height at the right side of the rectangle. The level set function that
determines the interface position is only prescribed at the left side of the domain. A constant 1.776
horizontal velocity is used as initial condition on the whole mesh except on the NACA hydrofoil, where
it is zero. The interface is initially flat and positioned at y = 0.9904.

Figure 10: Mesh around the NACA profile.

We have compared the results obtained with the free surface model [12] with those a two-fluid
approach proposed in [11], in which air is also simulated. The former turns out to be more robust
than the latter with the physical properties we have chosen. In Fig. 11 results for the position of the
free-surface/interface are shown. The interface position starts to deteriorate at t = 6 in the two-fluid
approach, whereas for the free surface treatment the wave length and height match the experimental
results satisfactorily. This is better observed in Fig. 12, where velocity vectors are plotted.

Finally in Fig. 13 we show the pressure and the pressure without the hydrostatic component corre-
sponding to the initial interface height, in both cases at t = 30 and using the free surface formulation.

7 Conclusions

In this paper we have introduced in detail the concept of the FM-ALE approach. Succinctly, it consists
in using the standard ALE method but “remeshing” at each time step so as to use always the same given
mesh, which discretizes the whole region where the flow takes place.

The first benefit is conceptual. Ad-hoc approximations to account for the advection of information
that can be found in several fixed-grid methods are avoided. This is in particular reflected by the treat-
ment of the so called newly created nodes. When a node “dry” in one time step becomes part of the flow
region in the next time step, the value of the flow variables to be assigned there to approximate (local)
time derivatives is perfectly determined.

It has been our intention to clearly distinguish the main concept of the formulation from other
related issues, and in particular from the approximate imposition of boundary conditions. Nevertheless,
the way to carry out this imposition is essential for the success of the method. We have described our
particular approach. Some remarks concerning the transfer of information between meshes have also
been made, and the possibility to model the moving surface by level set functions has been explained.

Precisely the use of level set functions is crucial in the two applications shown, which we have
included to demonstrate the potential of the method to deal with problems of different nature. Another
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Figure 11: Free surface model at t = 20 (top) and two phase model at t = 6 (bottom), when the solution
starts to deteriorate.

Figure 12: Velocity field and free surface shape at t = 6. Free surface model (top) and two phase model
(bottom).
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Figure 13: Pressure contours at t = 20 with (top) and without (bottom) hydrostatic component (free
surface model).

natural application of the FM-ALE approach is the numerical approximation of fluid-structure interac-
tion problems, a subject of a forthcoming work.
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[35] R. Löhner, J.R. Cebral, F.F. Camelli, J.D. Baum, and E.L. Mestreau. Adaptive embed-
ded/immersed unstructured grid techniques. Archives of Computational Methods in Engineering,
14:279–301, 2007.

[36] R. Mittal and G. Iaccarino. Immersed boundary methods. Annual Review of Fluid Mechanics,
37:239–261, 2005.

[37] J. Mohd-Yusof. Combined immersed boundaries/B-splines methods for simulations of flows in
complex geometries. CTR annual research briefs, Stanford University, NASA Ames, 1997.

29



[38] F. Nobile. Numerical Approximation of Fluid-Structure Interaction problems with application to
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