
Theoretical approach to the Poisson’s ratio behaviour during

structural changes in metallic glasses

Eloi Pineda∗

Dept. de F́ısica i Enginyeria Nuclear, ESAB,
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Abstract

Recently, various studies dealing with the relationship between the elastic constants and various

of the macroscopic properties of metallic glasses have been published. Particularly, the correlations

between the Poisson’s ratio of the glass and both the super-cooled liquid viscosity behaviour and

the brittle-ductile transition have aroused much interest. In this work, we use a model developed by

Knuyt et al. (1990 and 1991) based on a Gaussian distribution for the nearest-neighbour distance

in an ideal uni-component metallic glass, in order to describe qualitatively the dependence of the

Poisson’s ratio on changes of the atomic structure. The results are used to explain the experimental

results obtained in structural relaxation and hydrostatic pressure tests of metallic glasses.
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I. INTRODUCTION

The elastic properties of a glass determine many of its mechanical qualities. Besides, the

change of the Bulk (K), Shear (G) and Young (E) moduli under pressure or temperature

treatments gives information of the changes in the atomic structure of the glass. The inter-

atomic forces and the structure of a liquid or a glass determines its vibrational properties and

hence its elastic constants. The values of the elastic constants K, G, E and the Poisson’s

ratio, ν, can be obtained experimentally by many methods in solids, such as mechanical

deformation or sound wave propagation. For liquids, the instantaneous elastic constants can

be obtained from velocity measurements of high-frequency sound waves in order to avoid

contributions of fast structural relaxations.

A glass inherits its structure from the liquid. The structural state of the glass is described

in terms of the fictive temperature Tf . It is known that metallic glasses become stiffer during

structural relaxation, K, G and E increase if Tf decreases[1][2][3]. Similarly, it is expected

that the instantaneous K, G and E increase as temperature decreases in an equilibrium

liquid. In hydrostatic pressure tests upto 0.5GPa the elastic moduli K, G, and E are also

found to increase as pressure increases[4][5][6]. The density of the glass ρ increases in both

processes, that is when lowering Tf and increasing pressure. This explains the increase in K,

G and E as interatomic distances become smaller. However, the Poisson’s ratio of metallic

glasses exhibits different behaviour in each case; ν decreases after structural relaxation[3]

but increases under pressure[4][5] [6]. The Poisson’s ratio is directly related to the bulk and

shear modulus ratio and it can be calculated as

ν =
1

2
−

3

(6K/G) + 2
. (1)

Although in both processes the glass becomes denser, the opposite behaviour of K/G of

a metallic glass when lowering Tf and when increasing pressure indicates a very different

change of the structure.

Recently, a rough correlation between the fragility parameter of the supercooled liquid

and the K/G of the corresponding glass was noticed for chemically different glasses[7]. The

fragility parameter of a liquid indicates the grade of departure of the viscosity η (T ) from

the Arrhenius equation. This latter correlation would imply a general relationship between

elastic properties and the structural relaxation behaviour of liquids near glass transition,

2



which would be of practical interest in the selection of alloying components for bulk metallic

glasses design[8].

In the following sections we use a theoretical model developed by Knuyt et al.[9][10][11]

to describe qualitatively the structural changes responsible of the Poisson’s ratio behaviour

described above. The model is based on a Gaussian distribution approach for the nearest-

neighbour atomic distance in an ideal uni-component metallic glass.

II. THEORY

The approach made by Knuyt et al.[9][10][11] is based on the assumption of a Gaussian

radial distribution function RDF (r) for the atomic positions in an amorphous metal. This

RDF is defined by a mean position ri and a width σi for the atoms in a given i-shell around

a central atom

RDF (r) =
r

(2π)
1

2

∑ Ni

riσi

(

exp

[

−
(r − ri)

2

2σ2
i

]

− exp

[

−
(r + ri)

2

2σ2
i

])

(2)

where Ni is the number of atoms in the i-shell. This RDF gives a good approach to the

experimental pair correlation functions found in amorphous metals[12]. The model assumes

that the elastic properties are determined by the immediate surroundings of the atoms.

Specifically, contributions of the atomic configuration further than the first shell, that is

out of the range of the interatomic potential, are not taken into account. Therefore, the

calculations are based on an approximated RDF corresponding just to the first shell, which

can be written as

RDF (r) =
r

(2π)
1

2

N1

r1σ1

(

exp

[

−
(r − r1)

2

2σ2
1

])

, (3)

where the parameters determining the shape of the distribution are r1 and σ1. From this

RDF function, expressions in terms of r1 and σ1 can be calculated for the atomic volume

and coordination number distributions of the glass, and for the interference function which

would be obtained in diffraction experiments. For details see ref. [9].

For the calculation of macroscopic properties, Knuyt et al. chose an interatomic potential

with harmonic and anharmonic terms written as

U (r) = a (r − rm)2 + b (r − rm)3 (4)
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where a > 0, b < 0 and rm is the position of the minimum. The important region of this

potential concerning the RDF of equation (3) is within the interval rm − σ1 < r < rm + σ1.

Estimated values for a, b, and rm corresponding to real amorphous metals give rm + σ1

well below the position of the maximum at rm − 2a/3b, which can be considered the cut-off

distance for the potential. This potential is chosen instead of a more realistic and complex

one for the sake of simplification in further calculations.

Using the approximated RDF and the interatomic potential of equations (3) and (4),

Knuyt et al. performed semi-quantitative analysis of various macroscopic quantities such as

the relaxation energy, and the change in the atomic volume and viscosity during relaxation

of amorphous metals. A good agreement with the experimentally observed behaviour was

found when introducing realistic values for the interatomic potential and values of r1 and

σ1 obtained from experimental diffraction data.

A. Calculation of the elastic constants for an amorphous metal

Following Knuyt et al.[11] the calculation of the bulk and the shear moduli is performed

assuming two-particle pair interactions. Supposing we know the positions rk of any atom k

in an amorphous material and the interatomic potential U (|rk − rk′|), the total energy of

the system is given by

Etot =
1

2

∑∑

k 6=k′

U (|rk − rk′|) (5)

the sum running over all the atoms of the system. In the case of a uniform bulk deformation

the position of a k atom is given by

rk = r0
k + εr0

k (6)

where r0
k is the initial position in the undeformed situation and ε is a small number. Sub-

stituting the previous equation into the energy equation (5) and expanding in Taylor series

upto second order one obtains

Eelastic,bulk =
ε2

4

∑∑

k 6=k′

(

r0
kk′

)2
U ′′
(

r0
kk′

)

(7)

where

r0
kk′ =

∣

∣r0
k − r0

k′

∣

∣ . (8)
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Eelastic is the energy increase in the system due to the deformation, the first term in the Taylor

expansion has to be zero as the material must have the lowest energy for the undeformed

state ε = 0. On the other hand, the general expression for the elastic energy in a stressed

material is
Eelastic

V
=

1

2

6
∑

i=1

6
∑

j=1

Cijeiej (9)

being Cij the elastic constants, ei the strain components and V the volume of the material.

In the case of a bulk deformation, this equation leads to

Eelastic,bulk

V
=

9ε2

2
K (10)

where K = 1
3
(C11 + 2C12) is the bulk modulus. Comparing the previous equation with

equation (7) it is obtained that

K =
1

18V

∑∑

k 6=k′

(

r0
kk′

)2
U ′′
(

r0
kk′

)

. (11)

This latter double sum can be written as Nat (that is the total number of atoms in the

material) multiplied by the mean value of a single sum taken with respect to one central

atom, that is

K =
1

18Vat

〈

∑

r2
kU

′′ (rk)
〉

(12)

where now rk is the distance from the central atom towards a neighbouring atom k in the

undeformed situation, and Vat = V/Nat is the mean atomic volume.

In the case of a uniform shear deformation the position of an atom k can be written as

rk = r0
k − αx0

kex + αy0
key (13)

where x0
k, y0

k are the coordinates of the undeformed atomic position, ex, ey are the unitary

vectors on the x and y directions and α is a small number describing the deformation.

Substituting the above expression in equation (5) and by means of a Taylor expansion upto

second order in α, it is obtained that

Eelastic,shear =
α2

6

∑∑

k 6=k′

(

r0
kk′

)2
U ′′
(

r0
kk′

)

−
3α2

2

∑∑

k 6=k′

(

x0
kk′

)2 (
y0

kk′

)2

(

U ′′ (r0
kk′)

(r0
kk′)

2 −
U ′ (r0

kk′)

(r0
kk′)

3

)

(14)

where x0
kk′ is the x coordinate of r0

k − r0
k′ and so on. Using the general expression of the

elastic energy in a stressed material of equation (9), and introducing a deformation field as
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the one defined by α in equation (13) it is obtained that

Eelastic,shear

V
= 2α2G (15)

where G = 1
2
(C11 − C12) is the shear modulus. Combining the two previous equations, and

following an identical procedure as for the bulk modulus, the shear modulus in terms of the

mean value of the sum over the neighbours of a central atom is written as

G =
1

12Vat

[

〈

∑

r2
kU

′′ (rk)
〉

− 9

〈

∑

x2
ky

2
k

(

U ′′ (rk)

r2
k

−
U ′ (rk)

r3
k

)〉]

. (16)

Likewise in equation (12), xk, yk and rk now correspond to the position of the neighbouring

atoms respect to the central atom in the undeformed situation. After some manipulation

profiting from the isotropy in amorphous materials, the last expression becomes

G =
1

30Vat

[

〈

∑

r2
kU

′′ (rk)
〉

+
3

2

〈

∑

rkU
′ (rk)

〉

]

. (17)

Details of the mathematical derivation are found in ref.[11].

Finally, using the bulk and shear moduli expressions given in equations (12) and (17)

their ratio becomes
K

G
=

5

3

[

1 +
3

2

〈
∑

rkU
′ (rk)〉

〈
∑

r2
kU

′′ (rk)〉

]−1

, (18)

where K/G = 5/3, or equivalently ν = 0.25, correspond to the Cauchy relation for an ideal

isotropic solid with the absence of defects and anharmonicity.

The expressions of K and G given above are the so-called ”Born terms” and they assume

strictly uniform deformations. However, in amorphous solids the elastic moduli have the

contribution of elastic relaxations, that is the atomic rearrangements leading to local states of

lower energy during a global deformation. In metallic glasses, molecular dynamic simulations

show that elastic relaxations lower K and G about a 10% and more than a 30% of the

respective uniform deformation values[13][14]. The Knuyt model used in the present work

allows the estimation of the rearrangement terms of K and G[11]. However, their inclusion

would not change qualitatively the results that will be presented in section 3. As we are

interested here in describing qualitatively the effect of the structural changes on the Poisson’s

ratio and for the sake of simplicity we will not take into account these rearrangement terms.

Further discussion on what would be the effect of including these terms will be given in

section 3.
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Now, the elastic moduli expressions described above can be calculated using the RDF of

equation (3). The averages in equations (12) and (17) are calculated as

〈
∑

r2
kU

′′ (rk)〉 =
∫∞

r=0
r2U ′′ (r)RDF (r) dr

〈
∑

rkU
′ (rk)〉 =

∫∞

r=0
rU ′ (r)RDF (r) dr

, (19)

that is substituting the sums over the neighbouring atoms by the mean value calculated

using the proposed RDF. Therefore, the elastic moduli K and G are obtained in terms

of the parameters determining the RDF (r1 and σ1) and the parameters determining the

interatomic potential (rm, a and b). Defining δ as the distance between the mean position

of the first shell of neighbours in the RDF and the position of the interatomic potential

minimum

r1 = rm + δ, (20)

the result obtained for the elastic moduli K and G from equations (12), (17) and (19) can

be conveniently expressed in terms of three non-dimensional parameters

s = δ
rm

, σ = σ1

rm

, p = brm

a
. (21)

Parameters s and σ account respectively for the mean atomic position displacement from

rm and the mean atomic dispersion around such value. Parameter p, which is negative,

gives a measure of the anharmonicity of the potential. Indeed, the position of the inflection

point after the minimum of the potential of equation (4) is given by rm

(

1 − 1
3p

)

. The result

obtained for K and G cutting off the high order terms in s and σ is given by

K =
aN1r

2
m

9Vat

[

1 + 3s (1 + p) + 3s2 (1 + 3p) + 3σ2 (1 + 3p) + ...
]

, (22)

and

G =
aN1r

2
m

15Vat

[

1 +
3

2
s (3 + 2p) +

3

4
s2 (8 + 15p) +

3

4
σ2 (8 + 15p) + ...

]

. (23)

These simplified expressions allow a quick examination of the K and G dependencies on s

and σ. Nevertheless, the integrations in equation (19) can be evaluated without cutting off

the higher order terms. The results presented in the next section were obtained using the

complete result of the integration.
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III. RESULTS AND DISCUSSION

In order to evaluate the behaviour of K and G it is needed to give some value for p, in this

work p = −1.747 is chosen. This value correponds to an interatomic potential for Iron with

a = 0.957eVÅ−2, b = −0.639eVÅ−3 and rm = 2.617Å used in classical defect simulations[15].

From literature data it is found that values of p from −1.5 to −2.5 are realistic for most

metals. Actually, the results presented in this section do not vary qualitatively for any value

of p within this range. Figures 1 and 2 show the variation of K, G and K/G when varying

parameter s and σ. In such plots the bulk and shear moduli are normalized by K0 = aN1r2
m

9Vat

and G0 = aN1r2
m

15Vat

. The calculations are performed using a constant σ = 0.063 for figure 1 and

a constant s = −0.018 for figure 2, these values correspond to realistic values of σ1 = 0.165Å

and r1 = 2.57Å obtained in experimental diffraction data for the first Fe-Fe peak in Fe80B20

amorphous alloys[16]. Nevertheless, the elastic constants behaviour depicted in figures 1 and

2 does not present remarkable differences when using any σ or s values within a realistic

range.

Figures 1 and 2 show the increase in the elastic constants K and G when decreas-

ing either s or σ. The same behaviour would be obtained for the Young modulus

E = 9K/ (3K/G + 1). This is in agreement with the experimental observation of increase

of the elastic moduli E, G and K of metallic glasses after structural relaxation and under

increasing pressure[1][2][3][4][5]. In the case of metals and especially transition-metals, the

short-range ionic interactions - which are well-described by a central potential like the one

used in the present approach - are expected to be the main contribution to the elastic con-

stants. Therefore, the reduction of the interatomic distances, when either Tf decreases or

pressure increases, is expected to enhance the elastic stiffness of the glass. Here it is worth to

recall that this behaviour is not general for other chemically distinct glasses. As an example,

the increase in pressure reduces the elastic moduli in many oxide glasses as in the case of

window glass[17].

In the case of K/G or equivalently the Poisson’s ratio ν, the results obtained from the

model show an opposite dependence on s and σ. Poisson’s ratio increases as s decreases, but

it is found to reduce its value as σ decreases. Both σ and s are expected to become smaller

due to the increase of ρ in structural relaxation and when increasing hydrostatic pressure.

However, it is well-known that the structural change during glass relaxation, or equivalently
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when reducing temperature in an equilibrium liquid, is mainly concerned with the reduction

of the dispersion in the RDF peaks. On the other hand, high-pressure treatments of already

formed metallic glasses are expected to reduce s and σ in a reversible way, that is elastically

deforming the structure but without atomic rearrangements leading to a higher short-range

order. Up to 0.5GPa there is not observed any density change of metallic glasses once

released after the pressure test[4].

Hence, the results shown in figures 1 and 2 may explain qualitatively the experimental

observations of the K/G ratio decrease when reducing Tf and increase when increasing

pressure. In the first case, the reduction of σ would have a dominant effect on the structural

change of the glass thus reducing K/G. In the latter case, the reduction in s would be

dominant thus resulting in an increase of the K/G ratio. Indeed, supposing a proportional

reduction of s and σ2 given by ∆s = C∆σ2 with C =constant, as may be expected in a

reduction of the mean atomic volume, the value of C determines the behaviour of K/G.

The slope d(K/G)
dρ

∝ −d(K/G)
ds

changes from negative values (the decrease in σ is dominant)

to postive values (the decrease in s is dominant) at a certain value of C. As an example,

in the case of σ1 = 0.165Å and r1 = 2.57Å used in the previous calculations such change in

the K/G behaviour is found at a value of C = 0.755.

It is interesting to remark that, as shown from equations (23) and (22), although the

values of K and G are directly dependent on the first-shell coordination number N1, the

K/G ratio is not affected by any change in N1. This means that when reducing the Tf of

a glass the predicted reduction of ν is due mainly to the change in σ but not to the change

in the coordination number of the first RDF peak. Similarly, the interatomic force constant

a does affect K and G values while K/G is just affected by the shape (or equivalently the

anharmonicity) of the potential, which in this model is determined by the parameter p.

As already discussed, equations (23) and (22) does not take into account the influence

of the elastic relaxation. Contrary to the main structural relaxation due to aging, elastic

relaxations are fast, with times of the order of picoseconds, and so their contribution should

be taken into account when considering experimental ultrasonic measurements of the elastic

properties. However, the inclusion of the rearrangement terms given by the Knuyt model

does not change the tendencies of K, G and K/G shown in figures 1 and 2. Firstly, the

rearrangement terms does not have a first order contribution of the parameter s, and then

no significant changes are expected on the behaviour of K, G and K/G shown in figure 1.
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Secondly, the rearrangement terms dependence on σ2 shows a greater influence on G than

on K. Although the absolute values of both G and K are reduced when considering the

rearrangement terms, the effect of these terms is a proportional bigger increase of G than K

when decreasing σ, this leading to a bigger decrease of K/G than the one shown in figure 2.

A first order approximation expressions of the K and G rearrangement terms are given in

ref.[11]. Therefore, the qualitative description of the general tendencies of the elastic moduli

observed experimentally in metallic glasses under structural changes is mainly associated to

the behaviour of the Born terms of K and G, which would correspond to the instantaneous

K and G moduli measured in an ideally infinite frequency experiments.

From experimental data, the fragility of a super-cooled liquid was found to be correlated

with the K/G ratio for a wide set of chemically-different glasses[7]. Stronger glasses were

found to have lower values of K/G. Examining the existing data for metallic glasses in

the literature, it seems that such correlation is not maintained when looking at alloys with

similar values of K/G, although a roughly correlation still exists when looking at a wide set

of alloy compositions. A strong liquid-alloy is expected to have more short-range order in the

super-cooled region than a fragile one, so inhibiting atomic rearrangements and increasing

viscosity. The viscosity behaviour in the super-cooled region have to be dependent on many

structural details of the liquid, as well as on the particular characteristics of the interatomic

forces between atoms or molecules. A proper assessment of a fragility-elastic constants

relationship can not be realised by the simple model presented here. Notwithstanding, from

the results presented here, in the case of similar values of the interatomic forces, a stronger

liquid, which is then expected to have a lower value of σ, would have lower instantaneous

K/G ratio.

As already discussed, the model originally developed by Knuyt et al., which uses a very

simple structural model of a metallic glass, describes qualitatively the changes of the elastic

constants observed in structural relaxation and in hydrostatic pressure tests. However,

great precautions have to be taken into account when using these results to explain the

behaviour of metallic glasses. First of all, the model account for an ideal uni-component

metallic glass, while all available experimental results refer to multi-component metallic

glasses. Moreover, the central interatomic potential used in the model seems a reasonable

approach just for transition metals, where the electronic contribution to the elastic constants

is known to be small and directional bonding is expected to have a very low influence. Indeed,
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it seems reasonable that no qualitative changes have to be expected if the Iron potential

used in this work was changed by a potential corresponding to any other transition metal.

However, most metallic glass compositions have non-transition metals and metalloids as

main components. Finally, the approach realized does not take into account any influence

on the elastic properties of the second and third coordination shells. In a more complex

atomic structure made-up with atoms of different sizes densely packed the contributions of

the second and third shells are likely to be important.

These and other limitations of the model suggest that important changes in the predicted

elastic constants behaviour may be found if we were able to introduce a more detailed

knowledge of the atomic structure and the interatomic forces. On the other hand, the

simplicity of the model, with just two parameters determining the structure of the glass,

offers a very intuitive idea of the way structural changes affect the elastic constants in

metallic glasses. Molecular dynamic simulations would be the ideal tool to check if similar

behaviours are obtained for a more complex model of a glass.

IV. CONCLUSIONS

A model developed by Knuyt et al. (1990 and 1991) was used to explain qualitatively

the Poisson’s ratio behaviour during structural changes in metallic glasses. The reduction

of the mean atomic volume leads to a reduction of both the position (r1) and the width

(σ1) of the first peak of the radial atomic distribution function of an amorphous metal. The

model shows that the change of the Poisson’s ratio is opposite when decreasing r1 or σ1.

This may explain the experimentally found opposite behaviour of the Poisson’s ratio in glass

relaxation and in hydrostatic pressure tests. However, in order to assess the correctness of

the model predictions and get quantitative results for actual glass-forming alloys, a more

complex structural model than the one presented here would be necessary.

Many mechanical properties of metallic glasses seem to be critically related to the value of

the elastic constants. Although technologically complex, the results presented in this work

suggest that the application of pressure treatments during metallic glass vitrification could

result in glasses with interesting different mechanical properties.
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FIG. 1: Bulk (K) and Shear (G) moduli and the ratio G/K as a function of the mean atomic

position s of the first neighbours shell

FIG. 2: Bulk (K) and Shear (G) moduli and the ratio G/K as a function of the atomic dispersion

σ of the first neighbours shell
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Figure 2.
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