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Abstract: This paper deals with the linear theory of isotropic micropolar ther-
moviscoelastic materials. When the dissipation is positive definite, we present
two uniqueness theorems. The first one requieres the extra assumption that
some coupling terms vanish; in this case, the instability of solutions is also proved.
When the internal energy and the dissipation are both positive definite, we prove
the well-posedness of the problem and the analyticity of the solutions. Exponen-
tial decay and impossibility of localization are corollaries of the analyticity.
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1. Introduction

A great effort has been made in the last years to understand the behavior of the so-called
“non-classical materials”. Solids with voids, mixtures of materials or non-simple materials are
examples of them. Some mathematical and mechanical studies about these materials can be
found in the book of Ieşan [11].

It can be said that the first analysis concerning the time decay properties of these alternative
solids was proposed by Quintanilla [26]. The author proved the slow decay of the solutions
with respect to the time for elastic-porous materials when the only dissipation mechanism is
the porous dissipation. After that, a lot of works were intended to clarify the behavior of the
solutions (exponential decay, slow decay, impossibility of localization and/or analyticity) for
solids with voids [4, 5, 9, 10, 13, 14, 16, 17, 18, 20, 19, 21, 23, 24, 29], for non-simple materials
[8, 25] or for mixtures of elastic solids [1, 2, 3, 27, 28]. Nevertheless, any attention has been paid
up to now to micropolar elastic solids. We believe that these kind of properties are a relevant
issue to clarify in order to understand better the thermomechanial behavior ot these materials.

The origin of the rational theories about polar continua is attributed to E. and F. Cosserat
(see [11] or [7]) at the beginning of the twentieth century. In the sixties, other contributions on
this field were done: we want to highlight the work of Eringen [6], among others. Nowadays,
these materials are a subclass of the micromorphic materials. Metals, polymers, rocks, wood,
ceramics, soils, biological materials or pressed powders are typical examples of them.

In this work we focuss on the analysis of the qualitative properties of the isotropic micropolar
thermoviscoelastic materials. That is, materials that, apart from the usual macroscopic move-
ments, allow its material points to rotate. We consider thermal effects as well as viscosity effects
at the macroscopic and microscopic levels. We have two main purposes. First, we will suppose
that the dissipation is positive definite. In this case we will see the uniqueness of the solutions
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and its instability when the internal energy is not necessarily positive definite. Second, if the
dissipation and the internal energy are both positive definite, we will obtain the analyticity of
the solutions. This is an important fact: analyticity implies that the solutions are very regular.
That means that the orbits are analytic functions in the time variable and that the solution can
be obtained from the derivatives in any point. Two consequences of this fact are the exponen-
tial decay and the impossibility of localization of the solutions. In particular, the exponential
stability tells us that the perturbations are damped in a very fast way and, from an empirical
point of view, they will be imperceptible after a small period of time.

As we said above, the study of the qualitative properties of the micropolar elastic solids has
got little attention. Our aim is to improve this circumstance. We take the situation where
the more number of dissipation mechanisms can appear. We think that this could be a good
beginning because this situation determines when the solutions will be the more regular possible.
The analysis of the solutions when less dissipation mechanisms are present could be the aim of
future works.

The structure of the paper is the following. In Section 2 we recall the basic equations with the
assumptions that we need to set down the problem. In Section 3, we present uniqueness and
instability results for the solutions using the logarithmic convexity argument for a particular
(but quite general) case. In Section 4, uniqueness is proved working with the general system of
equations. The existence of solution is proved in Section 5 making use of the linear operators
semigroup theory. Finally, in Section 6, we prove the analyticity of the solutions, that, among
other properties, show that the solutions are exponentially stable and also the impossibility of
localization.

2. Basic equations

Let us consider an homogeneous isotropic tridimensional micropolar viscoelastic body which
occupies a three-dimensional domain Γ with a boundary, ∂Γ, smooth enough to apply the
Divergence theorem. We consider the strain measures eij and κij which are defined by

(2.1) eij = uj,i + εjikφk, κij = φj,i,

where ui are the components of the displacement vector, φi are the components of the micro-
rotation and εjik is the alternating symbol. In this paper we assume that the stress tensor tij ,
the microstress mij , the entropy η and the heat flux vector qi are related to the strain measures
eij and κij and also to the temperature T and the gradient of the temperature by means of the
constitutive equations

tij = λerrδij + (µ + σ)eij + µeji + λv ėrrδij + (µv + σv)ėij + µv ėji − bTδij ,
mij = ακrrδij + βκji + γκij + αvκ̇rr + βvκ̇ji + γvκ̇ij + b∗εijrT,r,
ρη = berr + aT,
qi = kT,i + k∗εirsκ̇rs.

Here λ, µ, σ, λv, µv, σv, b, b
∗, α, β, γ, αv, βv, γv, ρ, a, k and k∗ are the constitutive coefficients and

δij the Kronecker delta.

The evolution equations are

tji,j + ρF
(1)
i = ρüi,

εijktjk + mji,j + JF
(2)
i = Jφ̈i,

ρT0η̇ = qi,i + ρr,
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where ρ and J are positive constants whose physical meaning is well known and F
(k)
i and r are

the supply terms.

To have a well determined problem we need to impose boundary and initial conditions. There-
fore, we will assume Dirichlet boundary conditions

(2.2) ui(x, t) = ui, φi(x, t) = φi, T (x, t) = T , x ∈ ∂Γ.

and the following initial conditions

ui(x, 0) = u0
i (x), u̇i(x, 0) = v0

i (x), φi(x, 0) = φ0
i (x), φ̇i(x, 0) = ϕ0

i (x),

T (x, 0) = T 0(x), x ∈ Γ.
(2.3)

As the material is isotropic the system of the field equations is given by

(µ + σ)∆ui + (λ + µ)ur,ri + σεirsφs,r + (µv + σv)∆u̇i

+ (λv + µv)u̇r,ri + σvεirsφ̇s,r − bT,i + ρF
(1)
i = ρüi

γ∆φi + b∗εijkT,kj + (α + β)φr,ri + σεirsus,r − 2σφi + γv∆φ̇i(2.4)

+ (αv + βv)φ̇r,ri + σvεirsu̇s,r − 2σvφ̇i + JF
(2)
i = Jφ̈i

T0(bu̇i,i + aṪ ) = k∆T + k∗εirsκ̇rs,i + ρr.

Here ∆ means the Laplace operator.

As usual in this paper we assume that the coefficients satisfy ρ > 0, J > 0, a > 0 and k > 0.

It is worth noting that the mechanical internal energy is given by

(2.5) 2W = λerress + (µ + σ)eijeij + µeijeji + ακrrκss + βκijκji + γκijκij .

If we assume that W is a positive definite quadratic form, then we find that the constitutive
coefficients of an isotropic body satisfy the inequalities

3λ + 2µ + σ > 0, 2µ + σ > 0, σ > 0,

3α + β + γ > 0, γ + β > 0, γ − β > 0.
(2.6)

The dissipation in this case is given by
(2.7)

D = λv ėrrėss+(µv+σv)ėij ėij+µv ėij ėji+αvκ̇rrκ̇ss+βvκ̇ij κ̇ji+γvκ̇ij κ̇ij+
k

T0
T,iT,i+

(
b∗ +

k∗

T0

)
εjirκ̇jiT,r.

In this paper we will assume that D is a positive definite quadratic form, that is, we assume the
existence of a positive constant C such that the inequality

(2.8) D ≥ C(ėij ėij + κ̇ij κ̇ij + T,iT,i)

is satisfied.

3. Uniqueness and instability

We restrict our attention to the particular case obtained when k∗ = b∗ = 0 and, for this case,
we propose the logarithmic convexity argument to show the uniqueness and instability of the
solutions. For this purpose, we assume that the supply terms vanish.
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If D is a positive definite quadratic form, then we find that the constitutive coefficients of an
isotropic body satisfy the inequalities

3λv + 2µv + σv > 0, 2µv + σv > 0, σv > 0,

3αv + βv + γv > 0, γv + βv > 0, γv − βv > 0.
(3.1)

In this section we suppose that ρ, J , a and k are positive, and that (3.1) holds. To prove
the uniqueness of the solutions it is sufficient to see that the only solution of the homogeneous
boundary-value problem is the null solution. Thus, from now on, we will work with the null
boundary conditions:

(3.2) ui = 0, φi = 0, T = 0, on ∂Γ× (0, t).

The logarithmic convexity argument is strongly based on the choice of a relevant measure func-
tion. To define this function it is convenient to consider several preliminaries. Let us denote
by

θ(t) =
∫ t

0
T (s)ds,

and integrate the last equation of (2.4) with respect to the time. We obtain

(3.3) T0(bui,i + aT ) = kθ,ii + T0(bu0
i,i + aT 0).

We denote by P (x) the solution of the boundary value problem defined by the equation

(3.4) kP,ii = −T0(bu0
i,i + aT 0)

and the homogeneous Dirichlet conditions P = 0 on ∂Γ.

It is worth noting that the existence and uniqueness of P is guaranteed by the theory of elliptic
equations. If we define

z(x, t) = θ(x, t)− P (x),
then equation (3.3) becomes

(3.5) T0(bui,i + aT ) = kz,ii.

The energy equality can be written as

(3.6)

E(t) =
∫

Γ

(
ρu̇iu̇i + Jφ̇iφ̇i + aT 2

)
dV

+
∫

Γ

(
λerress + (µ + σ)eijeij + µeijeji + ακrrκss + βκijκji + γκijκij

)
dV

+ 2
∫ t

0

∫
Γ

DdV ds = E(0),

where D has been defined previously.

Now we define the function Fh,t0(t) in the following way:
(3.7)

Fh,t0(t) =
∫

Γ

(
ρuiui + Jφiφi

)
dV

+
∫ t

0

∫
Γ

(
λverress + (µv + σv)eijeij + µveijeji + αvκrrκss + βvκijκji + γvκijκij +

k

T0
z,iz,i

)
dV ds

+ h(t + t0)2.
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Here h and t0 are two positive constants to be determined later (see [12]).

If we compute the first and second derivatives of Fh,t0(t) we have
(3.8)

Ḟh,t0(t) = 2
∫

Γ

(
ρuiu̇i + Jφiφ̇i

)
dV

+ 2
∫ t

0

∫
Γ

(
λverrėss + (µv + σv)eij ėij + µveij ėji + αvκrrκ̇ss + βvκij κ̇ji + γvκij κ̇ij +

k

T0
z,iż,i

)
dV ds

+
∫

Γ

(
λverr(0)ess(0) + (µv + σv)eij(0)eij(0) + µveij(0)eji(0) + αvκrr(0)κss(0) + βvκij(0)κji(0)

+ γvκij(0)κij(0) +
k

T0
P,iP,i

)
dV + 2h(t + t0),

and
(3.9)

F̈h,t0(t) = 2
∫

Γ

(
ρu̇iu̇i + Jφ̇iφ̇i + ρuiüi + Jφiφ̈i

)
dV

+ 2
∫

Γ

(
λverrėss + (µv + σv)eij ėij + µveij ėji + αvκrrκ̇ss + βvκij κ̇ji + γvκij κ̇ij +

k

T0
z,iż,i

)
dV + 2h.

In view of the evolution equations and using the divergence theorem we obtain

(3.10)

F̈h,t0(t) = 2
∫

Γ

(
ρu̇iu̇i + Jφ̇iφ̇i

)
dV

− 2
∫

Γ

(
λerress + (µ + σ)eijeij + µeijeji + ακrrκss + βκijκji + γκijκij

)
dV

+ 2
∫

Γ

k

T0
z,iż,idV + 2

∫
Γ

bTui,idV + 2h.

Therefore, taking into account that∫
Γ

bui,iTdV = −
∫

Γ

(
k

T0
z,iT,i − aT 2

)
dV,

we see that

(3.11)

F̈h,t0(t) = 2
∫

Γ

(
ρu̇iu̇i + Jφ̇iφ̇i

)
dV

− 2
∫

Γ

(
λerress + (µ + σ)eijeij + µeijeji + ακrrκss + βκijκji + γκijκij

)
dV

− 2
∫

Γ
aT 2dV + 2h.

Using the conservation of the energy we find that

(3.12) F̈h,t0(t) = 4
∫

Γ

(
ρu̇iu̇i + Jφ̇iφ̇i

)
dV + 4

∫ t

0

∫
Γ

DdV ds− 2(E(0)− h).
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Then, if we denote by

ν =
∫

Γ

(
λverr(0)ess(0) + (µv + σv)eij(0)eij(0) + µveij(0)eji(0) + αvκrr(0)κss(0) + βvκij(0)κji(0)

+γvκij(0)κij(0) +
k

T0
P,iP,i

)
dV,

(3.13)

then we obtain the following inequality:

(3.14) Fh,t0F̈h,t0 − (Ḟh,t0 − ν)2 ≥ 2(h + E(0))Fh,t0 .

If we assume that the initial data vanish, then we have ν = 0, and the above inequality, for
h = t0 = 0 becomes

FF̈ − Ḟ 2 ≥ 0.

(To simplify, we have denoted F = F0,0.) From this last inequality we find

F (t) ≤ F (0)1−t/t1F (t1)t/t1 , 0 ≤ t ≤ t1,

and we conclude that F (t) = 0 for 0 ≤ t ≤ t1. This gives us the uniqueness result.

In the general case, assuming that E(0) < 0, we can always take t0 large enough to guarantee
that Ḟh,t0 > ν. Then we get

Fh,t0(t) ≥
Fh,t0(0)Ḟh,t0(0)

Ḟh,t0(0)− ν
exp

(
Ḟh,t0(0)− ν

Fh,t0(0)
t

)
−

νFh,t0(0)
Ḟh,t0(0)− ν

.

This inequality gives the exponential growth of the solutions.

Therefore, we have proved the following result.

Theorem 3.1. Let us assume that ρ > 0, J > 0, a > 0, k > 0 and that (3.1) hold. Then:

(1) The Dirichlet boundary value problem has at most one solution.
(2) If E(0) < 0, then the solution becomes unbounded in an exponential way.

4. Uniqueness for the general case

In this section we will study the problem in the general case, that is, when b∗ or k∗ can be
different from zero, and we will show the uniqueness of the solutions. In fact, we will prove
that the only solution with null initial conditions is the null solution. This fact will prove the
uniqueness. In this section we assume again that ρ, J , a and k are positive and D is positive
definite.

In this case, the energy equation (see (3.6)) gives

(4.1)

E(t) =
∫

Γ

(
ρu̇iu̇i + Jφ̇iφ̇i + aT 2

)
dV

+
∫

Γ

(
λerress + (µ + σ)eijeij + µeijeji + ακrrκss + βκijκji + γκijκij

)
dV

+ 2
∫ t

0

∫
Γ

DdV ds = 0.
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From the above expression, we introduce the following notation:

I1 =
∫
Γ

(
ρu̇iu̇i + Jφ̇iφ̇i + aT 2

)
dV

I2 =
∫
Γ

(
λerress + (µ + σ)eijeij + µeijeji + ακrrκss + βκijκji + γκijκij

)
dV

I3 = 2
∫ t
0

∫
Γ DdV ds.

And we define the function J(t) = I1 + I3. Obviously, J(t) = −I2. Therefore,

J(t) ≤ C

(∫ t

0
I2

) 1
2

I
1
2
3 ,

where C is a calculable positive constant. In view of a Poincaré type inequality, there exists a
positive constant C1 such that∫ t

0
I2ds ≤ 4t2

π2
C1

∫ t

0
(ėij ėij + κ̇ij κ̇ij)ds.

Using the positivity of the dissipation function, it can be seen that

(4.2) J(t) ≤ C∗tI3 ≤ C∗tJ(t),

where C∗ can be calculated in terms of the constitutive coefficients. From (4.2), it follows that
(1 − C∗t)J(t) ≤ 0. If we consider t0 = (C∗)−1, then we find that J(t) vanishes in the interval
[0, t0]. From the definition of J(t), it follows that u̇i = 0 and T = 0 for every t ≤ t0. Thus, we
have proved that the problem has only the null solution in the interval [0, t0]. Applying the same
argument to the problem determined by the field equations, the same boundary conditions and
the null initial data for the initial instant t0, that is, ˙ui(x, t0) = 0, T (x, t0) = 0, we conclude that
ui = 0 and T = 0 for every t ≤ 2t0. The theorem is proved applying recurrently this argument.

Theorem 4.1. Let us assume that ρ > 0, J > 0, a > 0, k > 0 and that D is positive definite.
Then the Dirichlet boundary value problem has at most one solution.

5. Existence of solution

In this section we use the results of the semigroup of linear operators theory to obtain an existence
theorem. Though other boundary conditions could be proposed, we restrict our attention to the
boundary conditions proposed at (3.2).

In the remains of the paper we assume that ρ, J , a and k are positive, D is positive definite and
that the internal energy density W is a positive definite quadratic form.

We now transform the boundary initial value problem defined by system (2.4), initial conditions
(2.3) and boundary conditions (2.2) into an abstract problem on a suitable Hilbert space. We
denote

(5.1) Z = {U = (u,v,φ,ϕ, T );ui, φi,∈ W 1,2
0 (Γ), vi, ϕi, T ∈ L2(Γ)},

where W 1,2
0 (Γ) and L2(Γ) are the usual Sobolev spaces, which take values at the complex field.
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Let us consider the operators

Ai(u) =
1
ρ

[(µ + σ)ui,jj + (λ + µ)uj,ji] ,

Bi(φ) =
1
ρ

[σεirsφs,r] ,

Ci(T ) =
1
ρ

[−bT,i] ,

Di(v) =
1
ρ

[(µv + σv)vi,jj + (λv + µv)vj,ji] ,

Ei(ϕ) =
1
ρ

[σvεirsϕr,s] ,

and

Ki(v) =
1
J

[σvεirsvs,r] ,

Zi(u) =
1
J

[σεirsus,r] ,

Mi(φ) =
1
J

[γφi,jj + (α + β)φj,ji − 2σφi] ,

Fi(ϕ) =
1
J

[γvϕi,jj + (αv + βv)ϕj,ji − 2σvϕi] ,

Ni(T ) =
b∗

J
εijkT,jk,

U1(T ) =
1

aT0
[kT,jj ] ,

V1(v) =
1
a

[−bvi,i] ,

X1(ϕ) =
k∗

aT0
εirsϕs,ri.

We denote

(5.2) D =
(
W1,2

0 ∩W2,2
)
×
(
W1,2

0 ∩W2,2
)
×
(
W1,2

0 ∩W2,2
)
×W1,2

0 ×
(
W 2,2 ∩W 1,2

0

)
.

Let A be the matrix operator defined on D by

(5.3) A =


0 Id 0 0 0
A D B E C
0 0 0 Id 0
Z K M F N
0 V1 0 X1 U1

 ,

where A = (Ai),B = (Bi),C = (Ci),D = (Di),E = (Ei),F = (Fi),Z = (Zi),M = (Mi),N =
(Ni),K = (Ki) and Id represent the identity in the respective space. We note that the domain
of A contains D which is dense in Z.

The initial boundary value problem (2.4), (2.3), (2.2) can be transformed into the following
abstract equation in the Hilbert space Z,

(5.4)
dU
dt

= AU(t) + Γ(t), U(0) = U0,
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where

(5.5) Γ =
(
0,F(1),0,F(2),

ρr

aT0

)
, U0 =

(
u0

i , v
0
i , φ

0
i , ϕ

0
i , T

0
)
.

We introduce in Z the inner product

(5.6) < U,V >=
∫

Γ

(
ρvivi

? + Jϕiϕi
? + aTT

? +M
[
U0,V0

])
dV,

where
U = (u,v,φ,ϕ, T ), V = (u?,v?,φ?,ϕ?, T ?),

U0 = (u,φ), V0 = (u?,φ?)

and
M
[
U0,V0

]
= λerre?

ss + (µ + σ)eije?
ij + µeije?

ji + ακrrκ?
ss + βκijκ?

ji + γκijκ?
ij .

As before, we use relations (2.1).

We note that (5.6) defines a norm which is given by

‖(u,v,φ,ϕ, T )‖2 =
∫
Z

(
ρvivi + Jϕiϕi + aTT + λerress + (µ + σ)eijeij+

µeijeji + ακrrκss + βκijκji + γκijκij) dV

(5.7)

In view of the assumptions (2.6) and also of the equality

eijeij = u(i,j)u(i,j) + εijkεijk(γk − φk)2,

where γk = 1
2εkrsus,r and u(i,j) = 1

2(ui,j + uj,i), we can assure that our inner product defines a
norm which is equivalent to the usual norm in Z.

Lemma 5.1. The operator A has the property

(5.8) < < AU,U >≤ 0,

for any U ∈ D, where the inner product < ., . > is defined at (5.6).

Proof. Let U = (u,v,φ,ϕ, T ) ∈ D. We denote e∗ij = vj,i + εjikϕk and κ∗ij = ϕj,i.

Using the divergence theorem and the boundary conditions we have

< AU,U >= −
∫

Γ

(
λve

∗
rre

∗
ss + (µv + σv)e∗ije∗ij + µve

∗
ije

∗
ji + αvκ

∗
rrκ

∗
ss + βvκ

∗
ijκ

∗
ji

+γvκ
∗
ijκ

∗
ij +

k∗

T0
εjirκ

∗
jiT ,r + b∗εjirκ∗jiT,r +

k

T0
T,iT ,i

)
dV

(5.9)

In view of (2.8), it is clear that < < AU,U >≤ 0.

Lemma 5.2. The operator A satisfies the condition 0 ∈ %(A).

Proof. Let U∗ = (u∗,v∗,φ∗,ϕ∗, T ∗) ∈ Z. We must show that the equation

(5.10) AU = U∗,
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has a solution U = (u,v,φ,ϕ, T ) ∈ D. If we take into account the operator A described by
(5.3), then we find the system

(5.11)

v = u∗

Au + Dv + Bφ + Eϕ + CT = v∗

ϕ = φ∗

Zu + Kv + Mφ + Fϕ + NT = ϕ∗

V1v + U1T + X1φ
∗ = T ∗.

Substituting the first and the third equations into the others, we obtain the following system
with unknowns u, φ and T .

(5.12)
Au + Bφ + CT = v∗ −Du∗ −Eφ∗

Zu + Mφ + NT = ϕ∗ −Ku∗ − Fφ∗

U1T = T ∗ − V1u∗ −X1ϕ.

From the last equation we obtain the solution T (x), which can be substituted in the first and
second equations of the above system. Hence, we get

(5.13) Au + Bφ = v∗ −Du∗ −Eφ∗ −CT
Zu + Mφ = ϕ∗ −Ku∗ − Fφ∗ −NT.

Notice that

(v∗ −Du∗ −Eφ∗ −CT , ϕ∗ −Ku∗ − Fφ∗ −NT ) ∈ W−1,2 ×W−1,2.

On the other side,

B
(
(u,φ), (u∗,φ∗)

)
= 〈(Au + Bφ,Zu + Mφ), (ρu∗, Jφ∗)〉

defines a coercive and bounded bilinear form on W 1,2
0 × W 1,2

0 . Hence, in W 1,2
0 × W 1,2

0 , the
Lax-Milgram theorem implies the existence of a solution to the system of equations (5.13).Thus,
equation (5.10) has also a solution.

Theorem 5.3. The operator A generates a semigroup of contractions in Z.

The proof follows from the above lemmas and the Lumer-Phillips corollary to the Hille-Yosida
theorem.

Theorem 5.4. Assume that Fα
i , r ∈ C1([0,∞), L2) and U0 ∈ D. Then, there exists a unique

solution U(t) ∈ C1([0,∞),Z) ∩ C0([0,∞),D) to the problem (5.4).

Since the semigroup defined by the operator A is contractive, we obtain the estimate

(5.14) ||U(t)||Z ≤ ||U0||Z +
∫ t

0

(
||F(1)(τ)||L2 + ||F(2)(τ)||L2 + ||r(τ)||L2

)
dτ,

which proves the continuous dependence of the solutions upon initial data and body loads. Thus,
the problem is well posed.

6. Analyticity of solutions

In this section we prove the analyticity of the solutions to the problem (5.4) supposing that the
supply terms are absent.

In order to prove the main result of this section we will use a theorem that can be found in Liu
and Zheng [15].



Uniqueness and analyticity in micropolar thermoviscoelasticity 11

Theorem 6.1. Let us consider S(t) = eAt a C0-semigroup of contractions generated by the
operator A in the Hilbert space Z. Suppose that %(A) ⊇ {iβ;β ∈ R} ≡ iR. Then S(t) is analytic
if and only if

lim|β|→∞‖β(iβI − A)−1‖ < ∞, β ∈ R
holds.

To apply this theorem to our situation, we need to consider the resolvent equation

λU−AU = F,

where U = (u,v,φ,ϕ, T ) and F = (f1, f2, f3, f4, f5). We shall take λ = iα, with α ∈ R.
Therefore, our equation becomes

(6.1)

iαu− v = f1
iαv −Au−Dv −Bφ−Eϕ−CT = f2
iαφ−ϕ = f3
iαϕ− Zu−Kv −Mφ− Fϕ−NT = f4
iαT − V1v − U1T −X1ϕ = f5.

Lemma 6.2. For any F ∈ Z there exists a positive constant C such that∫
Γ
(e∗ije

∗
ij + κ∗ijκ

∗
ij + T,iT,i)dV ≤ C‖F‖Z‖U‖Z ,

where, as before,
e∗ij = vj,i + εjikϕk and κ∗ij = ϕj,i.

Proof. If we multiply the first equation of (6.1) by −Au − Bφ, the second by v, the third by
−Mφ−Zu, the fourth by ϕ, the last one by T and we add all the results we obtain at the left
hand side the following expression:

iα (−〈u,Au + Bφ〉 − 〈φ,Zu + Mφ〉+ 〈v,v〉+ 〈ϕ,ϕ〉+ 〈T, T 〉)
+〈v,Au + Bφ〉 − 〈Au + Bφ,v〉+ 〈ϕ,Zu + Mφ〉 − 〈Zu + Mφ,ϕ〉

−〈Dv + Eϕ,v〉 − 〈Kv + Fϕ,ϕ〉 − 〈U1T, T 〉
−〈NT, ϕ〉 − 〈X1ϕ, T 〉
−〈CT,v〉 − 〈V1v, T 〉.

(6.2)

And the norm of the right hand side is bounded by C‖F‖‖U‖, for a positive constant C.

Notice that the first line of (6.2) becomes
(6.3)

iα

∫
Γ

[
λerress + (µ + σ)eijeij + µeijeji + ακrrκss + βκijκji + γκijκij + ρvivi + Jϕiϕi + aTT

]
dV

and, therefore, it is clear that this number is imaginary.

The second line of (6.2) is also imaginary, as it obtained from the difference of conjugate complex
numbers.

On the other hand, the third line becomes
(6.4)∫

Γ

[
λve

∗
rre

∗
ss + (µv + σv)e∗ije

∗
ij + µve

∗
ije

∗
ji + αvκ

∗
rrκ

∗
ss + βvκ

∗
ijκ

∗
ji + γvκ

∗
ijκ

∗
ij +

k

T0
T,jT ,j

]
dV,

and, hence, it is real.
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The expression in the fourth line of (6.2) has real and imaginary parts. Applying the operators
we get

(6.5)
∫

Γ

[(
b∗ +

k∗

T0

)
εijk<κ∗kiT ,j + i

(
b∗ − k∗

T0

)
εijk=κ∗kiT ,j

]
dV

Finally, recalling the operators C and V1, from the fifth line of (6.2) we obtain∫
Γ

(
bT,ivi − bviT ,i

)
dV,

which is imaginary.

Therefore, taking only the real parts and recalling the positivity of the dissipation, we obtain
the desired result.

Lemma 6.3. For any F ∈ Z there exists a positive constant C such that

|α|‖U‖Z ≤ C‖F‖Z ∀α ∈ R,

where U is the solution of (6.1).

Proof. Now we multiply the first equation of (6.1) by −i(Au+Bφ), the second by iv, the third
by −i(Mφ + Zu), the fourth by iϕ, the last one by iT and we add all the results. Notice that
if 〈x, y〉 = <〈x, y〉 + i=〈x, y〉, then 〈x, iy〉 = =〈x, y〉 − i<〈x, y〉. That means, that now the real
part of the sum of the left hand side is just the imaginary part of (6.2).

The norm of the right hand side is bounded by C‖F‖‖U‖, for a positive constant C.

Notice that

−i (〈v,Au + Bφ〉 − 〈Au + Bφ,v〉+ 〈ϕ,Zu + Mφ〉 − 〈Zu + Mφ,ϕ〉) = 2=M[(v,ϕ), (u,φ)],
(6.6)

and, hence, it is real.

Notice also that now the first line of (6.2) is now real:

α

∫
Γ

[
λerress + (µ + σ)eijeij + µeijeji + ακrrκss + βκijκji + γκijκij + ρvivi + Jϕiϕi + aTT

]
dV

(6.7)

Moreover,

(6.8) −i

∫
Γ

(
bT,ivi − bviT ,i

)
dV = 2=

∫
b
T,ividV

is also real.

We know that there exists positive constants C1 and C2 such that

(6.9) 2=M[(v,ϕ), (u,φ)] ≤ C1‖U‖1/2‖F‖1/2‖U‖
2=
∫
Γ bT,ividV ≤ C2‖U‖‖F‖

Therefore, we obtain

α

∫
Γ

[
λerress + (µ + σ)eijeij + µeijeji + ακrrκss + βκijκji + γκijκij + ρvivi + Jϕiϕi + aTT

]
dV ≤∫

Γ

[(
b∗ − k∗

T0

)
εijk=κ∗kiT ,j

]
dV + 2=M[(v,ϕ), (u,φ)] + 2=

∫
Γ

bT,ividV + C‖F‖‖U‖,

(6.10)
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and, hence,

(6.11) |α|‖U‖2 ≤ C1‖U‖3/2‖F‖1/2 + C∗2‖U‖‖F‖.
From this inequality we get that

|α|‖U‖ ≤ C‖F‖,
where C > 0 and α is sufficiently greater.

Theorem 6.4. The semigroup generated by the operator A is analytic.

Proof. Since A is the infinitesimal generator of a strongly continuous semigroup, R+ ∈ %(A)
and as 0 ∈ %(A), we have iR ⊂ %(A). From Lemma (6.3) we have

‖α(iαI − A)−1F‖Z = |α|‖U‖Z ≤ C‖F‖Z .

Then,
lim|α|→∞‖α(iαI − A)−1)‖ < ∞.

Corollary 6.5. As a consequence of the analyticity, the system (2.4) is exponentially stable.
Moreover, the system has a regularity effect in the sense that the solution U = (u,v,φ,ϕ, T )
satisfies U ∈ C∞((0, t);D(A∞)).

However, D(A) is not necessarily a regular space. This implies that U is not in C∞
(
(0, t)× Γ

)
when the initial data are not regular.

Another consequence of the analyticity of the solutions is the impossibility of localization. That
means that the only solution that can be identically zero after a finite period of time is the null
solution.

Corollary 6.6. Let U = (u,v,φ,ϕ, T ) be a solution of the system (2.4) with initial conditions
(2.3) and boundary conditions (2.2) such that u = φ = T ≡ 0 after a finite time t0 > 0. Then,
u = φ = T ≡ 0 for every t ≥ 0.
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[3] M. S. Alves, J. E. Muñoz Rivera, M. Sepúlveda, and O. V. Villagrán, Analyticity of semigroups associates
with thermoeviscoelastic mixtures of solid, J. Thermal Stresses 32 (2009), 986–1004.

[4] P. S. Casas, R. Quintanilla, Exponential stability in thermoelasticity with microtemperatures, Internat. J.
Engrg. Sci. 43 (2005), 33-47.

[5] P. S. Casas, R. Quintanilla, Exponential decay in one-dimensional porous-themoelasticity, Mech. Res. Comm.
32 (2005), 652-658.

[6] A. C. Eringen, Linear theory of micropolar viscoelasticity, International Journal of Engineering Science, vol.
5, issue 2 (1967), 191–204.

[7] Eringen, A. C., 1999. Microcontinuum Field Theories. I: Foundations and Solids. Springer-Verlag, New York.
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