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ABSTRACT

This work deals with the construction of snarks, that is, cubic graphs that cannot
by 3-edge—colored. A natural generalization of the concept of “color”, that
describes in a simple way the coloring ("0" or "1") of any set of (semi)edges, is
introduced. This approach allows us 10 apply the Boolean logic theory to find an
ample family of snarks, which includes many of the previously known
constructions and also some interesting new ones.

1. Introduction

Let G be a graph with maximum degree A. The chromaric index of G, denoted by
¥'(G), is the minimum integer k such that G is k-edge-—colorable. By the well-
known theorem of Vizing [25],

Ay (G <A+ 1.

When %'(G) = A, the graph G is said to be of class 1. Otherwise, ie. when
'(G)=A+ 1, G issaid to be of class 2.

The term Tait coloring of G isused to meana 3—edge—coloring of G when such a
graph is cubic {24]. For a general textbook on edge—ccloring we refer the reader to
[11].

The main concern of this paper is the construction of snarks. Following [3], we
define a snark as a cubic graph that cannot be Tait colored (i.e., with chromatic index 4).
This name was proposed by M. Gardner [13] who borrowed it from the Lewis Carroll
ballad "The Hunting of the Snark". Usually, and in order to avoid "trivial cases", a class
2 cubic graph is called snark only if itis cyclically 4—edge—connected and with girth at
least 5. See, for instance, [6], [18] or [26]. However, the decomposition results
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givenin [3] and [15] showed that this notion of nontriviality may not be appropriate.
Hence, we adopt the most simple definition given above. In the next section we wil}
study this question in detail.

To the author's knowledge, the history of the hunt of (nontrivial) snarks may be
summarized as follows. In 1973 only four snarks were known, the earliest one being
the ubiquitous Petersen graph P [22]. The other three, on 18, 210, and 50 vertices,
were found by D. Blanusa [2], B. Descartes (7] and G. Szekeres [23) respectively,
Quoting A. Chetwynd and R. Wilson [6], "In 1975 the art of snark hunting underwent a
dramatic change when R. Isaacs [18] described two infinite families of snarks.” One of

- these families, called the BDS class, included all (three) snarks previously known. In

fact, this family is based on a construction also discovered independently by G.M.
Adelson—Velski and A. Titov in [1]). The members of the other family are the so—called
flower snarks. They were also found independently by Grinberg in 1972, although he
never published his work.,

In [20], Jakobsen proposed a method, based on the well-known Hajés—union [16],
to construct class 2 graphs. As it was pointed out by M.K. Goldberg in [15], some
snarks of the BDS class can also be obtained by using this approach.

Later, R. Isaacs [19] described two new infinite sets of snarks found by F.
Loupekine.

In [8], the author proposed a new method of generating snarks, based on Boolean
algebra. This method led to a new characterization of the BDS class and also to a
significant enlargement of it. For instance, Loupekhine's graphs [19] and most of the
Goldberg's snarks [14], [15] can be viewed as members of this class. This paper is
mainly devoted to the study of such a method.

In (8}, infinitely many snarks of another family, called by R. Isaacs the Q class,
were also given. Apart from the Petersen graph P and the flower snark Js, in [18]
Isaacs had given a further snark of this class: the double star graph. The graphs of this
class are all cyclically 3—edge—connected. Recently, P. Cameron, A.G. Chetwynd and
J.J. Watkins [3] gave a method to construct new snarks belonging to such a family.

Other constructions of snarks, most of them belonging to the BDS class, have been
proposed by several authors. See, for instance, the papers of U.A. Celmins and E.R.
Swart [5], JL. Fouquet, J.L. Jolivet and M. Riviére [12], and J.J. Watkins [26].

2. Multipoles

In the study of snarks it 1s useful to think of them as made up by joining two or more
graphs with "dangling edges”. We call these graphs multipoles. More precisely, 2
multipole or m-pole Gp =(V, E, X) consists of a (finite) set of vertices V = V(Gp), &
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set of edges E = E(Gp) or unordered pair of vertices, and a set X = X(Gp), X =m,
whose elements x are called semiedges. Each semiedge is associated either with one
vertex or with another semiedge making up what we call an isolated edge. An example
of multipole is depicted in Fig. 1a. Notice that, according to our definition, a multipole
can be disconnected or even be "empty” in the sense that it can have no vertices. The
diagram of a generic m-pole will be as shown in Fig. 1b.

X

(a) (b)
Figure 1

The behavior of the semiedges is as expected. For instance, if the semiedge x is
associated with vertex u, we say that x is incident to u. Then we wnhte x = (u)
following Goldberg's notation {15]. By joining the semiedges (u) and (v) we obtain
the edge (v, v). The degree of u, d(u) is defined as the number of edges plus the
number of semiedges incident to it. Throughout this paper, a multipole will be supposed
to by cubic, i.e. d(u}y=3 forall ue V.

Given a multipole Gp, we denote by Gp* the graph (with maximum degree 3)
obtained from Gp by leaving out all its semiedges. Then, Gp is said to be cortained in
a cubic graph G if Gp* isa (proper) subdigraph of G. Notice that, in this case, Gp
can be thought of as being obtained from G by cutting (in one or more points) some of
its edges.

Let C=1{1,2, 3]} beasetof "colors". A Tair coloring of a m—pole (V,E, X) is
an assignment of colors to its edges and semiedges, i.e. a mapping ¢ :Eu Xx— C,
such that in each vertex incide edges and/or semiedges with different color and each
1solated edge has both semiedges of the same color. For example, IFig. 2 shows a Tait
coloring of the 7-pole of Fig. 1a. Note that the numbers of semiedges with equal color

have the same parity. The following basic lemima states that this is always the case.
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Figure 2

The Parity Lemma Let m; be the number of semiedges with colori,i=1,2, 3, in
a Tait colored m-pole. Then
mp=my=m3y=m {mod2). (1)

This result has been used extensively in the lterature on the subject. See for instance
[2], [7], [15] or [18]. Although in these references isolated edges are not allowed, the
proof is basically the same and hence we refer the reader to them.

Given a m-pole Gp with semiedges x,, ..., x,,, we define its ser C(Gp). of
semiedge colorings as

C(Gp) = {(0(x)), 0(xy), ... &(x)) : ¢ is a Tait coloring of Gp].
Note that C(Gp) depends on the order in which the semiedges are considered. Thus,
when referring to such a set we will implicitly assume that this ordering is given.

Of course, C(Gp) =@ 1ff Gp is not Tait colorable. In this case it is trivial to obtain
a class 2 graph from Gp. Indeed, we can either remove all its semiedges or join them
properly in order to achieve regularity (using additional vertices if necessary). By the
parity lemma, the simplest example of non-Tait—colorable m-pole is when m =1, 50
that any cubic graph with a bridge is trivially of ¢lass 2.

In the other extreme, we will say that Gp is c~complere if C(Gp) has maximum
cardinality. In other words, Gp is c—complete if it can be Tait colored so that iis
semiedges have any combination of colors satisfying the parity lemma. For instance, all
Tait colorable 2-poles and 3—poles are c—complete because, according to (1), the only
possibilities, up to permutation of the colors, are (§(x,), ¢(x,)) = (a, a) and
(0(x), 9(xy), 9(x3)) = (&, b, ¢) respectively —here, and henceforth, the letters a, b, C
stand for the colors 1,2, 3 in any order. Clearly, the simplest c—complete 2-pole and
3—pole are respectively an isolated edge and a single vertex with 3 semiedges incident t0
it. They will be denoted by e and v respectively. On the other hand, a c—complete
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4-pole has four different values of ($(x,), 0(x,), &(x5), §(xy))— namely, (a, a, a, a),
(a, a, b, b), (a, b, a, b) and (a, b, b, a). In general, a c—complete multipole will be
denoted by Z.

Other useful definitions related with the semiedge coloring set follow. Let Gp; and
Gpy be two mrpoles. Then:

Gp1 and Gp; are said to be c—equivalent if C(Gp;) = C(Gpy);

Gp: is said to be c—contained in Gp, if C(Gp,) < C(Gpa);

A multipole Gp is said to be c-reducible if there exists another multipole Gp',
c-contained in Gp, such that V(Gp) < V(Gp). In such a case we also say that Gp is
c—reducible fo Gp'.

Let us assume that a snark U contains the multipole Gp which c—contains the
'multipole Gp'. Then, itis clear that Gp can be replaced by Gp' —in the obvious
way— without affecting the non-Tait—colorability of the resulting graph. Moreover, if
Gp is c-reducible to Gp/, such a graph will have fewer vertices than U,

By the above, the conditions of nontriviality for snarks, given in the Introduction, are
a consequence of the following statements:

Al Any l-poleisnot Tait colorable.
A2 Any 2-pole different from e is either not Tait colorable or c—reducible to e.
A3 Any 3-pole different from v is either not Tait colorable or c-reducible to v.

As A square, i.e. a 4-cycle with one semiedge incident to each vertex, i1s c-reducible
to two parallel isolated edges (the cyclic orderings of the semiedges being induced by the
drawings).

Let U denote a snatk. M.K. Goldberg [15] and P.J. Cameron, A.G. Chetwynd
and J.J. Watkins [3] implicitly proved the following result,

A4  Any 4-pole Gp containedin U with V(Gp) > 2 is either not Tait colorable or
c-reducible.

In the latter paper the following result was also proved.

A5  Any 5-pole contained in U with V(Gp) > 5 is either not Tait colorable or
c-reducible.

In general, since the number of possible semiedge colorings (@(x) 0(x5)s oo
¢(x,,)) 1s finite, there exists a positive integer-valued function v(m) such that the

following result holds.



498

M. A Fiol

Am Any m-pole Gp containedin U with V(Gp) > v(m) is either r.ot Tait colorable
or c-reducible.

The exact value of v(m) is unknown for m 2= 6. Even so, the above statement
shows that any snark U with a cutset of m edges and V(U) > 2v(m) can be "reduced”
to another snark with fewer vertices. See [3] for the cases m=4, 3.

Let Gp; and Gpz be two m-poles with semiedges z and #, 1=1,2, ., m,
respectively, and assume that by joining x with y forall i we obtain the cubic graph

G. Then we will say that Gpy and Gp; are complementary (with respect to G), or

~ that Gpj is the complement of Gpy, written Gpz = Gp'.

On the other hand, the m-poles Gp; and Gp; are said to be c-disjoint if
C(Gp1) N C(Gp2) = @. In particular that is the case when one of the m-—poles is not
Tait colorable.

The analysis and synthesis of snarks is based on the following straightforward
result.

Proposition Let Gp and Gp' be two complementary multipoles of graph G. Then
G isasnark iff Gp and Gp’ are c—disjoint.

Thus, the problem of constructing snarks can be reduced to the problem of finding
pairs of c—disjoint multipoles. The main problem to proceed in this way is that, when
the number of semiedges increases, the characterization of the set C(Gp) becomes more
and more difficult. To overcome this drawback the idea is to group the semiedges in
different sets and give a proper characterization of the "global” coloring of their elements,
as we do in the next section.

3. Multisets and Boole Colorings

A mulitset or n—set is simply an n'-pole Gp whose n' semiedges are grouped in
n<n sets,say X, i=1,2,..,n, with nj=1xjl. See Fig. 3.
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Figure 3

‘The main concern of this section is to characterize in a useful and simple way the
coloring of the sets Xj for a given Tait coloring ¢ of Gp. Tothisend, let X bea
generic set of m semiedges, m; of which have color i, i = I, 2,3. Then, depending
upon the parity of these numbers, we basically distinguish two cases:

Case 0 They have the same parity:
We say that the set X has Boole coloring 0, denoted by 0(X) = X = 0, iff
mp=my=m3=m (mod 2). (2)
Case 1 They have different pariry:

We say that the set X has Boole coloring 1 (or, more specifically, 1,), denoted by

O =X = 1(1y), iff
mg+l=mp=me=m+1 (mod2). (3}

This characterization (as well as a generalization of it involving more than 3 colors)
was introduced in 8] to construct snarks. Other related applications are discussed in
{9] and [10].

Note thatif X coincides with the semiedge set of a Tait colored multipole (1-set),
the parity lemma holds and hence X =0.

Clearly, the above definitions can also be used to characterize the Boole coloring of
any 3—colored set of edges.

By way of example, Table 1 shows the Boole coloring of X for different values of

the coloring—vector (my, mp, m3) when 1<m<3,
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B1

B2

B3

Boole coloring X coloring-vector (mj, mz, my)
m=1 m=2 m=3
0,0, 2)

(1,0,0) (0,1,1) (1,0,2)

(2,0,0)
0 ©, 2, 0 (1,1, 1)
11 (1,2,0)

12 (2s130)

(0,0,1) (1,1,0) (0,2,1)
13 (2,0,1)

(0,1,0) (1,0,1) (0,1,2)

Table 1

It is interesting to note the following remarks:

When m = 1, the only possible Boole coloring of (the semiedge of ) X is 1.
Moreover, X = 1; 1ff such a semiedge hascolor i, i=1, 2, 3.

When m =2, we have 2 Boole coloring 0 (resp. 1) iff the two semiedges of X
have the same (resp. different) color. This characterization was independently
used by M. Goldberg [14], {15]; and by I. Holyer [17] whose values T ("true")
and F ("false”) correspond to our 0 and 1 respectively. More specifically, note
that the Boole coloring is 1, iff the missing color is a.

When m =3, the Boole coloring of X is O iff the three colors of the semiedges
are all different. Thus, we can say that a cubic graph is Tait colored iff the set of
edges incident to each vertex has Boole coloring 0. Otherwise, if two semiedges
have the same color, the Boole coloring of X is 15 where a is the color of the
third semiedge. An equivalent characterization, but without using the 1's, was
used by B. Descartes in {7] to construct his graph.

A natural definition of the sum of Boole colorings is now the following. Let X and

2 be two sets of semiedges with Boole colorings X and Y respectively. Then we

define the sum X + Y as the Boole coloring that, according to (2) and (3),
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corresponds to the set X 9. It is very easy to check that this definition leads to

Table 2, so that we obtain the "Klein group of Boole colorings".

+ 0 1 12 13

0 0 1 12 13

1 11 0 13 17

I2 12 13 g 1y

I3 13 1 I 0
Table 2

~ Note that, as each element coincides with its inverse, mlj=1; + ... + I; is O when
m isevenand 1j when m isodd. The following result, based on this simple fact, is
of fundamental importance in our study. Because of B1, it can be seen as a
generalization of the parity lemma.

Lemma 1 Let Gp be a Tait colored n-set with m; >0 sets of semiedges having
Boole coloring 1;, i=1,2,3, mj+ma2+ my=m<n. Then, |

mp=my=m3=m (mod 2).

Proof As stated before, the Boole coloring of the whole set of semiedges of Gp must
be 0. So we have

3 3

>mili+(n—-m)0 = ¥ mjl; = 0.

i=1 i=1
But this equality only holds if either mjlj =0 or mjlj=1; forall i. Since m; +m3 +
m3 = m, the lemma follows. O

Table 3 shows the feasible Boole colorings of (the semiedge sets of) a Tait colored
n-set, 1 £n < 3, according to the above result,
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Table 3

Notice that, as pointed out before, if n =1 it mustbe Xj =0, which is just a
reformulation of the parity lemma. _

Leaving out the subindexes of the Boole colorings 1, the entries in Table 3 canbe
thought of as being the possible values of the "logic variables” X;. This suggests the
'possibility of using Boolean algebra in order to characterize the possible Boole colorin gs
of a given multiset. ' S

For any value of n we have the following corollary of Lemma 1.

Corollary 1 A Tait colored n-set, n 2 1, cannot have only one set with _Boble _'
coloring 1,i.e, X;=1 and Xj=0 forall i #].

Given an n-set Gp with semiedge sets Xj, j= 1, 2, ..'., n, we define its set
B{(Gp) of Boole coloring vectors, or simply Boole colorings, as | '
B(Gp) = (($(X1), 9(X2), ..., $(Xn)) : & is a Tait coloring of Gp}.
Of course, this set depends upon the subindexes of the Boole colormgs 1 begin "
considered or not, but that will be either immaterial or clear from the context. Hence the
unified notation.
Most of the definitions and remarks involving the semiedge coloring set. C(GP)
apply also to the set B(Gp) with minor and trivial changes. For instance, if B(Gp) has
maximum cardinality, the multiset Gp is said to be c—complete. Itis readily seen that if
a multipole is c—complete any multiset obtained from it —-with sets of at least WO~
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semiedges—is c—complete (considering subindexes or not). However, the converse
does not hold in general.

Let us now consider a family of multisets which are joined in such a way that each
set Xj of n; semiedges is joined to exactly one set Xj of n; semiedges, so making up
a set of edges that we denote by (Xj, Xj) —for simplicity we can now assume that
nj = nj, but later we shall see that a junction can be easily done in general. If the pairs
of semiedges to be joined are not specified, this structure, which will be called a logic
nerwork, represents a family of cubic graphs.

Let B = {0, 1y, 12, 13} or {0, 1}, depending upon the case, be a set of "Boole
colors”. Then, a Boole coloring of a logic network is defined to be an assignment of
Boole colors to its edge sets (X, Xj) such that the induced Boole coloring of each
multiset Gp belongs to B(Gp).

Obviously, the same ideas above apply to the construction, from some multisets, of a
"logic multiset”, as well as to its Boole colorability. Besides, note that from a non—
Boole—olorable (logic) multiset we can readily obtain a non-Boole—colorable logic
network.

In this context, it is clear that if a logic network is not Boole colorable, its
"underlying” graphs are not Tait colorable. So, we will manage to construct snarks if we
know how to construct such logic networks.

The most obvious way to construct a non-Boole—colorable logic network is by
joining two c¢—disjoint (in terms of Boole colorings) multisets. Some methods to obtain
them are explained in the last section, but first we need to consider some useful
configurations which are the concern of the next section.

4. Multisets and Boolean Algebra

As said before, in our study we make ample use of a (2-valued) Boolean algebra.
So, we have aset B = {0, 1} jointly with two binary opreaticns, + and -, called logic
sum and logic product respectively, satisfying some well-known axioms. It will be clear
from the context when "+" denotes logic sum or sum of Boole colorings. Given
x € B, we use X tomean the complement of x,i.e,0=1 and 1=0. The remaining

notation used below is, I hope, self—explanatory.

The Identity Operator
According to Table 3, the Boole coloring (X1, X2) of a Tait colorable 2—set must
be (0,0) or (1, 1). Therefore we can write
X2 = X1,
which corresponds to the identity logic functdon.
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Then a 2-set will allow us to join two sets with any number, say nj and ny, of
semiedges without changing their Boole colorings, see Fig. 4a. The symbol used for
this "operator” is shown in Fig. 4b, where bold lines represent semiedge sets.

{a) (b)

Figure 4

In particular, when one set of a Tait colored 2-set, say X1, has only one semiedge
(with color a) we will have, by B1, Xo=X7=1 (1,).

The Truth Operator

A method to obtain a 2-set with the only possible Boole coloring (X1, X2)=(1, 1)
—and sets with more than one semiedge—- is the following. Assume that a snark U
contains the multipole (2-set) shown in Fig. 5a jointly with its only pessible Boole
coloring, and denoted by {Z1,Z,} or, simply, {Z, Z}. Then it is clear that its
complement, {Z, Z}', see Fig. 5b, cannot have the Boole coloring (0, 0). Otherwise,
since Z1 and Zy are c-complete, the colorings of the semiedges of X1 and X3
would be elements of C(Z1) and C(Z7) repsectively, giving in this way a Tait colering
of U. Hence, the 2-set {Z, Z}' can only have the Boole coloring

X1=X7=1,

which corresponds to the “truth” logic function {with 2 varables). Fig. 5¢ shows the
symbol used for such a 2-set.
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{Zl,zz}

' {z,z}'

{b) (c)

Figure 5§

In particular, the simplest cases are obtained when the Zj's are e (nj=2) or v
(nj = 3). Forinstance, the case Z1 =77 =e was considered by R. Isaacsin [18] and
by G.M. Adelson-Velski and A. Titov in [1]; and the case Z1=Zp=v, U =P, was
used by B. Descartes in [7] to obtain his graph. In the next section we will discuss the
case nj 24,

The Unftruth Operator

Let us now consider a snark U containing the 2-set shown in Fig. 6a, that we
denote by {ZeZ]. Then, since the Boole coloring of the edge e must be 1, its only
possible Boole coloring is (X3, X72) = (1, 1). Hence, reasoning as in the preceding
subsection, we conclude that the 2-set {ZeZ}', shown in Fig. 6b, can only have the
Boole colering

X1=X2=0,

which corresponds to the “untrurh” logic function (with 2 variables). The symbol used
for this 2-set is shown in Fig. 6¢.
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(b) (c)
Figure 6

Apart from the trivial cases Z) =Zy=e and Z =e, Zy = v, the most simple 2-set
of this type is obtained when Z;=Zy=v (n] = np = 2}, which was also dealt with in
the above references (1] and [18].

The Or and Exclusive-Or Operators

Reasoning as above we can obtain 3-sets with only some of the possible Boole
colorings shown in Table 3. As before, all these configurations are derived by taking the
complement, with respect to a snark U, of a suitable multiset made up by some
c-complete multipoles. The 3-sets thus obtained are shown in Table 4 together with
their truth table, the corresponding logic function if any, and the symbol —usually
berrowed from logic circuit theory—- we use to represent them.
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From these configurations, many particular cases may be derived. For instance, the
exclusive~or 3-set obtained by taking Z;=Zy=Z3=v (ny =ny =n3 =2) was
independently considered in [15] and [5). In [15), M.K. Goldberg proposed it as an
example of "even cell”, i.e. a multiset with exactly two semiedges in each set and al}
Boole coloring vectors having an even number of 1's, see Section 5.

It should be pointed out that, for each general configuration, the truth table gives only
its possible Boole colorings, Thus, in some particular cases the multiset we obtain may
have not all of such colorings, or even it may have none of them (if it is not Tait
colorable). For instance, when some X; has only one element the value of X; cannot

be 0, making some Boole colorings in the truth table to be not possible. The two

following particular cases of the or and exclusive-or operators are based on this fact.

The Not Operator
ZeveZ |
If in the 3-set { s } we consider a c—completé multipole, say Z3, equal to
Z

e, we obtain the structure shown in Table 5 jointly with its truth table and symbol (“not
gate" with an additional semiedge x). Notice that, disregarding X3 (= 1), the other
variables satisfy

Xy= X1,

which corresponds to the not logic function.

By Corollary 1, we know that there is no 2-set with the Boole coloring (0, 1) or
(1, 0). Hence, our nor operator must have an additional semiedge —or semiedge set—
whose Boole coloring is, in general, immaterial. For this reason it will be referred as a
neutral semiedge.

The simplest particular case Zj=Z2=v (n] = ny = 2), denoted by {vevev},is
the basic structure (5-pole) of Loupekine's snarks [19].
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Truth table

The Partial-Or Operator
This 3-set is obtained by considering the or operator {ZjeZs, Z3}' with Zg =e.
It is also shown in Table 5 together with its symbol and truth table where the subindexes

Logic functicn Symbal
0%
2 1 xf ?1
1 0 X - Xy
not
x
X3=l
oKX
X
1
=1 a
1 1 1 { "partial-or®)
a b c
Xt
Table 5

corresponding to the 1's have been explicitly written.

As a summary, Table 6 shows some particular cases of the above multisets when

U= P.
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Type Multiset Functicn
-
{E,E}' >x2 :<1= x2=l
xl
“
{vev}! >X2 X1= x2=c
Xl
— S
Xl{
{e,e,e}’ }X3 _
xz{

xl{
{vzv,e)’ } X Ay =Ky Ky
xz{
*{
{vegev}' @} X, Xy =% 0 &
X, { |

X }x,
{vevev }' Ay = ;

Table 6

>
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Other Operators
From the logic operators obtained before it is now easy to construct multisets
associated with other basic logic functions. For instance, by De Morgan's laws the and

functon can be written as
X3=X1Xa= X1X; =X; + X3,

which lead us to the structure shown in Fig. 7 jointly with its truth table.

1 2 3
0 0 0
0 1 0
1 G 0
1 1 1
Figure 7

Notice the presence of the 2-sets I; which, as said before, are used to join two sets
with different numbers of semiedges, "transferring” the Boole coloring from one to the
other. As the presence of such 2-sets is obvious, we will not draw them henceforth.

When the neutral semiedges Xy, &, and x3 are joined to a common vertex, we
obtain a 3-set which, by Corollary 1, cannot have the Boole colorings (0, 1, 0) and
(1, 0, 0). Then, since the remaining Boole colorings satisfy X; = X5 = X3 (identity
operator with 3 variables), we call this configuration a meering point. Notice that it
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might also be obtained by using other 3-sets (e.g. a c—complete 3-set) instead of the or
operator.

Besides, if in such a structure we replace the or operator by the exclusive—or
operator, we obtain a "truth operator with 3 variables”, see Fig. 8. Note the interesting
"color 1somorphism” 1 = 1;, 1 = 1, 2, 3, between this 3-set and the most simple
3-pole v.

Figure 8

Actually, because of Corollary 1, it is readily seen that our not operator is
"functionally complete”, that is, any other logic operator can be derived from it. For
instance, Table 7 shows how we can obtain the exclusive—or and equivalence operators,
as well as other "3-sets” (disregarding neutral semiedges) whose truth table does not
correspond to any logic function. Note that in obtaining such an exclusive—or operator,
A may be any c—complete 3—set. Then, when the most simple of them —made up by
3 isolated edges— is used, and the not operators are of type {vevev}', the 3-set of
Fig. 9 appears.
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A c-complete 3-set {Z1EL2' 23} {21' ‘7‘2' ‘7‘3}
Diecram or operator
X Y 2 A Y Z A Y Z
o a 0 4] 1 1 0 0
o] i 1 1 0 1 1
01 1 1 0 1T 0 1
1 1 0
exclusive-or
X T Z A Y z X Y 4
0 a] O 1 0
o] 1 0] a Q
! a} 1 1 1 1 1 G
1 1 1
equivalence
Table 7

} Z=Xe¥
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———

In order to construct a meeting point with more than 3 variables, we use a 3set
made up by joining “in series” an even number p of not operators and grouping all their
neutral semiedges x, 1 i< p, into aset W, see Fig. 10a, its symbol being shown in
Fig. 10b. From Corollary 1 and the parity of p it is trivial to check that X = () =
Y=W=0; Y=0=2X=W=0and W=1=X=Y=1, Hence it follows that the
n-set shown in Fig. 10c has only the Boole colorings (0,0,...,0) or (1, 1,.., 1) as
claimed.
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() W

Yy

Figure 10
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A particular case of this configuration, obtained from pairs of nor operators {p =2)
like the one shown in Table 6, was independently used by 1. Holyer [17] to prove that
the problem of finding the chromatic index of an arbitrary cubic graph is NP-complete.

By joining conveniently the logic operators and the meeting points studied
throughout this section, we can now obtain multisets implementing any logic function
f:Bn— BM B ={0, 1}. Also, by Corollary 1, many interesting configurations can be
derived using only nor operators. As an example, we have chosen the 4-set Ag
depicted in Fig. 11a, where Ag representsa c—complete 4—set. Since Ay and Aj as
well as Ag itself, must satisfy Corollary 1, it is readily seen that the resulting 4-pole

" A2 has the truth table shown in Fig. 11b, where subindexes have been included (just

obtain the possible Boole coloring vectors of A; from those of Aj1, 1=1,2, and,
after each step, leave out the vectors with only one 1). Analogously to the case of the
truth operator with 3 variables, it is worth noting the color isomorphism between this
4-set and a vertex with 4 semiedges (éolorcd with, say, 0, 1, 2, 3).

(a)

(b)

Figure 11
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5. The BBDS Class of Snarks

We propose to slightly change the name of the BDS class of snarks and call it the
BBDS class. The capital letters would, of course, stand for Boole and Blanufa &
Descartes & Szekeres whose logic and graphs respectively inspired its construction.

Roughly speaking, we say that a snark U belongs to the BBDS class, denoted by
U e {BBDS}, if it derives from a non-Boole—colorable logic network. Hence, a basic
characteristic of such a graph is that, when constructing it, we can insert an arbitrary
2-set (e.g. the identiry operator) between every pair of semiedge sets to be joined. This
fact, and somne further minor considerations, led the author {8] to the following more
precise definition.

The graph U belongs to {BBDS]) iff it contains at least one m-pole Gp, m > 3,
such that it can be replaced by a c—complete m-pole Z without affecting non—Tait—
colorability; and there is at most one semiedge incident to each vertex of the
complementary m-pole Gp'.

Note that, by the proposition in Section 2, Gp' must be non-Tait-colorable or, what
is the same, the (non-regular) graph Gp™ 1is of class 2. Thus an alternative definition
is to say that U e {BBDS]) iff it contains a subgraph of class 2 with m > 3 vertices
of degree 2 (and none of degree 1). For instance, in the Blanusa graph and also in
Loupekine's snark L3 one can find such subgraphs with m=35 and 4 respectively,
see Figs. 12a and 12b (the corresponding m-poles Gp are drawn in dashed lines).
The subdigraph of L3 1s a counter—example to the critical graph conjecture, see [4], [9],
[15] and [21].

Figure 12
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The two snarks above are particular instances of two simple non-Boole—colorable
logic networks. Namely, those shown in Figs. 13a and 13b (k odd), which
correspond to the constructions of R. Isaacs [18], called the dot product, and F,

Loupekine [19]. The non-Boole-colorability of both structures follows trivially from
the truth tables of the operators involved.

{z,2}"

(a) (b)
Figure 13

Let Ue {BBDS}. By the considerations above, it can be assumed that this graph
contains some c¢—complete m—poles with m 2 4. Then, applying the method of Section
4, we can obtain logic operators with larger semiedge sets than those obtained there. For
example, if U 1is the "Star of David" of Fig. 12b (as we called L3 before knowing of
Loupekine's work), the not operator {ZieveZ,}' with Zy a c-complete 4—pole
(ny=3) and Zy =v (ny =2) is shown in Fig. 14.
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V
>
L]
<l

Figure 14

In what follows several methods of constructing snarks, based on the "Boole
coloring theory", are given. As expected, most of the graphs obtained belong to the
BBDS class.

Snarks from Logic Functions

Let us begin with an ample family of non-Boole—colorable logic networks, which
include those given above. Let f=(f], f2, .., fm) and f =fy, T2, ..., ) be two
logic functions from Bt o B™, B = {0, 1), such that y; = fi(x1, x2, ..., xp), I €1 &
m, zi=fi(X], X2, wn ¥ =yiif ie I {1,2,..,m},1#3, and z =yj otherwise.
Then, as the values of yi and zj, 1€ I, mismatch for any given (xi, X2, ..., Xn), it is
clear that any pair of multisets implementing such functions are c—disjoint and, as said

before, they can be used to derive a non—Boole—colorable logic nerwork.

Snarks from Even and Odd Multisets

When the truth table of the considered multisets do not correspond to any logic
function we can use other methods to find pairs of c—disjoint multisets. The method
described here, based on the parity of the number of Boole colonings 1 (or 0), was
proposed in [8]). The same method was independently developed in [15] for the
above-mentioned cells.

A Tait colorable n-set Gp is said to be even (resp. odd) if all its Boole coloring
vectors have an even (resp. odd) number of 1's. Note that some of the multisets studied
in the preceding section belong to one of these categories. For instance the meeting point
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with an even number of variables and the (n + 1)-set corresponding to the exclusive—or
function y = x1 ® x2 @ ... @ x are even, whereas the 4-set of Fig. 11a 1is odd,
Other interesting examples can easily be found applying the proposed methods.

Of course, any logic network obtained by joining two n—sets with different parity is
not Boole colorable. More general results are obtained from the following statement,
which is easily proved using a simple parity argument.

C Let Gp a(logic) n-set obtained by joining ng even multisets and np odd
mulitsets. Then the "parity” of Gp coincides with the parity of ng.

Considering a logic network as a (even) O-set and applying Corollary 1, we have the
following corollaries.

C1  Any logic nerwork made up by joining an odd number of odd multisets and any
number of even mulisets is not Boole colorable.

C2 Any l-setor 2-set made up as in C1 is not Boole colorable.

C3  Any 3-set constructed as in C1 has the only possible Boole coloring (1,1, 1)
—iruth operator with 3 variables.

C4  Any 4-ser constructed as in C1 has only the possible Boole colorings shown in
Fig. 11b.

Snarks from Corollary 1
The method described at the end of Section 4, which is based on the use of not

operators and Corollary 1, applies also the the construction of non-Boole—colorable logic
networks or multisets. For instance, if each semiedge set 9] of the 4—set of Fig. 11a

is joined to a not operator (the neutral terminals being joined to any multipole), we obtain

a 4-set with semiedge sets Z; suchthat Z; = Yj, 1 €1 < 4. Therefore, from the truth
table of Fig. 11b, its possible Boole colorings would have only one 1, which is
impossible.

Snarks from Color Isomorphisms

Let us now consider the subindexes of the Boole colorings 1. Then, as said before,
some interesting color isomorphisms between multisets and multipoles appear. The first
of them is based on the equivalence 1 =1;,1 = 1, 2, 3, between colors and Boole
colorings (see B1l). Thus, considering an m—pole as a special case of m—set, we can
say that the frurh operator of 2 (resp. 3) variables is c-equivalent to the 2-set €
(resp. 3—set v),1i.e., they have the same set of Boole coloring vectors. This fact allows
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us to construct easily a non-Boole—colorable logic network from a snark U. For
instance, we can replace all the edges and vertices of U by truth operators of 2
variables and arbitrary 3-sets respectively —using identiry operators if necessary. An
example of this construction is the graph of B. Descartes [7]. Another possibility is to
replace all the vertices of U by trurh operators of 3 variables. Many other variations
can also be considered.

Let us now consider the "c-equivalence” which exists between the 4-set of Fig. 11a
or C4-and a vertex with 4 semiedges, being "colored" with {0, 1y, 15, 13} and
(0,1, 2, 3} respectively. In this case, we can derive, in the obvious way, a non-
Boole—olorable logic network from a non—edge—colorable 4-regular graph. Examples
of such 4-regular graphs are the line graphs of snarks and those graphs having an odd
number of vertices (note that, in this latter case, the proposed construction consists in
joining an odd number of even 4-sets). Analogously, using also not operators and rrurh
operators of 3 variables to replace vertices of degree 2 and 3 respectively, non—
Boole—colorable logic networks can be obtained from class 2 (non-regular) graphs with
raximum degree 4.

Snarks from c-Equivalent Multipoles

As said in Section 2, 2 multipole Gp contained in a snark U can be replaced by a
multipole Gp', c—<ontained in Gp, giving rise to another snark U, In this subsection
we focus on the case when Gp and Gp' are c—equivalent.

The two following statements show that some of the configurations studied before
are c—equivalent to some simple multipoles contained in any snark.

D1 The "untruth cell” of n varables, seen asa 2n-set, is c—equivalent to n isolated
edges, see Fig. 15a.

D2 The truth cells of n=2 and 3 variables are c—equivalent to the multipoles

{vev} and {"’eevev} respectively, see Figs. 15b and 13c.
Y

The proofs are simple consequences of remark B2, Lemma 1 and standard Kempe--
chain arguments. The cases n =2 are well-known since the above-mentioned dot
product [1], [18] is based onthem. Thecase n=3 in D2 was implicitly considered
by M.K. Goldberg in [15] to construct his (even) "hooking-cells",
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{vevev}
a
v

(<)

(a3

Figure 15
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Another interesting construction of c—equivalent multipoles is as follows. Let €,
be the n—pole obtained by joining n partial-or operators with semiedge sets );‘1, x‘z,

x;, ie Z, —see Table 5— in such a way that X_i,, = Xi1+1, as shown in Fig. 15d.
Then,

D3 The multipole 2, is c—equivalent to an "n-gon", i.e., an n—cycle with one

semiedge incident to each vertex. See the above figure.
Indeed, as Xi” = X; = 1, the only possible Boole coloring of each 3-set {Ze,Z}'

is (X}, X3, X3) = (Lo, Iy, 10).
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