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Abstract

Finite-State Transducers (FST) are a standard tool for modeling paired input-
output sequences and are used in numerous applications, ranging from computa-
tional biology to natural language processing. Recently Balle et al. [4] presented
a spectral algorithm for learning FST from samples of aligned input-output se-
quences. In this paper we address the more realistic, yet challenging setting where
the alignments are unknown to the learning algorithm. We frame FST learning as
finding a low rank Hankel matrix satisfying constraints derived from observable
statistics. Under this formulation, we provide identifiability results for FST dis-
tributions. Then, following previous work on rank minimization, we propose a
regularized convex relaxation of this objective which is based on minimizing a
nuclear norm penalty subject to linear constraints and can be solved efficiently.

1 Introduction

This paper addresses the problem of learning probability distributions over pairs of input-output
sequences, also known as transduction problem. A pair of sequences is made of an input sequence,
built from an input alphabet, and an output sequence, built from an output alphabet. Finite State
Transducers (FST) are one of the main probabilistic tools used to model such distributions and
have been used in numerous applications ranging from computational biology to natural language
processing. A variety of algorithms for learning FST have been proposed in the literature, most of
them are based on EM optimizations [9, 11] or grammatical inference techniques [8, 6].

In essence, an FST can be regarded as an HMM that generates bi-symbols of combined input-output
symbols. The input and output symbols may be generated jointly or independently conditioned on
the previous observations. A particular generation pattern constitutes what we call an alignment.

GAATTCAG- GAATTCAG- GAATTC-AG GAATTC-AG
| | || | | || | | | | || | | || | |
GGA-TC-GA GGAT-C-GA GGA-TCGA- GGAT-CGA-

To be able to handle different alignments, a special empty symbol ∗ is added to the input and output
alphabets. With this enlarged set of bi-symbols, the model is able to generate an input symbol (resp.
an output symbol) without an output symbol (resp. input symbol). These special bi-symbols will
be represented by the pair x∗ (resp. ∗

y). As an example, the first alignment above will correspond
to the two possible representations G
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A. Under this model the

probability of observing a pair of un-aligned input-output sequences is obtained by integrating over
all possible alignments.

Recently, following a recent trend of work on spectral learning algorithms for finite state machines
[14, 2, 17, 18, 7, 16, 10, 5], Balle et al. [4] presented an algorithm for learning FST where the input
to the algorithm are samples of aligned input-output sequences. As with most spectral methods the
core idea of this algorithm is to exploit low-rank decompositions of some Hankel matrix representing
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the distribution of aligned sequences. To estimate this Hankel matrix it is assumed that the algorithm
can sample aligned sequences, i.e. it can directly observe sequences of enlarged bi-symbols.

While the problem of learning FST from fully aligned sequences (what we sometimes refer to as
supervised learning) has been solved, the problem of deriving an unsupervised spectral method that
can be trained from samples of input-output sequences alone (i.e. where the alignment is hidden)
remains open. This setting is significantly more difficult due to the fact that we must deal with two
sets of hidden variables: the states and the alignments. In this paper we address this unsupervised
setting and present a spectral algorithm that can approximate the distribution of paired sequences
generated by an FST without having access to aligned sequences. To the best of our knowledge this
is the first spectral algorithm for this problem.

The main challenge in the unsupervised setting is that since the alignment information is not avail-
able, the Hankel matrices (as in [4]) can no longer be directly estimated from observable statistics.
However, a key observation is that we can nevertheless compute observable statistics that can con-
straint the coefficients of the Hankel matrix. This is because the probability of observing a pair of
un-aligned input-output sequences (i.e. an observable statistic) is computed by summing over all
possible alignments; i.e. by summing entries of the hidden Hankel matrix. The main idea of our al-
gorithm is to exploit these constraints and find a Hankel matrix (from which we can directly recover
the model) which both agrees on the observed statistics and has a low-rank matrix factorization.

In brief, our main contribution is to show that an FST can be approximated by solving an optimiza-
tion which is based on finding a low-rank matrix satisfying a set of constraints derived from observ-
able statistics and Hankel structure. We provide sample complexity bounds and some identifiability
results for this optimization that show that, theoretically, the rank and the parameters of an FST
distribution can be identified. Following previous work on rank minimization, we propose a regu-
larized convex relaxation of the proposed objective which is based on minimizing a nuclear norm
penalty subject to linear constraints. The proposed relaxation balances a trade-off between model
complexity (measured by the nuclear norm penalty) and fitting the observed statistics. Synthetic
experiments show that the performance of our unsupervised algorithm efficiently approximates that
of a supervised method trained from fully aligned sequences.

The paper is organized as follows. Section 2 gives preliminaries on FST and spectral learning
methods, and establishes that an FST can be induced from a Hankel matrix of observable aligned
statistics. Section 3 presents a generalized form of Hankel matrices for FST that allows to express
observation constraints efficiently. One can not observe generalized Hankel matrices without as-
summing access to aligned samples. To solve this problem, Section 4 formulates finding the Hankel
matrix of an FST from unaligned samples as rank minimization problem. This section also presents
the main theoretical results of the method, as well as a convex relaxation of the rank minimization
problem. Section 5 presents results on synthetic data and Section 6 concludes.

2 Preliminaries

2.1 Finite-State Transducers

Definition 1. A Finite-State Transducer (FST) of rank d is given by:

• alphabets Σ+ = {x1, . . . , xp} (input), Σ− = {y1, . . . , yq} (output)

• α1 ∈ Rd, α∞ ∈ Rd

• ∀x ∈ Σ+ ∪ {∗},∀y ∈ Σ− ∪ {∗}, a matrix Mx
y
∈ Rd×d, with M∗

∗ = 0

Definition 2. Let s be an input sequence, and let t be an output sequence. An alignment of (s, t) is
given by a sequence of pairs x1

y1 . . .
xn
yn such that the sequence obtained from x1 . . . xn (resp. y1 . . . yn)

by removing the empty symbols ∗ equals s (resp. t).

Definition 3. The set of alignments for a pair of sequences (s, t) is denoted [s, t].
Definition 4. Let Σ = {Σ+ ∪ {∗}} × {Σ− ∪ {∗}}. The set of aligned sequences is Σ∗. The empty
string is denoted ε.
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Definition 5. Let T be an FST, and let w = x1
y1 . . .

xn
yn be an aligned sequence. Then the value of w

for the model T is given by:
rT (w) = α⊺1Mx1

y1
⋯Mxn

yn
⋅ α∞

Definition 6. Let (s, t) be an i/o (input/output) sequence. Then the value for (s, t) computed by an
FST T is given by the sum of the values for all alignments:

rT ((s, t)) = ∑
x1
y1
...xnyn ∈[s,t]

rT (x1
y1 . . .

xn
yn )

A more complete description of FST can be found in [15].

2.2 Computing with an FST

In order to compute the value of a pair of sequences (s, t), one needs to sum over all possible
alignments, which is generally exponential in the length of s and t. Standard techniques (e.g. the
edit distance algorithm) can be applied in order to compute such a value in polynomial time.
Proposition 1. Let T be an FST, s1∶n ∈ Σ∗

+, t1∶m ∈ Σ∗
−. The forward vector is defined by:

F0,j = α⊺1M∗
t1
⋯M∗

tj
, Fi,0 = α⊺1Ms1

∗
⋯Msi

∗
, Fi,j = Fi−1,jMsi

∗
+ Fi,j−1M∗

tj
+ Fi−1,j−1Msi

tj

It is then possible to compute rT ((s, t)) = Fn,mα∞ in O(d2∣s∣∣t∣). The sum of rT over all possible
values rT (Σ∗) = ∑s∈Σ+,t∈Σ− rT ((s, t)) can be computed with the formula

rT (Σ∗) = α⊺1[Id −M]−1α∞

where M = ∑x∈Σ+∪{∗},y∈Σ−∪{∗}Mx
y
.

Example 1. Let us consider a particular subclass of FST: Σ− = Σ+ = {0,1}, where M0
1
= M1

0
=

M0
∗
=M∗

1
= 0.

0

1

0 0 1
0
∗

0
0

1
1

0
0

0
∗

1
1

α1 = ( 1
0
) M1

∗
= ( 1/3 0

0 1/6 ) M∗
0
= ( 1/6 0

0 1/3 )

α∞ = ( 1/4
0
) M0

0
= ( 0 1/4

0 0
) M1

1
= ( 0 0

1/2 0
)

The FST A satisfies the constraints.

Let us draw all the paths for the i/o sequence (01,001). The dashed red edges are discarded because
of the constraints. Thus, there are only two different non-zero paths, corresponding to 0

0
∗
0

1
1 (in green)

and ∗
0

0
0
1
1 (in blue).

Let us consider the model A which satisfies the constraints above. One has rA(0
0
∗
0

1
1) =

1/96, rA(∗00
0
1
1) = 1/192 and, as those two aligned sequences are the only possible alignments for

(01,001), one has rA((01,001)) = 1/64. It is possible to check that rA(Σ∗) = 1, thus the model
computes a probability distribution.

2.3 Hankel Matrices

Let us recall some basic definitions and properties.

Let Σ be an alphabet, U ⊂ Σ∗ a set of prefixes, V ⊂ Σ∗ a set of suffixes. U is said to be prefix-closed
if uv ∈ U ⇒ u ∈ U . V is said to be suffix-closed if uv ∈ V ⇒ v ∈ V .

Let us denote UΣ the set U ∪ {uxy ∣u ∈ U, xy ∈ Σ}. Let us denote ΣV the set V ∪ {xyv∣v ∈ V, xy ∈ Σ}.

A Hankel matrix on U and V is a matrix with rows corresponding to elements u ∈ U and columns
corresponding to v ∈ V , which satisfies uv = u′v′ →H(u, v) =H(u′, v′).
Definition 7. Let H a Hankel matrix for UΣ and ΣV . One supposes that ε ∈ U and ε ∈ V . One
then defines the partial Hankel matrices defined for u ∈ U and ∈ V :

Hε(u, v) =H(u, v) , Hx
y
(u, v) =H(u, xyv) , H1(v) =H(ε, v) , H∞(u) =H(u, ε)

3



The main result that we will be using is the following:
Proposition 2. Let H a Hankel matrix for UΣ and ΣV . One supposes that U is prefix-closed, V is
suffix-closed, and that rank(Hε) = rank(H). Then the WA defined by

α⊺1 =H⊺
1H

+
ε , α∞ =H∞ , Mx

y
=Hx

y
H+
ε

computes a mapping f such that ∀u ∈ U,∀v ∈ V, f(uv) =Hε(u, v).

We will not give a proof of this result, as a more general result is seen further. The rank equality
comes from the fact that the WA defined above has the same rank as Hε, and that the rank of a
mapping f which satisfies f(uv) =H(u, v) is at least the rank of H . The following example shows
that the prefix and suffix closeness are necessary conditions.

Example 2. Let us consider the following Hankel over the set of prefixes UΣ and the set of suffixes
ΣV with U = {ε, a

3

b3 }, and V = {ε, a
3

b3 }.

Hε = (
ε a3

b3

ε 0 0
a3

b3 0 1/4), H =
⎛
⎜⎜⎜⎜
⎝

ε a
b

a3

b3
a4

b4

ε 0 0 0 0
a
b 0 0 0 0
a3

b3 0 0 1/4 1/4
a4

b4 0 0 1/4 1/4

⎞
⎟⎟⎟⎟
⎠
, H ′ =

⎛
⎜⎜⎜
⎝

a2

b2
a3

b3
a4

b4

a2

b2 0 0 1/4
a3

b3 0 1/4 1/4
a4

b4 1/4 1/4 1/4

⎞
⎟⎟⎟
⎠

One has ε ∈ U and ε ∈ V , and also rank(Hε) = rank(H) = 1, thus the computed WA is rank 1.
Such a WA cannot compute a mapping such that rT (ε) = 0 and rT (a

6

b6 ) = 1/4. The complete Hankel
matrix has at least rank 7.

3 Inducing FST from Generalized Hankel Matrices

Proposition 2 tells us that if we had access to certain sub-blocks of the Hankel matrix for aligned
sequences we could recover the FST model. However, we do not have access to the hidden
alignment information: we only have access to the statistics p(s, t), which we will call obser-
vations. One natural idea would be to search for a Hankel matrix that agrees with the obser-
vations. To do so, we introduce observable constraints, which are linear constraints of the form
p(s, t) = ∑x1

y1
...xnyn ∈[s,t]

rT (x1
y1 . . .

xn
yn ), where rT (x1

y1 . . .
xn
yn ) is computed from the Hankel.

From a matrix satisfying the hypothesis of Proposition 2 and the observation constraints, one can
derive an FST computing a mapping which agrees on the observations.

Given an i/o sequence (s, t), the size of [s, t] (hence the size of the Hankel matrix) is in general ex-
ponential in the size of s and t. In order to overcome that problem when considering the observation
constraints, one will consider aggregations of rows and columns, corresponding to sets of prefixes
and suffixes. Obviously, the definition of a Hankel matrix must be extended to this case.

One will denote by P(A) the set of subsets of A.
Definition 8. Let u,u′ ∈ P(Σ∗). The set uu′ is defined by uu′ = {ww′∣w ∈ u,w′ ∈ u′}.

We will denote sets of alignments as follows: x1∶n
y1∶n will denote the set {x1∶n

y1∶n}, which contains a single
aligned sequence; then x1∶n

y1∶n [s, t] will denote the set {x1∶nxn+1∶n+k
y1∶nyn+1∶n+k ∣ xn+1∶n+kyn+1∶n+k ∈ [s, t]}, which extends

{x1∶n
y1∶n} with all ways of aligning (s, t). We will also use [s, t]x1∶n

y1∶n analogously.
Definition 9. A generalized prefix (resp. generalized suffix) is the empty set or a set of the form
[s, t]x1∶n

y1∶n (resp. x1∶n
y1∶n [s, t]), where the aligned part is possibly empty.

3.1 Generalized Hankel

One needs to extend the definition of a Hankel matrix to the generalized prefixes and suffixes.
Definition 10. Let U be a set of generalized prefixes, V be a set of generalized suffixes. Let H be a
matrix indexed by U (in rows) and V (in columns). H is a generalized Hankel matrix if it satisfies:

∀ū, ū′ ⊂ U,∀v̄, v̄′ ⊂ V, ⊍
u∈ū,v∈v̄

uv = ⊍
u′∈ū′,v′∈v̄′

u′v′ ⇒ ∑
u∈ū,v∈v̄

H(u, v) = ∑
u′∈ū′,v′∈v̄′

H(u′v′)

where ⊍ is the disjoint union.
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In particular, if U and V are sets of regular prefixes and suffixes, this definition encompasses the
regular definition for a Hankel matrix.

Definition 11. Let U be a set of generalized prefixes. U is prefix-closed if

[s, t]x1∶n
y1∶n ∈ U ⇒ [s, t]x1∶n−1

y1∶n−1 ∈ U

[s1∶n, t1∶k] ∈ U ⇒ [s1∶n−1, t1∶k]sn∗ , [s1∶n, t1∶k−1]∗tk , [s1∶n−1, t1∶k−1]sntk ∈ U
Definition 12. Let V be a set of generalized suffixes. V is suffix-closed if

x1∶n
y1∶n [s, t] ∈ V ⇒

x2∶n
y2∶n [s, t] ∈ V

[s1∶n, t1∶k] ∈ V ⇒ s1
∗ [s2∶n, t1∶k], ∗t1[s1∶n, t2∶k], s1t1 [s2∶n, t2∶k] ∈ V

Definition 13. Let U be a set of generalized prefixes, V be a set of generalized suffixes. The right-
operator completion of U is the set UΣ = U ∪ {uxy ∣u ∈ U, xy ∈ Σ}. The left-operator completion of V
is the set ΣV = V ∪ {xyv∣v ∈ V, xy ∈ Σ}.

A key result is the following, which is analogous to Proposition 2 for generalized Hankel matrices:

Proposition 3. Let U and V be two sets of generalized prefixes and generalized suffixes. Let H be
a Hankel matrix built from UΣ and ΣV . One supposes that rank(Hε) = rank(H), U is prefix-
closed and V is suffix-closed. Then the model A defined by α⊺1 = H⊺

1H
+
ε , α∞ = H∞,Mx

y
= Hx

y
H+
ε

computes a mapping rA such that

∀u ∈ U,∀v ∈ V, rA(uv) =Hε(u, v)

Proof. The proof can be found in the Appendix.

Let S be a sample of unaligned sequences. Let prefS,in (resp. prefS,out, suffS,in, suffS,out) be the
prefix (resp. suffix) closure of input (resp. output) strings in S. Let U = {[s, t]}s∈prefS,in,t∈prefS,out
and V = {[s, t]}s∈suffS,in,t∈suffS,out . The sets U and V contain all the observed pairs of unaligned
sequences, and one can check that the sizes of UΣ and ΣV are polynomial in the size of S.

Example 3. Let us continue with the same model A as in Example 1. Let us now consider the
prefixes ε, 00 and the suffixes ε, 11. The Hankel matrices will be:

H1 = ( 1/4
0
)H∞ = ( 1/4

0
)Hε = ( 1/4 0

0 1/32 )H∗
0
= ( 1/24 0

0 1/96 )

H1
∗
= ( 1/12 0

0 1/192 )H0
0
= ( 0 1/32

0 0
)H1

1
= ( 0 0

1/32 0
)

and one finally gets the model A′ defined by:

α1 = ( 1
0
)α∞ = ( 1/4

0
)M1

∗
= ( 1/3 0

0 1/6 )

M∗
0
= ( 1/6 0

0 1/3 )M0
0
= ( 0 1

0 0
)M1

1
= ( 0 0

1/8 0
)

One can easily check that A′ computes the same probability distribution than A.

4 FST Learning as Non-convex Optimization

Proposition 3 shows that FST models can be recovered from generalized Hankel matrices. In this
section we show how FST learning can be framed as an optimization problem where one searches
for a low-rank generalized Hankel matrix that agrees with observation constraints derived from a
sample. We assume here that p is a probability distribution over i/o sequences.

We will denote by z = (p([s, t]))s∈Σ∗
+,t∈Σ∗

− the vector built from observable probabilities, and by
zS = (pS([s, t]))s∈Σ∗

+,t∈Σ∗
− the set of empirical observable probabilities, where pS is the frequency

deduced from an i.i.d. sample S.
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Let H⃗ be the vector describing the coefficients of H . Let K be the matrix such that KH⃗ = 0 rep-
resents the Hankel constraints (cf. definition 10). Let O be the matrix such that OH⃗ = z represents
the observation constraints (i.e. ∑H([s, t], ε) = p([s, t])).

The optimization task is the following:

minimize
H

rank(H)

subject to ∥OH⃗ − z∥2 ≤ µ
KH⃗ = 0

∥H∥2 ≤ 1.

(1)

The condition ∥H∥2 ≤ 1 is necessary to bound the set of possible solutions. In particular, if H is
the Hankel matrix of a probability distribution, the condition is satisfied: one has ∥H∥1 ≤ 1 as each
column is a probability distribution, as well as ∥H∥F ≤ 1 and thus ∥H∥2 ≤

√
∥H∥1∥H∥F ≤ 1. Let

us remark that the set of matrices satisfying the constraints is a compact set.

Let us denoteHµ the class of Hankel matrices solutions of (1) for a given µ, where z represents the
p(uivj). Let us denote HSµ the class of Hankel matrices solutions of (1) for a given µ, where zS
represents pS(uivj), the observed frequencies in a sample S i.i.d. with respect to p.

Proposition 4. Let p be a distribution over i/o sequences computed by an FST. There exists U and
V such that any solution ofH0 leads to an FST

α⊺1 =H⊺
1H

+
ε , α∞ =H∞,Mx

y
=Hx

y
H+
ε

which computes p.

Proof. The proof can be found in the Appendix.

4.1 Theoretical Properties

We now present the main theoretical results related to the optimization problem (1). The first one
concerns the rank identification, while the second one concerns the consistency of the method.
Proposition 5. Let p be a rank d distribution computed by an FST. There exists µ2 such that for any
δ > 0 and any i.i.d. sample S

∣S∣ > ⎛⎝
2 +
√
8 log(1/δ)
µ2

⎞
⎠

2

implies that anyH ∈ HSµ solution of (1) with µ = 1+
√

2 log(1/δ)√
∣S∣

leads to a rank-d FST with probability

at least 1 − δ.

Proof. The proof can be found in the Appendix.

Proposition 6. Let p be a rank d distribution computed by an FST. There exists µε such that for any
δ > 0 and any i.i.d. sample S

∣S∣ > ⎛⎝
1 +
√
2 log(1/δ)
µε

⎞
⎠

2

implies that for any H ∈ HSµ solution of (1) with µ = 1+
√

2 log(1/δ)√
∣S∣

leading to a model As there exists

a model A computing p such that

∣A,AS ∣∞ ≤ O(d
2ε

σ3
p

)

where ∣A,AS ∣∞ is the maximum distance for model parameters, and σp is a non-zero parameter
depending on p.

Proof. The proof can be found in the Appendix.
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Example 4. This continues Examples 1 and 3. Let us first remark that, among all the values used to
build the Hankel matrices in Example 3, some of them correspond to observable statistics, as there
is only one possible alignment for them. Conversely, the exact values of rM(0

0
∗
0

1
1) and rM(0

0
1
∗

1
1) are

not observable. Then the rank minimization objective is not sufficient, as it allows any value for
those variables.

Let us consider now larger sets of prefixes and suffixes: ε, ∗0,
0
0 and ε, 1∗,

1
1. One then has

Hε =
⎛
⎜
⎝

1/4 1/12 0
1/24 ? 0
0 0 1/32

⎞
⎟
⎠
H1

∗
=
⎛
⎜
⎝

1/12 1/36 0
? ? 0
0 0 ?

⎞
⎟
⎠
H1

1
=
⎛
⎜
⎝

0 0 0
0 0 0

1/32 ? 0

⎞
⎟
⎠

We want to minimize the rank of H ′ subject to the constraints O and K:

H ′ =
⎛
⎜
⎝

Hε
H1

∗
H1

1

⎞
⎟
⎠
= (hij) , O =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h11 = 1/4 ⋮
h12 = 1/12 h63 + h92 = 1/64
h13 = 0
h21 = 1/24 ⋮

, K =
⎧⎪⎪⎨⎪⎪⎩

h12 = h41 h23 = h81

h13 = h71 h32 = h61

h22 = h51 h33 = h91

The relation h63 + h92 = 1/64 is due to fact that rA(0
0
∗
0

1
1) + rA(∗00

0
1
1) = rA((01,001)) = 1/64. One

has h22 = h51 as they both represent p(∗01
∗). It is clear that H ′ has a rank greater or equal than 2.

The only way to reach rank 2 under the constraints is

h22 = h51 = 1/72, h52 = 1/216, h63 = 1/192, h92 = 1/96

Thus, the process of rank minimization under linear constraints leads to one single model, which is
identical to the original one. Of course, in the general case, the rank minimization objective may
lead to several models.

4.2 Convex Relaxation

The problem as it is stated in (1) is NP-hard to solve in the size of the Hankel matrix, hence impos-
sible to deal with in practical cases. One can solve instead a convex relaxation of the problem (1),
obtained by replacing the rank objective by the nuclear norm. The relaxed optimization statement is
then the following:

minimize
H

∥H∥∗

subject to ∥OH⃗ − z∥2 ≤ µ
KH⃗ = 0

∥H∥2 ≤ 1.

(2)

This type of relaxation has been used extensively in multiple settings [13]. The nuclear norm ∥∥∗
plays the same role than the ∥∥1 norm in convex relaxations of the ∥∥0 norm, used to reach sparsity
under linear constraints.

5 Experiments

We ran synthetic experiments using samples generated from random FST with input-output alpha-
bets of size two. The main goal of our experiments was to compare our algorithm to a supervised
spectral algorithm for FST that has access to alignments. In both methods, the Hankel was defined
for prefixes and suffixes up to length 1. Each run consists of generating a target FST, and generating
N aligned samples according to the target distribution. These samples were directly used by the su-
pervised algorithm. Then, we removed the alignment information from each sample (thus obtaining
a pair of unaligned strings), and we used them to train an FST with our general learning algorithm,
trying different values for a C parameter that trades-off the nuclear norm term and the observation
term. We ran this experiment for 8 target models of 5 states, for different sampling sizes. We mea-
sure the L1 error of the learned models with respect to the target distribution on all unaligned pairs
of strings whose sizes sum up to 6. We report results for geometric averages.

In addition, we ran two additional methods. First a factorized method that assumes that the two
sequences are generated independently, and learns two separate weighted automata using a spectral
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Figure 1: Learning curves for different methods: SUP, supervised; UNS, unsupervised with dif-
ferent regularizers; EM, expectation maximization. The curves are averages of L1 error for random
target models of 5 states.

method. Its performance is very bad, with L1 error rates at ∼0.08, which confirms that our target
models generate highly dependent sequence pairs. This baseline result also implies that the rest
of the methods can learn the dependencies between paired strings. Second, we ran an Expectation
Maximization algorithm (EM).

Figure 1 shows the performance of the learned models with respect to the number of samples.
Clearly, our algorithm is able to estimate the target distribution and gets close to the performance of
the supervised method, while making use of much simpler statistics. EM performed slightly better
than the spectral methods, but nonetheless at the same levels of performance.

One can find other experimental results for the unsupervised spectral method in [1], where it is
shown that, under certain circumstances, unsupervised spectral method can perform better than su-
pervised EM. Though the framework (unsupervised learning of PCFGs) is not the same, the method
is similar and the optimization statement is identical.

6 Conclusion

In this paper we presented a spectral algorithm for learning FST from unaligned sequences. This is
the first paper to derive a spectral algorithm for the unsupervised FST learning setting. We prove that
there is theoretical identifiability of the rank and the parameters of an FST distribution, using a rank
minimization formulation. However, this problem is NP-hard, and it remains open whether there
exists a polynomial method with identifiability results. Classically, rank minimization problems
are solved with convex relaxations such as the nuclear norm minimization we have proposed. In
experiments, we show that our method is comparable to a fully supervised spectral method, and
close to the performance of EM.

Our approach follows a similar idea to that of [3] since both works combine classic ideas from
spectral learning with classic ideas from low rank matrix completion. The basic idea is to frame
learning of distributions over structured objects as a low-rank matrix factorization subject to linear
constraints derived from observable statistics. This method applies to other grammatical inference
domains, such as unsupervised spectral learning of PCFGs ([1]).
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