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Grasp Optimization under

Specific Contact Constraints
Carlos Rosales, Josep M. Porta, and Lluı́s Ros.

Abstract—This paper presents a procedure to synthesize high-
quality grasps for objects that need to be held and manipulated
in a specific way, characterized by a pre-specified set of contact
constraints to be satisfied. Due to the multi-modal nature of
typical grasp quality measures, approaches that resort to local
optimization methods are likely to get trapped into local extrema
on such problem. An additional difficulty of the problem is
that the set of feasible grasps is a highly-dimensional manifold,
implicitly defined by a system of non-linear equations. The
proposed procedure finds a way around these issues by focusing
the exploration on a relevant subset of grasps of lower dimension,
and tracing this subset exhaustively using a higher-dimensional
continuation technique. A detailed atlas of the subset is obtained
as a result, on which the highest-quality grasp according to any
desired criterion, or a combination of criteria, can be readily
identified. Examples are included that illustrate the application
of the method to a three-fingered planar hand and to the Schunk
anthropomorphic hand grasping several objects, using several
quality indices.

Index Terms—Grasp synthesis, precision grasp, grasp plan-
ning, contact constraint, anthropomorphic hand, grasp quality
index.

I. INTRODUCTION

MANY of the objects and tools used on everyday ac-

tivities are designed to be grasped and manipulated in

particular ways, determined by a given set of tight contact

constraints between the hand and the object or tool. Consider,

for instance, how a pen, a pair of scissors, or a jeweler’s

screwdriver are held, to properly write, cut a paper, or turn

a screw, respectively. To perform these tasks with a robotic

hand, we need to determine a suitable grasp for the object,

i.e., a configuration of the hand in contact with the object at

specific regions, allowing the manipulation to properly occur.

This is the so-called grasp synthesis problem, which involves

several subproblems [1]–[3]. The synthesized grasp must not

only satisfy the required contact constraints avoiding undesired

contacts [4]–[8]; it must also be force-closed to resist arbitrary

force disturbances on the object [2, 9], manipulable to be able

to move the object along any direction [10, 11], and as far as

possible from losing these properties (Fig. 1). In general, thus,

the generation of optimal grasps for precision tasks has to take

several quality indices into account, either general (such as

those related to force-closure or manipulability) or particular
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Fig. 1. Two grasps of a can for drink service. While both grasps are force-
closed and manipulable, the top grasp is preferable. The fingers are almost
fully extended in the bottom grasp, limiting the possibility to move the can
in one direction.

to the task to be performed [12, 13]. Some indices may even

be conflicting, thus making their simultaneous consideration

a challenging task, which justifies why most previous works

focus on optimizing the grasp under a single criterion.

Early approaches to the problem concentrate on the analysis

of whether a given set of contact points on an object would

yield a force-closed grasp [14, 15], or on determining contact

regions on the object such that the force-closure property

is guaranteed [16]–[22], but always neglecting the kinematic

constraints imposed by the structure of the hand. As a conse-

quence, the utility of such approaches is limited in practice,

because the selected contact points or regions may not be

reachable by the particular hand employed, once the object

has to be grasped.

Recently, a more comprehensive approach to the problem

has been attempted, which emphasizes the role of the kine-

matic constraints from the very beginning when searching for

an optimal grasp [23]. The main difficulty in this case is that

the set of hand configurations in contact with the object is

a complex manifold, implicitly defined by a system of non-

linear equations that express all joint-assembly and contact

constraints involved in the hand-object system. To avoid this

complexity, Ciocarlie and Allen [23] initially relax the contact



2

constraints, resulting in a search space that coincides with

the configuration space of the hand. Typically, this space

is of a high dimension, but principal hand motions [24]

can be taken into account to narrow the search to a lower-

dimensional subspace, which can be explored in reasonable

times using simulated annealing. The hand configurations

obtained, however, are not exactly in contact with the object

and, thus, they must be evaluated with pre-grasp quality

indices. Unfortunately, a good pre-grasp does not always result

in a high-quality grasp, once the contact with the object is

finally enforced through local techniques. The final hand-

object contacts, moreover, may not be adequate to perform a

given task and, hence, the technique is nicely suited to generate

random grasps able to hold an object, but not those grasps

allowing a particular manipulation of the object.

To generate a grasp fulfilling a specific set of contact con-

straints, both the joint-assembly constraints of the hand and the

given contact constraints need to be enforced simultaneously,

either using local search methods [4, 25] or global ones [8].

While the former are computationally less demanding, the

latter can deal with more general types of contact constraints

and guarantee to find a solution whenever one exists. Re-

gardless of the adopted method, however, the returned grasp

is not optimized in terms of any quality criterion, so that

a final optimization process is needed to obtain a suitable

high-quality grasp. Implementing such a process is not trivial

though, since trying to optimize the grasp in a generate-and-

test fashion is computationally too expensive. Moreover, local

optimization methods [26] are likely to get trapped into local

optima, because, except in simple cases [27, 28], grasp quality

indices present local extrema.

This paper integrates different techniques to produce a novel

grasp optimization procedure that circumvents the problems

of existing approaches. The procedure entails characterizing

the manifold of feasible grasps by a system of equations

(Section II), then extending this system with meaningful

equations to reduce the dimension of its solution set (Sec-

tion III), and finally performing an exhaustive search over

a point grid discretizing such set at a desired resolution, to

determine the highest-quality grasp attainable on the grid (Sec-

tion IV). The grid is derived by resorting to recently-developed

techniques for higher-dimensional continuation [29], which

are able to compute exhaustive representations of implicitly-

defined manifolds of moderate dimensions in reasonable times.

The procedure is very general and applicable to virtually any

relevant hand and object geometry, and it can be used under

any quality criterion or a combination of criteria, because

it only requires the evaluation of the quality function on

selected points, without making particular assumptions on the

mathematical properties of the function. The approach extends

the one preliminarily presented in [30] in that it assumes a

more general contact model, and the possibility to account for

several quality criteria simultaneously. Test cases are provided

that validate the approach on simple and complex robotic

hands grasping objects with different geometries, under typical

force-closure and manipulability indices (Section V).
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Fig. 2. Elements intervening in the i-th contact constraint. Points qi ∈ Qi

and oi ∈ Oi must coincide, with the normals n̂i and m̂i, aligned, to avoid
local hand-object inter-penetrations.

II. FEASIBLE GRASPS

In this work, a feasible grasp is assumed to be a configura-

tion of the hand-object system in which a number of regions of

the hand Qi, i = 1, . . . ,m, are in contact with corresponding

regions Oi on the object. The regions and their pairings are

pre-specified, and the contact between Qi and Oi is assumed

to be established with a point qi ∈ Qi coinciding with

another point oi ∈ Oi, keeping aligned the surface normals

at such points, n̂i and m̂i, to avoid local hand-object inter-

penetrations (Fig. 2). We further assume that the hand joints

are independently actuated or mechanically coupled, but do

not consider the case of adaptive underactuated hands [31].

Following [8], a grasp configuration can be represented by

a vector x = (x⊤h ,x
⊤

o ,x
⊤

c )
⊤ ∈ R

n of generalized coordinates,

where xh and xo determine the configuration of the hand

and the object, respectively, and xc encompass contact-related

coordinates. The vector x defines a feasible grasp if it satisfies

the following equations. A first set of equations,

H(xh) = 0, (1)

enforces xh to be a valid hand configuration, i.e., one respect-

ing the assembly constraints imposed by the joints (usually

revolute or universal) on the various bodies they connect (the

palm and the several finger phalanges). Note that Eq. (1)

is not necessary if the coordinates in xh are independent,

as it happens for instance when choosing joint angles to

represent a configuration [32]. In our case, however, we resort

to the dependent coordinates defined in [33] because they yield

equations of simple structure, which has proved beneficial in

the context of grasp synthesis [8], and for the application of

continuation techniques [34]. In particular, this formulation

encodes the spatial pose of each body of the hand with twelve

variables, providing the position vector and the rotation matrix

of a local reference frame attached to the body, relative to

an absolute frame attached to the palm. Thus, in addition

to including the joint assembly constraints, Eq. (1) includes

constraints to enforce the twelve pose variables of each body

to define a member of SE(3). Similarly, the spatial pose of

the object is encoded by twelve variables, so that a second set

of equations,

L(xo) = 0, (2)
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constrains xo to define a member of SE(3). A last set of

equations, finally, enforces the contact constraints between the

hand and the object. To this end, we assume that each contact

region Qi is specified as a regular parametrized patch, i.e., as

a smooth function of the form

qi = Qi(si, ti,xh), (3)

providing the absolute coordinates of a point qi = (xi, yi, zi)
in the patch as a function of two patch parameters si and ti,

and of the hand configuration xh. Analogously, the normal to

any point in this patch is assumed to be given by a smooth

function

n̂i = Ni(si, ti,xh). (4)

In general, Eqs. (3) and (4) define two-dimensional regions

described, for example, by Bézier patches [35], but they can be

replaced by single-parameter curves or fixed points if desired.

The points and normals on the Oi patches are similarly defined

as a function of two patch parameters ui and vi, and of the

object pose xo, through expressions of the form

oi = Oi(ui, vi,xo), (5)

m̂i = Mi(ui, vi,xo), (6)

so that the contact of Qi with Oi can be enforced by setting

qi − oi = 0, (7)

n̂i + m̂i = 0. (8)

Thus, the vector xc encompasses the vectors qi, n̂i, oi,

and m̂i, and the patch parameters si, ti, ui, and vi intervening

in Eqs. (3)-(8), for i = 1, . . . ,m.

Each variable in x = (x⊤h ,x
⊤

o ,x
⊤

c )
⊤ can only take values

within a given range. For instance, the variables defining the

orientation matrices in xh and xo take values within [−1, 1].
Also, the size of the hand provides interval bounds on the

translation variables, and, without loss of generality, the patch

parameters of the contact regions can be normalized to the

[0, 1] range [35]. Thus, the Cartesian product of such ranges

defines a rectangular domain D ⊂ R
n where the search for an

optimal feasible grasp is to be confined.

In sum, the set of feasible grasps F encompasses the points

x ∈ D satisfying the system

F(x) = 0 (9)

formed by Eqs. (1) and (2), and Eqs. (3)-(8) for all contacts

i = 1, . . . ,m. The formulation in [8] guarantees that F(x) is

differentiable and, to keep the presentation of the method as

simple as possible, we assume that its Jacobian is full rank for

all x ∈ F , which is the generic situation according to Sard’s

theorem of Analysis. Thus, F can be assumed to be a smooth

manifold of dimension t = n − f , where f is the number of

scalar equations in (9).

Using Eq. (9), the method in [8] can now be applied to

determine an initial grasp x1 ∈ F from which to start the

search for an optimal grasp in F . However, we emphasize

that other grasp synthesis techniques could also be used to

compute x1 [4, 25], because the method in this paper makes

no assumption on how this configuration is obtained.

III. RELEVANT GRASPS

Although obtaining points on F is feasible, the dimen-

sion of this space is very large in practice, which hinders

its exhaustive exploration independently of the methodology

adopted. In the context of grasping, however, studies on the

human behavior suggest that humans do not use all degrees

of freedom of the hand independently, but in a coordinated

way [24]. Following this idea, anthropomorphic hands are

usually controlled using principal hand motions (also called

hand postural synergies [24, 36], eigengrasps [23], or principal

motion directions [37]), where few coordinated motions are

used to account for the overall motion capability of the hand.

By taking principal hand motions into consideration, the search

of a good grasp can be narrowed to a subset of relevant grasps

R ⊂ F of lower dimension, thus speeding up the overall

optimization process.

Principal hand motions are computed via linear dimension-

reduction techniques on a representative set of hand con-

figurations Xh = {x1

h , . . . ,x
z
h}, where each xi

h is a value

of xh satisfying Eq. (1). Let h be the number of components

in xh, x̄h the average of the configurations in Xh, and T an

h × z matrix whose i-th column is xi
h − x̄h. The principal

component analysis of Xh can be performed by diagonalizing

the covariance of T,

TT⊤ = E S2 E⊤.

The h × h orthonormal matrix E gives the directions of

variance of the data, and the diagonal matrix S2 is the variance

in each one of these directions, sorted in decreasing magnitude.

The linear variety through x̄h generated by the first p columns

of E defines the set E of the p principal hand motions. The

vectors in E have null components along the columns of Es,

the matrix formed by the last s = h − p columns of E, so

that E is the solution set of

E⊤

s (xh − x̄h) = 0. (10)

This equation, together with (9), defines the system

R(x) = 0, (11)

characterizing the non-linear set R = F∩E of relevant grasps.

In the generic case, the Jacobian of R(x) will also be full rank

for all x ∈ R, so that, like F , R can also be assumed to be a

smooth manifold with no bifurcations, which allows adopting

a simplified continuation strategy below, with no provisions

for branch switching operations [38].

Since t is the dimension of F , and k is the desired

dimension for R, then we must set

s = t− k. (12)

For efficiency reasons, k must be small in the adopted

continuation method (typically below 5), and s must be set

accordingly. However, s must be smaller than h, which limits

the amount of dimension reduction obtained by the use of

principal hand motions. As we will see, however, this is not

an issue in practice, since the amount of dimension reduction

to be introduced is moderate in all cases, due to the presence

of the contact constraints. Actually, these constraints allow
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Fig. 3. Schematic representation of the spaces involved in the optimization
framework presented in this paper. See the text for details.

using a significantly smaller s (i.e., a larger p) than that used

in existing approaches relying on principal hand motions.

Nonetheless, the introduction of principal hand motions

might lead to an empty set R if the contact points are

not reachable by the hand when constrained to be in E .

To guarantee that R is not empty, this set is redefined as

R = F ∩ E ′ hereafter, where E ′ is the solution set of

E⊤

s (xh − x1,h) = 0, (13)

with x1,h being the subvector of the initial grasp x1 containing

the values of xh. In general, the difference of using Eq. (13)

instead of Eq. (10) is minor, since x1,h is usually close to the

original set of principal hand motions, but this approximation

ensures that the hand can always conform to the object surface

because R will at least include the initial feasible grasp x1.

Fig. 3 summarizes the different elements involved in the

approach. F is the set of feasible grasps defined in the space of

xh, xo, and xc. In this representation, the configurations in Xh

are shown as black dots, the white dot is their average, x̄h,

and the original set of p principal hand motions is shown as a

dashed line in the xh plane. The latter set is approximated by

a line through x1,h, shown dotted in the figure, which, when

extended to the whole space, generates the linear variety E ′.
Finally, the set R = F ∩E ′ is the space where the grasp opti-

mization is to be performed. Note that R is one-dimensional

in this schematic representation, but it is a k-dimensional set

in general.

Typically, previous methods that use principal hand motions

explore E . Then, they try to modify points on such space

to yield configurations in contact with the object using local

methods,. However, the final configurations may not necessar-

ily lie on the set F of grasps satisfying the contact constraints

required for the task. In contrast, our method directly operates

on the set R, which is fully included in F .

xi

xi
j

ui
j

xjR

Txi
R

xi

xj
R

Txi
R

Txj
R

Fig. 4. The higher-dimensional continuation method applied to a two-
dimensional manifold R in 3D space. Using the chart centered at xi, a
point xi

j on the chart corresponding to a vector ui
j ∈ Txi

R is orthogonally

projected to obtain a point xj ∈ R (top). If a new chart is defined at xj ,
it must be properly coordinated with the chart at xi so that their projections
smoothly cover the manifold (bottom).

IV. GRASP QUALITY OPTIMIZATION

In this paper, the search for an optimal grasp is performed

by computing an atlas of the k-dimensional manifold R just

defined, including the relevant grasps. Such an atlas provides

a collection of charts, where each chart parametrizes a portion

of R, and this allows enumerating a representative collection

of grasps in R, on which any quality index can be evaluated

to detect the optimal one.

A. Tracing the Manifold of Relevant Grasps

Formally, a chart Ci is a local map from a parameter domain

Pi ⊂ R
k to an open neighborhood around a given point

xi ∈ R, initially x1. The higher-dimensional continuation

method proposed in [39] defines the map for chart Ci using Φi,

an n×k orthonormal basis of Txi
R, the k-dimensional tangent

space of R at xi. The map is constructed by first selecting a

k-dimensional vector of parameters ui
j ∈ Txi

R (Fig. 4, top),

and then using this vector to generate a point xi
j ∈ R

n in the

neighborhood of xi using

xi
j = xi +Φi u

i
j . (14)

Then, the point xj ∈ R that corresponds to the orthogonal

projection of xi
j on R is computed, by solving the system

R(xj) = 0

Φ⊤ (xj − xi
j) = 0

}

, (15)

using a Newton-Raphson method initialized at xi
j .
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r xi
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xi
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j
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j
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Fig. 5. The process of chart construction. The domain Pi of chart Ci is
initialized as a box in Txi

R circumscribing a ball of radius r centered in xi

(top). Pi is refined using a ball Bi
j that approximates Ci

j , the projection on Ci
of the part of the manifold covered by Cj (bottom).

Fig. 6. Three stages in the construction of an atlas over a sphere. Red and
blue polygons represent charts under expansion and charts whose domain is
already bounded, respectively.

Each point on the manifold is the potential center of a

new chart (Fig. 4, bottom), and the method introduced by

Henderson [39] can be used to select the chart centers, in

order to define an atlas with a good coverage of the manifold.

Using this approach, the domain Pi of a chart Ci is initialized

as a k-dimensional hypercube enclosing a ball Bi of radius r,

where Pi and Bi are both defined in Txi
R as illustrated in

Fig. 5 (top). A vertex of Pi exterior to Bi, with position

vector v, is then employed to generate a point xi
j , using

Eq. (14) with

ui
j =

α

‖v‖
v, (16)

where α is initialized to r. If the projection of xi
j on R does

not converge, or if the new chart Cj at xj is too far or too

Algorithm 1: Computation of the atlas of R

AtlasComputation(F,Xh,x1, t, k, r, ǫ)

input : The set F of equations , the set Xh of

representative hand configurations, the initial

grasp x1, the dimension t of F , the desired

dimension k for R, and the parameters r and ǫ

used to build the atlas.

output: An atlas A of R.

E← PRINCIPALHANDMOTIONS(Xh)1

s← t− k2

R← F ∪ {Es(xh − x1,h)}3

A ← {GENERATECHART(R,x1, r)}4

while not BOUNDED(A) do5

Ci ←NOTBOUNDEDCHART(A)6

α← r7

v←EXPANDIBLEVERTEX(Ci)8

repeat9

Cj ←NEWCHART(R, Ci, α,v, r)10

α← α · 0.911

until SIMILARCHARTS(Ci, Cj , ǫ)12

A ← A∪ {Cj}13

RETURN(A)14

different from Ci, i.e., if

‖xj − xi
j‖ > ǫ, (17)

or

‖Φ⊤

i Φj‖ < 1− ǫ, (18)

for a given threshold ǫ, then the new chart is discarded and a

new attempt of chart generation is performed with a smaller α.

This procedure adapts the size of the domain for each chart

to the local curvature of the manifold. When Cj is valid, it

is used to refine Pi from the intersection between Bi and Cij ,

the projection on Txi
R of the part of the manifold covered

by Cj . This projection is approximated by a ball Bi
j in Txi

R,

as shown in Fig. 5 (bottom). The intersection of Bi and Bij
defines a new face of Pi that eliminates some of its vertices

(in particular the one given by v) and generates new ones.

Similarly, the polytope Pj associated with Cj is cropped using

the projection of Ci on Cj . The previous process can be iterated

and, when all vertices of Pi are included in Bi, the chart

is said to be bounded. Moreover, charts whose center is out

of the domain D defined in Section II are also considered

bounded. If R has the manifold structure everywhere and r

is properly set [39], then when all charts are bounded, the

atlas fully covers the connected component of R containing

the initial point x1 (Fig. 6).

Algorithm 1 summarizes the atlas computation procedure.

The algorithm receives as inputs the set F of equations

implicitly defining F , the set Xh of representative hand

configurations, the initial grasp x1, the dimension t of F ,

the desired dimension k for R, and the parameters r and ǫ

used to construct the atlas. As output, the algorithm returns

an atlas A of the component of R reachable from x1. The

algorithm determines the principal hand motions as described
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Algorithm 2: The grasp optimization process.

GraspOptimization(A, d,I, l,w)

input : The atlas A, the number d of points to consider

on each chart, the set I of quality measures to be

optimized, and the vectors l and w of lower

bounds and weights for the quality measures,

respectively.

output: The optimal grasp xg .

g ← −∞1

xg ← ∅2

forall C ∈ A do3

U ← POINTSONCHART(C, d)4

forall u ∈ U do5

x← CHARTTOMANIFOLD(C,u)6

q←I(x)7

if q � l then8

q ← wTq9

if q ≥ g then10

xg ← x11

g ← q12

RETURN(xg)13

in Section III (line 1). The required number of constraints

relative to such motions is then computed as a function of t

and k (line 2) in order to obtain the set R of equations

defining R (line 3). Then, A is initialized with a chart centered

in x1 (line 4), and the construction of A proceeds while any

of the charts can be extended (lines 5 to 13). The extension

of a chart Ci starts by selecting a vertex of Pi not included

in Bi (line 8). This vertex is used to generate a new chart Cj
(line 10) using Eqs. (14) to (16) to determine its center. If

the difference between the new chart and the previous one is

too large according to Eqs. (17) and (18), chart generation

is attempted closer to xi, i.e., with a smaller α (line 11).

Otherwise, the new chart is added to A, coordinating the chart

with those already included in A (line 13). The computational

cost of this algorithm is exponential in k and, therefore,

it is only practical to compute the atlas on manifolds of

moderate dimension, typically below 5. The larger the number

of principal hand motions considered –i.e., the smaller s in

Eq. (10)–, the larger the amount of motion capability of the

hand taken into account, but also the higher the value of k.

Thus, a trade off must be reached to include enough principal

hand motions in the problem without having a too large k. As

we will see in the experiments, a small k can be obtained by

neglecting a minimum of the motion capabilities captured in

the set of hand configurations Xh.

B. Evaluating the Quality of Relevant Grasps

Once the atlas is computed, we can identify the optimal

grasp over R by considering a set I of quality indices.

Commonly, the quality indices are combined either in series or

in parallel [40]. In the first case, only grasps with a minimum

value for a given index are evaluated with the subsequent

indices. In the second case, all indices are evaluated simulta-

neously and combined to produce a single measure, typically

using a weighted sum after normalizing them. Algorithm 2

allows these two ways of combining the quality indices. The

algorithm iterates over all charts in the atlas A (lines 3-12).

For each chart C in A, it generates a set U of d points on the

tangent space associated with this chart (line 4). These points

can be either computed on a regular grid or sampled randomly

but, in any case, they all must lie inside the domain of C. The

number d of points to generate depends on the resolution at

which the optimal grasp is required, and on the smoothness of

the quality indices considered; i.e., the sharper the variations

the denser the set of points. For each one of the points

in U , we obtain the corresponding point on R (line 6) using

Eqs. (14) and (15). Then, for each point on R we evaluate

the quality indices in I (line 7). If the obtained values for the

indices are all above the required thresholds in an element-

wise comparison (line 8), we combine the indices (line 9), and

then check whether the combined value is larger than that of

the best grasp found up to the moment (lines 10-12). By setting

the appropriate thresholds in l and using w = (0, . . . , 0, 1)⊤

we will obtain a serial evaluation of the indices in which the

last index in I will be optimized. A parallel evaluation can be

obtained by using l = (−∞, . . . ,−∞)⊤ and setting the desired

values in w. Mixed evaluation schemes can be obtained too,

by adequately setting l and w. By iterating over all charts and

points, the optimal grasp over the computed points of R is

finally identified and returned (line 13). In an extreme case,

the algorithm could return no grasp if the quality indices for all

of the considered grasps are below the given thresholds. The

overall cost of this algorithm is bilinear with the number of

charts in the atlas, and with the number d of points considered

for each chart.

Note that, as long as the kinematic structure of the hand-

object system remains constant, there is no need to recompute

the atlas for every new index evaluation. This is specially

relevant in distance-to-collision indices, which can be re-

evaluated over the same atlas upon obstacle changes in the

environment, provided that the object to be grasped and the

contact regions continue to be the same. Moreover, if an

optimal grasp is required with a finer precision, we only

need to use Algorithm 2 with a larger value of d and, again,

there is no need to recompute the atlas. In a multi-resolution

optimization context, this refinement can be focused into the

most promising areas previously identified.

V. TEST CASES

For the sake of clarity, we first exemplify the application of

the optimization procedure on a simple hand, and then sum-

marize the results for the Schunk anthropomorphic hand. All

results correspond to an implementation in C of Algorithm 1,

and in Matlab of Algorithm 2, both available in [41], executed

on an Intel Core 2 Duo processor at 3 GHz.

A. A planar hand

Fig. 7 shows a planar hand with three fingers and two

phalanges per finger holding an object composed of circles,
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li,1

li,2
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v̂i,2
li,3 ci
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Y
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X ′
Y ′
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Fig. 7. A simple planar hand with three fingers holding an object. The
parameters are indicated for one finger only, but apply to the three fingers.

where the OXY absolute reference frame is attached to

the base of one of the fingers. The length and absolute

orientation of the j-th phalanx of the i-th finger are given by

the parameter li,j and the unit vector v̂i,j ∈ R
2, respectively.

Since the lengths are fixed, the configuration of the hand

can be encoded in a simplified form in this case, by the

vector xh = (v̂⊤
1,1, . . . , v̂

⊤

3,2)
⊤ subject to the constraints

‖v̂i,j‖
2 = 1, (19)

for all phalanges. Thus, Eq. (1) is the system formed by

Eqs. (19). Since this system contains 6 equations in 12
variables, its solution set is of dimension 6, which agrees

with the number of degrees of freedom of the hand. Note that

xh only includes parameters for the orientation of the hand

links, since their position vectors can be computed from the

orientations and the constant length parameters [33].

A local reference frame O′X ′Y ′ is attached to the object,

whose pose in the absolute frame is given by xo = (to, v̂o),
where to = (xo, yo)

⊤ is the position vector of O′ and

v̂o = (so, co)
⊤ is a unit vector aligned with the X ′ axis. Then,

Eq. (2) becomes

‖v̂o‖
2 = 1. (20)

In this example, the contact regions in each fingertip reduce

to a point and the explicit expression of Eq. (3) is

qi = ai + li,1 v̂i,1 + li,2 v̂i,2, (21)

where ai is the position vector of the palm anchor point

of finger i in the absolute frame, and Eq. (4) providing the

associated normal is

n̂i = v̂i,2. (22)

Moreover, the contact regions on the object are arcs of

circumference given by a single parameter. Thus, for each one

of such arcs, Eq. (5) boils down to the following expression

oi = to +

[

co −so

so co

]

( ci + li,3 ŵ(ui)), (23)

where ci is the center of the circumference in local coordinates

of the object, li,3 is its radius, and

ŵ(ui) =

[

cosui

sinui

]

, (24)

with ui ∈ [ai, bi], is the angular range defining the arc for

contact patch i. Similarly, Eq. (6) reduces to

m̂i =

[

co −so

so co

]

ŵ(ui), (25)

in this case. Thus, Eq. (9) encompasses Eqs. (19) to (25) to-

gether with Eqs. (7) and (8), defining a set F of feasible grasps

of dimension t = 3. The proposed optimization procedure can

be directly applied to problems of this dimension. However,

to complete the example and to facilitate the visualization of

the results, it is better to reduce the dimension to obtain a set

of relevant grasps R of dimension k = 2. Thus, according to

Eq. (12), s = 1 linear constraints given by Eq. (13) must be

added to Eq. (9), in order to get Eq. (11). In this example, the

set Xh used to reduce the dimensionality contains randomly

generated hand configurations.

Fig. 8 shows the results obtained when applying the pro-

posed method to this example. Two complementary views of

the computed atlas are depicted (left), together with the best

and worst grasps found (center and right, respectively). The

atlas was obtained using Algorithm 1 with r = 0.125 and

ǫ = 0.4 in about 0.1 seconds. It contains a total of 750
charts, whose polytopes Pi form the shown hexagonal-like

mesh. To optimize the grasp, the atlas was evaluated using

Algorithm 2 under the force-closure quality index reported

by Prattichizzo and Trinkle [2] normalized to the range [0, 1],
obtaining the results shown in Fig. 8, where green and red

charts respectively correspond to configurations with a large

and low value of the index. Thus, Algorithm 2 was called

with I containing only this index in this case, and setting

l = 0 and w = 1. The contacts were modeled as frictional

point contacts with a friction coefficient of µ = 1, resulting

in the shown friction cones of 45◦. Since in this case the

quality index is smooth at the resolution of the computed

atlas, we set d = 1 in Algorithm 2, which corresponds to

evaluating one point of each chart only, e.g. its center point.

Algorithm 2 evaluated the whole atlas in about 10 seconds in

this situation. Note that if the kinematic constraints of the hand

were neglected, the optimal force-closed grasp would have the

contact normals equi-distributed in the plane, i.e., with angles

of 120◦ between them [42]. However, this configuration is not

reachable in our case, because it does not satisfy the joint-

assembly and contact constraints of the hand-object system

considered. The example, thus, emphasizes the relevance of

taking into account both the kinematic and contact constraints

when optimizing a given grasp, as proposed in this paper.

To illustrate a case where the quality index exhibits multiple

local optima overR, the same atlas was evaluated according to

the normalized inverse condition number of the manipulability



8

atlas best grasp worst grasp

Fig. 8. Two views of the atlas of the set R of relevant grasps on the planar hand example, together with the best and worst grasp configurations obtained,
according to the force-closure quality index in [2]. The views have been obtained by projecting the atlas on three of the problem variables. Green and red
points in the views correspond to grasps with large and low values of the index, respectively.

atlas best grasp worst grasp
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Fig. 9. The same views of the atlas in Fig. 8, but now colored according to the inverse of the condition number of the manipulability ellipsoid defined
in [10]. Green and red points correspond to grasps with a large and low value of this index, respectively. Black corresponds to near-singular grasps. The atlas
views show that this measure yields three local optimal grasps.

ellipsoid proposed by Bicchi and Prattichizzo [10], which is

actually the ratio between the smallest and largest axis lengths

of this ellipsoid. Algorithm 2 took 1.5 seconds in this case,

and produced the results shown in Fig. 9, where the atlas views

coincide with those in Fig. 8, but are now colored according

to the new index. In the figure, green and red correspond to

grasps with large and low values of this index, and black

corresponds to grasps where the index is below 10−3. In

such near-singular grasps, the manipulability ellipsoid flattens

in at least one direction, meaning that the hand can hardly

move the object along that direction while maintaining the

required contacts. Fig. 9 shows 2D projections of this ellipsoid

revealing this fact, for the best and worst grasp configurations

found. One of the fingers is fully extended in the worst con-

figuration, which is in agreement with the inverse singularity

condition of the 3-RRR parallel manipulator equivalent to this

grasp [43]. Note from the figure that this quality index would

pose difficulties to local optimization methods, since the index

yields three local optimal grasps.

In a precision manipulation task, both the force-closure and

the manipulability criteria may need to be taken into account.

However, as it can be appreciated when comparing Figs. 8

and 9, these two criteria are conflicting in this example. The

global optimum in Fig. 9, for example, corresponds to a point

with a low value of the force closure index in Fig. 8. We use

a serial evaluation approach, and optimize the manipulability

index only for those grasps with a minimum value of the

force-closure index. Fig. 10 shows the result of such strategy,

obtained by applying Algorithm 2 with I= (I1, I2)
⊤, where I1

and I2 are the force-closure index and the inverse condition

number of the manipulability ellipsoid, respectively, and using

l = (0.2, 0)⊤ and w = (0, 1)⊤. These thresholds are set so that
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atlas (serial combination) best grasp

Fig. 10. The same views of the atlas in Figs. 8 and 9, but now evaluated under a serial approach that combines the force-closure and manipulability indices.
The regions with a force-closure index above 0.2 are indicated in blue in the atlas. These regions are then evaluated according to the same manipulability
index used in Fig. 9 to select the best configuration on them.

about half of the charts are discarded using the force-closure

index. Clearly, the optimal grasp would be different if the

indices were considered in the reverse order or with different

thresholds.

B. The Schunk anthropomorphic hand

To validate the approach on a complex grasping device,

we have applied it to the Schunk Anthropomorphic hand.

Assuming that all joints are independently actuated, this hand

has 13 degrees of freedom and, formulated according to [8],

Eq. (1) is a system of 88 equations in 101 variables. The

tests are performed using three objects: (1) a can, (2) a

jeweler’s screwdriver, and (3) a Marquina oil bottle. In all

cases the grasps are to be performed using three fingers, and

the complexity of the examples is determined by the dimension

and the distribution of the contact regions.

In the case of the can, the contact regions at the fingertips

are points. Moreover, the contact patch on the object for the

thumb is reduced to a line along the can to avoid repeated

solutions caused by the axial symmetry of the can, but the

two other fingers are allowed to contact an identical cylindrical

patch defined all over the surface of the can. Despite involving

only one contact patch, its large extension makes this test case

a hard one, because a large atlas will have to be computed.

In the case of the screwdriver, a point on the index fingertip

is set to be in contact with the flat head (to be able to apply

forces that ensure a proper contact of the screwdriver with

the screw), a point on the thumb is limited to move on a line

along the screwdriver’s body (to avoid symmetric solutions),

and a curve on one side of the last phalanx of the third finger

is constrained to contact the screwdriver’s body at any point.

Thus, this example illustrates the applicability of the method

under different contact models. Finally, to properly dispense

oil with the Marquina oil bottle, a point on the index finger

must contact the top of the bottle along a curve, and points

on the two other fingers must touch patches in the middle

and bottom sections of the bottle, respectively. Therefore,

the fingers contact the object on three disjoint regions with

different sizes and orientations, which represents a general

situation for the proposed approach.

After the contact constraints are imposed, Eq. (9) in-

volves f = 128 equations in n = 136 variables (and hence

t = n − f = 8) in the first example, f = 131 equations

in n = 141 variables (and hence t = 10) in the second

case, and f = 133 equations in n = 142 variables (and

hence t = 9) in the third example. Thus, in order to obtain

a set R of dimension k = 2, s must be set to 6, 8, and 7,

respectively. Keeping at least 5 principal hand motions out

of 13, we still retain more than 99% of the motion capability

of the hand captured in the set Xh, which in this test case

includes a database of human hand configurations adapted to

the kinematics of the Schunk hand [37]. Previous approaches

like [23] use less principal hand motions (typically 2), with

the consequent decrease in motion capability of the hand. The

atlases for the three examples were obtained in 170, 180,

and 18 seconds using Algorithm 1 with r = 1 and ǫ = 0.5,

and they include 4900, 4800, and 400 charts, respectively.

These times agree with the fact that the stronger the contact

constraints, the less the number of charts in the atlas, and thus,

the faster the generation of such atlas.

Fig. 11 shows the results of applying Algorithm 2 with

d = 1 on the atlases obtained on the three examples, using

the force-closure quality index in [2] with the same friction

coefficient µ = 1 used in the planar hand example. In this case,

the spatial friction cones are linearly approximated using eight

generators. The optimization for the three examples took 115,

120, and 9 seconds, respectively. These times basically scale

with the number of charts in the atlas, and they are relatively

large because the implementation of Algorithm 2 is in Matlab,

and a linear program has to be solved for each grasp.

In the oil bottle test case, we also used k = 3, simply

by considering one additional principal hand motion. In this
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atlas best grasp worst grasp

Fig. 11. Optimization of the force-closure quality index described in [2] for the Schunk anthropomorphic hand grasping a can (top), a jewelry screwdriver
(middle), and an oil drizzler (bottom), assuming point contacts with a friction coefficient of µ = 1. Two views of the atlas of the set R obtained for each
object are shown, where green and red points correspond to configurations with large and small values of the index, respectively, and black points correspond
to non-force-closed grasps. As in Figs. 8 to 10, the atlas views have been obtained by projection on three of the problem variables.

case, the atlas includes 12800 charts and the optimization takes

1050 seconds. However, the optimal grasp returned is almost

the same as that obtained with k = 2, which confirms that, in

this example, 6 principal hand motions are enough to capture

most of the mobility of the hand.

Finally, we use the screwdriver example to optimize the

grasp combining the force-closure and manipulability indices

in parallel. This is achieved by normalizing the force-closure

and the manipulability criteria and using l = (−∞,−∞)⊤ and

w = (0.6, 0.4)⊤ in Algorithm 2, obtaining the grasp shown in

Fig. 12. The combination exhibits different local maxima, but

with the procedure introduced in this paper the global one is

readily determined while a local optimizer might get stuck in

a local extreme, depending on the initialization.
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Fig. 12. The best grasp found when optimizing a weighted combination of the force closure and the manipulability criterion, where green and red, respectively
correspond to grasps with a large and low value of this index.

VI. CONCLUSIONS

The work in this paper is part of a pipeline initiated in [8],

for robotic grasp planning under specific contact constraints.

The grasp synthesis method in [8] is herein extended with a

procedure for optimizing the quality of the obtained grasps.

The procedure enforces the satisfaction of all kinematic and

contact constraints of the hand-object system during the opti-

mization process, and it is global, in the sense that it explores

the whole set of relevant grasps attainable from a given point,

determining the optimal grasp at the selected resolution with-

out getting trapped into local extrema. Moreover, the method

is general, meaning that it can be applied to any hand/object

geometry, and to any desired set of quality indices. The

efficiency of the method critically depends on the dimension of

the traced manifold. In the case of grasps, however, principal

hand motions allow reducing the dimension of such manifold

considerably. Actually, the proposed method keeps a large

number of principal hand motions (up to 7 out of 13 for

the Schunk hand), while previous methods [23, 36, 37] use

a smaller number of them. This is because the procedure

proposed here integrates the contact constraints a priori, which

already introduces a large reduction in the problem dimension.

The grasping pipeline envisaged should include a module to

actually execute the computed grasp. This requires to take into

account dynamics, control, and path planning issues. To this

end, the pipeline is being extended using impedance control

techniques based on a kinestatic analysis of the grasp [44],

and with a planner to compute an approach path to the object

to be grasped [37]. Also, an analysis of the uncertainty would

be necessary to achieve a successful execution of the grasp.

Usually, the uncertainty analysis on manifolds is performed

in the associated tangent bundle [45] and, thus, the atlas

computed by the method could be of great help to this end.

This point certainly deserves future attention.

The presented method operates in the connected compo-

nent of the manifold of relevant grasps that are reachable

from a given point. If the manifold has other connected

components, the best grasp might be in any of the non-

explored components. This is not an issue in most robotic

hands since, due to joint-range limitations, the set of feasible

grasps only contains one connected component usually. For

the sake of generality, however, ways of obtaining one starting

point in each component of the relevant grasp manifold should

certainly be investigated.
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[40] R. Suárez, M. Roa, and J. Cornellà, “Grasp quality measures,” Institut
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