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Abstract 
Simulation methods have recently been developed for  

the solution of the extremely large markovian depend- 
ability models which result from complex fault-tolerant 
computer systems. This paper presents efficient sim- 
ulation methods for the estimation of  transient relia- 
bility/availability mefrics f o r  repairable fault-tolerant 
computer systems which combine estimator decompo- 
sition techniques with an efficient importance sam- 
pling technique recently developed. Comparison with 
simulation methods previously proposed for the same 
type of metrics and models shows that the methods pro- 
posed here are orders of magnitude faster. 

1 Introduction 
This paper considers the evaluation of repairable 

fault-tolerant computer systems which from the user’s 
point of view can be seen as either up or down. Several 
dependability metrics such as the steady-state avail- 
ability, the availability, the expected interval availabil- 
ity, the mean time to failure and the reliability can 
be appropriate to evaluate the up/down behavior of 
these systems. For the computation of these metrics, 
the system can be conceptualized as made up of com- 
ponents which change their state as a result of failure 
and repair processes. These processes may involve in 
general several components and the system is up or 
down depending on the unfailed/failed state of the 
components. Examples of this conceptual view are 
provided by the modeling languages described in [l, 
21. Under the assumption of exponential failure and 
repair time distributions, the behavior of the system 
can be described by a continuous-time Markov chain 
(CTMC) X I  whose transitions represent either fail- 
ures or repairs of components. The state space of X 
can be partitioned into the set of up states U and 
the set of down states D. Let U E U be the state in 
which all components are unfailed. We assume that all 
components are repairable and that at least one failed 
component is under repair in any state 2 # U. Failure 
propagation, the impact of the operational configura- 
tion of the system into failure and repair processes, 
and limited repairmen introduce dependencies in the 
model such that, in general, X has to be solved using 
general-purpose, state-level methods. Current state- 
of-the-art numerical methods [3,4] can solve CTMC’s 
with tens of thousands of states. However, in general, 
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the size of X grows exponentially with the number of 
components of the system and both its generation and 
numerical solution are precluded when the system has 
more than a few components. 

Simulation is an approach which by nature is not 
limited by the size of the model. However, repair rates 
are typically several orders of magnitude higher than 
failure rates, which makes the probability of X fol- 
lowing a failure transition from any state 2 # U very 
small. Then, if as it is typical, the system has re- 
dundancy to tolerate most single faults, the structure 
of X is such that only very rarely will X enter D. 
This makes direct Monte Carlo simulation unfeasible 
in practice due to  the extremely large number of events 
which would have to be sampled to get estimates with 
reasonable confidence intervals. 

Two types of techniques have been proposed to 
speed up direct Monte Carlo simulation. Importance 
sampling techniques exploit heuristic knowledge about 
the model to modify the sampling distributions so that 
the rare contributing paths be sampled with signifi- 
cant probabilities. Failure biasing and forced transi- 
tion are two such techniques which were initially pro- 
posed in the context of the nuclear domain [S, 61, and 
have been recently further developed and applied with 
success to the simulation of models of fault-tolerant 
computer systems [7-111. Another importance sam- 
pling technique called failure distance biasing which is 
typically much more efficient than failure biasing has 
been recently proposed [12]. Estimator decomposi- 
tion techniques exploit the regenerative behavior of X 
around U to formulate the metric of interest in terms 
of lower level metrics which can be estimated more ef- 
ficiently. Such techniques have been recently used for 
the estimation of the steady-state availability [8, 101 
and the mean time to failure 19, lo]. However, cur- 
rently proposed methods [5, 101 for transient metrics 
such as the availability, the expected interval availabil- 
ity and the reliability do not use such techniques and, 
as it will be discussed, can be highly inefficient. 

This paper presents new simulation methods for the 
availability, the expected interval availability, and the 
reliability combining estimator decomposition tech- 
niques with the importance sampling technique de- 
scribed in [12]. The methods are robust and orders of 
magnitude faster than methods previously proposed 
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for the same metrics. The rest of the paper is orga- 
nized as follows. Section 2 reviews importance sam- 
pling theory and previous simulation methods. Sec- 
tion 3 argues qualitatively the inefficiency of previ- 
ous methods and presents the estimator decomposi- 
tion techniques on which the new simulation methods 
are based. Section 4 examines the problem of deriv- 
ing confidence intervals for the estimates. Section 5 
presents experimental results illustrating the robust- 
ness and efficiency of the proposed methods. Section 
6 concludes the paper. The formulations on which 
the estimator decomposition techniques are based are 
derived in the Appendix. 

2 Background 
Since all metrics considered in this paper have usu- 

ally values very close to 1, we use the complementary 
metrics (unavailability, expected interval unavailabil- 
ity, and unreliability) in our presentation. For all me- 
trics we assume that X is initially in the state U .  The 
unavailability a t  time t ,  ua( t )  is the probability that 
X is in D at time t .  The expected interval unavail- 
ability a t  time 1, i t i a ( t )  is defined as m d i ( t ) / t ,  where 
mdt ( t )  is the mean down time by time t ,  i.e., the ex- 
pected value of the time spent by X in D during the 
interval [ O , t ] .  I t  can be easily shown that: 

mdt(t) = u a ( r ) d r  . (1) I’ 
Finally, the unreliability at time t ,  u r ( t ) ,  can be de- 
fined as the probability that X has hit D during the 
interval [0, t ] .  

All the metrics previously defined can be expressed 
as the expected value of a function defined over the 
set of paths of X and, therefore, can be estimated 
by simulating X and taking the sample mean of the 
corresponding path function. However, only paths 
which hit D have non-null contributions and, given the 
structure of X ,  an extremely large number of events 
(transitions) would have to be sampled to generate the 
number of contributing paths required to achieve rea- 
sonable confidence intervals. The simulation can be 
speeded up by using importance sampling techniques. 

The principles behind importance sampling [13] can 
be illustrated using a simple example. Assume we 
want to estimate the expected value of Z(0 ) ,  where 
0 is a random variable with density f(8). Let f * ( O )  
be a different density function such that f * ( O )  # 0 
whenever Z ( O ) f ( O )  # 0 and, for the values 8 satisfy- 
ing the latter condition, let A*(O) = f(O)/f*(O) be the 
likelihood ratio. We have: 

which tell us that un unbiased estimator of E[Z(O)]  
can be obtained by sampling 0 using T(O) and taking 
the sample mean of the function Z*(O)  = Z(O)A*(O). 
The variance after n samples is: 

which is null when f * ( O )  = f ( O ) Z ( O ) / E [ Z ( @ ) ] ,  i.e., 
when the values of 0 are sampled with likelihoods 
equal to their relative infinitesimal contributions to 
E Z 0 . This is impossible in practice because 
E [ Z ( S ] ]  is unkown, but when choosing a practical 
f.10) we should try to  match as closely as possible 
f( )Z(O)/E[Z(@)].  In the context of this paper, this 
means that we should drive the simulation effort to the 
contributing paths (those hitting 0) and, furthermore, 
assign higher likelihoods to the paths with higher con- 
tributions to the metric under estimation. We next 
review briefly the simulation methods proposed in [5, 
101 for u r ( t )  and iua(t ) .  

The method proposed in 51 for the simulation of 
ur( t  samples paths of X til either the path hits D 
or t h e sum of all sampled holding times exceeds t .  
Let A, denote the output rate from the state E and 
t ,  the sum of the previously sampled holding times. 
The holding times in states 2 # U are sampled from 
their exponential distribution f(y) = Aze-’=Y, but the 
holding times in U are sampled using the conditional 
distribution f*(y) = X,,e-’-Y/( 1 - e - ’ ~ ( ~ - ~ c ) ) ,  which 
results when the holding time in U is restricted to be 
< t-t, .  This importance sampling technique is called 
transit ion forcing and is used to avoid sampling paths 
which will not hit D by time t and thus will have null 
contributions to u r ( t ) .  Transitions are sampled using 
another importance sampling technique called failtire 
biasing. Failure biasing is applied when the current 
state has both outgoing failure and repair transitions 
and consists in biasing the transition probabilities so 
that the probability of following a failure transition 
be FBIAS and that of following a repair transition 
be 1 - F B I A S ,  with the biasing probabilities within 
each class distributed proportionally to the unbiased 
probabilities. The biasing scheme is turned off as soon 
as a down state is hit. The heuristic behind failure 
biasing is to increase the sampling probabilities of the 
paths which enter D. A value FBIAS = 0.5 typically 
minimizes the required simulation effort. 

The simulation method for u r ( t )  proposed in [lo] 
is sligthly different. The method simulates X till en- 
try in D and does not sample the holding times in U .  
The number of visits IC to U during a path is recorded 
and the contribution of the path to ur( t )  is computed 
by conditioning out the distribution of the total time 
spent in U ,  which follows a k-stage Erlang distribution 
with parameter A,,. The method for iua(t)  proposed 
in [lo] conditions out a predefined value L of hold- 
ing times in U and samples successive holdin times 
in U till the sum of all sampled holding times finclud- 
ing those in states t # U exceeds t .  Two importance 

been experimented in [lo]. The first one is identical 
to failure biasing except that FBIAS is distributed 
uniformly among the failure transitions. The second 
is an ellaboration of failure biasing in which a given 
probability is allocated to  the transitions correspond- 
ing to failures of component types with already some 
component failed. The latter is only meaningful when 
redundancy is only provided between components of 
the same type (i.e., undistinguishable), quite a restric- 
tive assumption which is not fullfilled, for instance, by 

sampling techniques in a 1 dition to failure biasing have 



the large example presented in Section 5. 
Failure distance biasing is a more ellaborated bi- 

asing scheme which exploits the concept of failure 
distance. See [12] for a more detailed description of 
the scheme, including implementation and optimiza- 
tion issues. In failure distance biasing components are 
classified into failing and non-failing, depending on 
whether they fail on their own or can only be failed 
by propagation of failures of other components. The 
failure distance from an operational state x is defined 
as the minimum number of failing components whose 
failure in x would take the system down. A failure 
transition is said dominant if it reduces the failure 
distance and critical if it reduces the failure distance 
by more than one. The criticality of a failure tran- 
sition is defined as the amount by which it reduces 
the failure distance. Failure distance biasing is done 
in steps. At each step a subset of transitions is split 
into two subsets, which are biased in relation to one 
another (keeping as in failure biasing the relative val- 
ues of the transition probabilities within each subset), 
and one of the subsets is passed to the next step. 
If one of the subsets is empty, the step is skipped. 
The first step is failure biasing. In the next step, 
the subset of dominant failure transitions is assigned a 
probability DBIAS in relation to  the current set (fail- 
ure transitions) and passed to the next step, and the 
subset of non-dominant transitions is assigned a rel- 
ative probability 1 - DBIAS.  The third step is re- 
peated while the transitions in the current set have 
different criticalities and assigns the relative proba- 
bility 1 - CBIAS to the subset of failure transitions 
with smallest criticality and CBIAS to the comple- 
mentary subset, which is passed for the next applica- 
tion of the biasing step. Assume, for instance, that 
a state has outgoing repair transitions, non-critical 
dominant transitions, and critical failure transitions 
of criticalitites 2 and 3. These subsets of transi- 
tions would be sampled with probabilities 1 - FBIAS,  
FBIAS( 1 - CBIAS) ,  FBIASCBIAS(1 -  CBIAS) ,  and 
FBIAS CBIAS2 ,  respectively. The heuristic behind 
failure distance biasing is to  sample more often the 
shortest paths entering D. By taking values of DBIAS 
and CBIAS more or less close to 1,  the biasing scheme 
can focus more or less the simulation effort to these 
paths. Using an independent biasing parameter to 
deal with critical transitions is convenient since the 
actual importance of these transitions depends on the 
values of the “coverage” parameters of the model. The 
scheme has been compared in [12] with failure biasing 
for the simulation of the steady-state unavailability 
and has been shown to be typically much more effi- 
cient. 

3 Estimator Decomposition 

Failure distance biasing and, to  a lesser extent, fail- 
ure biasing and the related biasing schemes described 
in [lo] tend to concentrate the simulation effort to- 
wards the shortest paths entering D. These paths have 
the more important contributions to ua( t ) ,  iua( t )  and 
u r ( t )  only when t is smaller or of the order of magni- 
tude of the mean holding time in U ,  h,. We present 

next an approximate analysis for ur ( t )  which clarifies 
this point and provides further insight. 

Let v,” be the number of sojourns in U before X 
hits D and T,D the time a t  which X hits D. We can 
formulate ur( t )  as: 

k=l 

where 

Q k ( t )  = P[T,D _< t 1 v,” = k]P[v,” = k]  . 

Q k  2)  can be interpreted as the contribution to u r ( t )  

7 be the probability that a path starting in U hits D 
before U. From the memoryless property of CTMC’s, 
it follows that v,” has a geometric distribution with 
parameter y. Since repair rates are typically several 
orders of magnitude higher than failure rates and all 
states x # U have a t  least one outgoing repair transi- 
tion, the mean holding times in the states x # U are 
usually much smaller than the mean holding time in 
U ,  h,. In addition, given the structure of X ,  paths 
which visit many states 2 # U before hitting D after 
a given number k of sojourns in U have much smaller 
probabilities than paths of the same type visiting few 
states x # U .  This allows to neglect the holding times 
in the states x # U and approximate T,D conditioned 
to  v,” = IC by the sum of k holding times in U .  It 
follows that TuD conditioned to v: = k has approx- 
imately a k-stage Erlang distribution with parameter 
A,, = h;’, and: 

o f t  6 e set of paths hitting D after k sojourns in U .  Let 

The expected value of v,” when the paths are sampled 
with probabilities proportional to their relative con- 
tributions (optimal distribution to which an efficient 
importance sampling scheme would tend to adjust) is 
v,” = k Q k ( t ) / C F = l  & k ( t ) .  Figure 1 plots .,” 
as a function of y and t /h, ,  using the approximation 
developped for Q k ( t ) .  It is clear that when t is smaller 
or of the order of magnitude of h, only paths with few 
regenerative cycles around U have important contribu- 
tions to ur ( t ) .  However for small values of y (which 
are typical in the models considered here), longer and 
longer paths have important contributions to ur ( t )  as 
t / h ,  becomes >> 1.  

The same can be argued to happen when simulating 
ua( t )  and iua( t ) .  The conclusion is that simulation 
methods for transient metrics using biasing schemes 
which tend to focuss the simulation effort towards 
short paths entering D can be expected to degradate 
when t >> h, due to: a) an increase in the simulation 
effort per path, b) a decrease in the efficiency of the 
biasing scheme. 

We present next formulations for ua( t ) ,  iaa( t ) ,  and 
ar(t) in terms of lower-level metrics which follow a 
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Figure 1: Approximate average number of sojourns in 
U per path during the simulation of ~ ( t )  when paths 
are sampled according to their contributions. 

neat heuristic and can be simulated more efficiently. 
Let 

gl(t)  

g2(t) 

h l ( t )  

h2(t) 

the probability that given X ( 0 )  = U ,  X ( t )  E 
D and X has not hit U by time t ,  

the probability density function of the dura- 
tion of a regenerative cycle around U ,  

the probability that given X ( 0 )  = U ,  X has 
hit D by time t without hitting U before, 

the probability that given X ( 0 )  = U ,  X has 
hit either D or U by time t .  

In the Appendix we formulate the Laplace trans- 
forms of u a ( t )  and u r ( t )  in terms of the Laplace trans- 
forms of the above low-level metrics. Denoting by F ( s )  
the Laplace tranform of f ( t ) ,  we obtain: 

(3) 

Remembering that iua(t )  = m d t ( t ) / t ,  it becomes clear 
that the simulation of i u a ( t )  is virtually equivalent to 
the simulation of mdi ( t ) .  Let II(s)  = Gl(s)/s, using 
(1, 2), we have: 

Efficient numerical algorithms for numerical Lapla- 
ce transform inversion exist (see, for instance, [14] 
which allow to compute the value of a function f( t ]  
a t  a given abscissa t from a few values of its Laplace 
transform F(s ) .  Then, estimates for u a ( i ) ,  u r ( t ) ,  and 

be obtained from estimates for the Laplace 
in the right-hand sides of ( 2 ,  3, 4) at the 

abscissae required by the inversion algorithm. 

Each low-level metric transform M ( s )  can be for- 
mulated as the expected value of a function Z ( 

transient discrete-time Markov chains (DTMC's), i.e., 
we can write: 

fined over the set of paths to  absorption of one o two de- 

FER 

where R is the set of paths to absorption of the corre- 
sponding transient DTMC and P ( r )  is the probability 
of the path r .  Two transient DTMC's with initial 
state U are used. The first one, X ' ,  describes (ig- 
noring holding times) the behavior of X till its first 
hit in U. The second one, X", describes the behav- 
ior of X till its first hit in either U or D and has 
two absorbing states: Q ,  representing hit in U ,  and 
d,  representing hit in D. Let L r )  denote the length 
of path r (number of transition&, z , ( r )  the state vis- 
ited in path r after the ith transition (zo(r) = U ) ,  
Xi j  the transition rate from i to j ,  and q i j .  = X i j / X i  
the conditional transition probability from z to j. We 

tion required for each low level metric can be derived 
by considering that the holding times in the states 
z , (r) ,  i = 0,. . . , L ( r )  - 1 conditioned to the execu- 
tion of r are independent exponential random vari- 
ables with parameters AZ,(,.). Table 1 gives the tran- 
sient DTMC and the path function required for each 
low-level metric. In the table, Pz.,(r)/r(s) denotes the 
Laplace transform of the probability that the associ- 
ated transient CTMC is in q ( r )  at time t ,  conditioned 
to the execution of r by the embedded DTMC. These 
Laplace transforms can be computed using: 

have P(r )  = I l o < i < L ( r )  qz,(r),z,+a(r). The path fun'- 

i = 1, . . .  , L ( r )  - 1 ,  

so that the computation of any path function of Ta- 
ble l has linear cost on the path length. 

In the methods proposed here, an independent si- 
mulation stream is used to estimate the Laplace tran- 
forms of each low-level metric. Given the structure 
of X ,  only the regenerative cycles around U with few 
transitions have significant probabilities and the dura- 
tion of these cycles follows very closely an exponential 
distribution with mean h,. Thus, all paths r of X '  
with significant contributions to G ~ ( s )  have a similar 
functional value Zr(s) and, according to importance 
sampling theory, direct Monte Carlo simulation can 
be expected to be very efficient. A similar reason- 
ing based on the typical behavior of X supports the 
efficiency of direct Monte Carlo simulation of H z ( s ) .  
Importance sampling techniques are however required 
for the efficient estimation of, Gl(s ) ,  H l ( s ) ,  and I l ( s ) ,  
since only the paths of X' and X "  hitting D have non- 
null contributions to these metrics. In addition, the 



probabilities of these paths (and their relative contri- 
butions) are typically strongly ranked according to the 
number of failure transitions they contain. This is in 
accordance with the heuristic behind failure distance 
biasing and we can expect the simulation of Gl(s),  
H l ( s ) ,  and I l ( s )  under that biasing scheme to be par- 
ticularly efficient. 

4 Derivation of Confidence Intervals 
This section discusses the derivation of confidence 

intervals for the estimates of the metrics. Consider, 
for instance, t& derivation of confidence intervals for 
U Q ( ~ ) .  Let GI s) and sample mean es- 

define AG,(s)  = 

(2): 

timates of Gl(s\ and 
h 

g ( s )  - Gl(s),  AG,(s) = G(s) - G ~ ( s ) .  We have 

AGl(s)  and AGz(s) have null expected values and 
the same standard deviations as, respectively, Gl(s)  
and G(s). For any estimate of E ( s )  of reason- 
able quality, the relative standard deviations of c ( s )  
and Gz(s) will be small so that we can approximate 

h 

- 
by its first-order Taylor expansion on AGl(s) 

Replacing AGl(s)  and AGz(s) by, respectively, 
G^;(s) - Gl(s)  and G(s) - Gz(s) and taking Laplace 

antitransforms we obtain for =(t )  an expression of 
the form: 

h( t )  + f?(t) + &t> 1 (5) 
A h  

where h( t )  is non-random and f i ( l ) ,  f 2 ( t )  are random 
variables, which, denoting by ( .ZM)~(S) the path func- 
tion associated to the metric M ( s )  as given in Table 1 
and by ( Z & ) r ( ~ )  the function affected by the likeli- 
hood ratio, can be interpreted as the sample mean 
estimates of, respectively, the path functions: 

A similar development holds for the other metrics, 
where the random terms in (5) can be interpreted as 
the sample mean estimates of the path functions: 

for s(t) and: 

1.56 



for Z t ( t ) .  

Then, A ( t )  and A(t) have asymptotically a nor- 
mal distribution and approximate confidence intervals 
for the metrics can be derived by using the normal 
distribution with variance: 

$2 = $; + $; 
where $; and $22 are estimates for the variances of, 
respectively, f?(t) and h(t). These estimates can 
be obtained by sampling the path functions (6- l l ) ,  
The computation of these path functions requires the 
knowledge of Gl(s) and.Gz(s), H l ( s )  and HZ s), or 

quantities under estimation. This problem is solved 
as follows. 

We organize each simulation stream in substreams, 
each having a length which approximately doubles the 
length of the previous substream for the same low-level 
metric. The streams for the two low-level metrics run 
in parallel with optimal allocation of events according 
to their contributions to the variance of the metric 
estimate. The first substreams use initial rough esti- 
mates for the Laplace transforms of the low-level met- 
rics obtained running short presimulation substreams. 
The following substreams use the estimates for the 
Laplace transforms available at the end of the previ- 
ous substreams. 

The Laplace transforms Gz(s), H z ( s  are estimated 

tion and, at the end of the kth substream, 3; is com- 
puted by: 

I l ( s )  and G ~ ( s ) ,  respectively, which are precise (l y the 

by the sample means of the correspon d ing path func- 

where M is the total number of sampled paths and 
s i  is the sample variance of ( W Z ) ~ ( ~ )  computed in the 
kth substream. Computing a sample variance using all 
sampled paths is not possible because, being different 
the estimates for the Laplace transforms of the low- 
level metrics used in each substream for the compu- 
tation of (W2 ( t ) ,  we are in fact sampling a different 

Simulation of Gl(s), H l ( s ) ,  H l ( s )  is optimized us- 
ing an adaptive scheme in which the values of the 
biasing parameters are updated at the end of each 
substream to minimize the variance of the sampled 
path function. The estimates for these Laplace trans- 
forms are computed by weighting optimally the sam- 
ple means obtained for the different substreams so as 
to minimize $;f. This is done to  take into account 
the decrease in variance of the sampled path function 
resulting from the progressive optimization of the bi- 
asing parameters. The estimate for the variance 5: at 
the end of the kth substream is computed by: 

random varia b. le (W2),.(t) at each substream. 

where a; is the weight associated to the sample mean 
of the ith substream, Mi is the number of paths of the 

ith substream, s2 is the sample variance of (W1)r(t) 
obtained in the Xth substream, and f i  is the value 
given by a symbolic estimator (which takes into ac- 
count all the samples) of E[((Wl),(t )2 for the values 

See [12] for details. Using s: + R, - Rk is more ro- 
bust than using sz, which can be dangerous when the 
model is badly-behaved and the variance is only well 
estimated after a large number of sampled paths. 

of the biasing parameters used in t h 1  e ith substream. 

5 Experimental Analysis 
In our implementation of the simulation methods 

we compute Laplace antitransforms using the inver- 
sion formula [14]: 

CO 

where a is a parameter which is chosen large enough 
to make the relative discretization error smaller than 
DERROR = The convergence of the series is 
accelerated by the epsilon algorithm, and the accel- 
erated series is truncated when the relative difference 
between the two last truncated values is smaller than 
TERROR = The value for a and the num- 
ber of abscissae at which the Laplace transforms are 
bookkept are chosen after running the presimulation 
substreams and rough estimates for the Laplace trans- 
forms are available. For the presimulation we use over- 
sized values for these parameters. Recovery proce- 
dures are implemented in case the values chosen after 
the presimulation turn out to be insufficient to achieve 
the specified accuracy. In all cases we have tested, be- 
tween 20 and 30 terms have been enough to achieve 
convergence. More sophisticated inversion formulae 
[15] could be used to get estimates of the metrics at 
several values o f t  using slightly more Laplace trans- 
forms. 

A number of experiments have been carried out us- 
ing models of small size and comparing the results ob- 
tained by the simulation methods presented here with 
those obtained numerically by METFAC [16] and we 
have found that the methods are robust. This will be 
illustrated using the fault-tolerant database example 
described in [7]. The system is made up of two front- 
ends, two databases and two processing subsytems and 
each processing subsystem includes one switch, one 
memory and two processors. The system is up if at 
least one front-end, one database, and one processing 
subsystem are operational, and a processing subsys- 
tem is operational if the switch, the memory, and at 
least one of the processors are operational. All com- 
ponents fail with rates 1/2400 hrs- l ,  except the pro- 
cessors which fail with rate 1/120 hrs-’.  A processor 
failure is propagated to one database with probability 
0.01. There is a single repairman which uses a preemp- 
tive discipline with priority given first to databases 
and front-ends, next to memories and switches, and 
last to processors. Components of the same priority 
are chosen at random and all components have a meail 
repair time of 1 hour. 
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The proposed simulation methods were run for a 
wide range of values of t with a goal of a 99% confi- 
dence interval of f2% and a limit of 500,000 events. 
Tables 2, 3, and 4 give the exact values computed by 
numerical methods, the estimates obtained by simula- 
tion, and the number of simulated events required to 
achieve the specified tolerance (including the events 
sampled in the presimulation substreams). In all 
cases, the exact value is within the predicted inter- 
val confidence and a small number of events is enough 
to achieve the specified tolerance. 

Our methods differ from those previously proposed 
[5, 101 in the use of estimator decomposition tech- 
niques and the use of the failure distance biasing 
scheme. A comparison isolating the impact of each 
improvement will be presented using a large reallistic 
example. 

The example is the fault-tolerant data processing 
system whose architecture is shown in Figure 2. A 
dual configuration of data processing units (DPU’s) 
command control subsystems located at remote sites. 
Each control subsystem comprises two redundant con- 
trol units (CU’s) working in hot-standby redundancy. 
The system can be accessed through two redundant 
front-ends connected to the DPU’s. The DPU’s 
and CU’s communicate using a redundant local area 
network (LAN) to which each DPU and each CU 
has access through dedicated communication proces- 
sors (CP’s). Components fail with constant rates 
xFE = 2 x 10-4, ~ D p u  = 10-3, xCU = 2 x 10-4, 
Xcp = 5 x and XL = respectively. Two 
failed modes are considered for the DPU’s: “soft” and 
“hard”. The first mode occurs with probability 0.9 
and can be recovered by an operator restart; the sec- 
ond mode occurs with probability 0.1 and requires 
hardware repair. Coverage is assumed perfect for all 
faults except those of the DPU’s, which take the sys- 
tem down with a probability of 0.01. Lack of coverage 
is modelled by propagating the failure of one DPU to 
the other DPU. There are three repair teams. The 
first repairs LAN’s and CP’s, with preemptive prior- 
ity given to  LAN’s. The second repairs FE’s, DPU’s 
and CU’s in “hard” failed mode, with preemptive pri- 
ority given first to DPU’s, next to  FE’s, and last to 
CU’s. The third makes DPU restarts. Each team in- 
cludes only one repairman. Failed components with 
the same repair priority are taken at random for re- 
pair. Components are repaired with rates  FE = 0.5, 
P D P U h  = 0.5, P D P U S  = 4, PCU = 0.5, P c p  = 0.5, and 
P L  = 0.2, respectively. 

The system is considered up if one unfailed DPU 
can communicate with a t  least one unfailed CU of 
each control subsystem. Different LAN’s can be used 
for communication between the active DPU and the 
active CU of each control subsystem, but the commu- 
nication has to be direct, i.e., involving only one C P  
of each unit and one LAN. The resulting CTMC has 
about 4.6 x 10” states, which clearly precludes both 
its generation and numerical solution. 

Due to space limitations we will only present exper- 
imental results for u r ( t ) .  Comparison of our methods 
for i u a ( t )  with that proposed in [lo] gives qualitatively 

identical results. 
The method proposed in [5] for u r ( t )  (making ab- 

straction of the biasing scheme used to sample tran- 
sitions) will be denoted by F (forcing). The method 
proposed in [lo] for ur(t (also making abstraction of 

be called P C  (partial conditioning). The latter allows 
the computation of estimates at several t ,  but in our 
experiments we only computed the metric at a given 
value t and the simulation of the path under PC was 
aborted when the sum of the sampled holding times 
exceeded t ,  since in this case the path currently sam- 
pled has a null contribution. 

We run F and P C  with failure biasing (FB , the 
same methods with failure distance biasing ( Ez DB), 
and the proposed method based on (3) and using fail- 
ure distance biasing for several values o f t  with a goal 
of a 99% confidence interval of &2% and a limit of 
500,000 events. Our implementation of F and PC un- 
der both FB and FDB includes an adaptive optimiza- 
tion scheme for the biasing parameters. We turned 
biasing off in our method when MAXREP = 2 repair 
transitions are sampled in the same path. This im- 
proves the robustness of the biasing scheme without 
affecting its efficiency significantly. This was however 
not done under F and P C  since it would turned the 
biasing scheme off prematurely when t >> U and long 
paths have to be sampled. The CPU time per simu- 
lated event in our method is about 50% higher than 
in F and PC due to the computation of the Laplace 
transforms and the invocations of the Laplace trans- 
form inversion algorithm, and we present CPU times 
instead of sampled events for comparison purposes. 
These times were measured on a SUN 3/260. Fig- 
ure 3 shows the results, using estimates for the re- 
quired CPU times when the goal confidence interval 
was not achieved after 500,000 events. The speedup 
of the proposed method over previous ones ( F  and 
PC with failure biasing) is between 3 and 4 orders 
of magnitude. In fact none of the previous methods 
can achieve the goal confidence interval in a practi- 
cal amount of time whereas our method achieves it in 
about 2 minutes in all cases. F and P C  with failure 
distance biasing are slightly better than the proposed 
method when t is smaller or of the order of magnitude 
of h, (172 hours). As 1 increases, the performance of 
F and PC with failure distance biasing rapidely deteri- 
orates for the reasons explained in Section 3. Figure 4 
gives the average path lengths, clearly confirming the 
arguments given there. 

the biasing scheme use d to sample transitions) will 

6 Conclusions 
We have proposed new methods for the transient 

simulation of repairable fault-tolerant systems which 
are robust and efficient for any value o f t .  For a typical 
large example speedups of 3 to 4 orders of magnitude 
over previously proposed methods have been reported. 
These speedups are the result of using estimator de- 
composition techniques and the more efficient failure 
distance biasing scheme. Previously proposed meth- 
ods under failure distance biasing tend to be slightly 
more efficient than the method proposed here only 
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Table 2: ua(2)  simulation results for the fault-tolerant database system. 

t 
0.01 
0.1 
1 
10 
100 
lo3 
lo4 
lo5 

t 
0.01 
0.1 
1 
10 
100 
103 
104 
105 

exact estimate events 
4.287 x lo-'' 4.354 x lo-'' f 8.6 x 18,643 
4.124 x lo-' 18,572 
2.842 x 2.859 x f 5.3 x lo-' 18,622 
2.639 x 2.608 x f 5.2 x lo-" 54,592 
3.351 x 3.307 x f 6.6 x lo-" 61,866 
3.423 x 3.372 x f 6.7 x lo-" 62,645 
3.430 x 3.386 x It 6.6 x lo-" 66,517 
3.431 x 3.373 x f 6.7 x lo-" 62,606 

4.182 x lo-' f 8.1 x lo-" 

exact estimate 
1.284 x lo-'' 1.304 x lo-'' f 2.6 x 
1.219 x lo-" 

3.425 x 
3.431 x 
3.431 x 
3.431 x 
3.431 x 

7.399 x 10-7 
1.235 x f 2.4 x lo-'' 
7.389 x f 1.5 x lo-" 
3.365 x f 6.7 x lo-' 
3.373 x f 6.7 x lo-" 
3.373 x l ob6  f 6.7 x lo-" 
3.373 x f 6.7 x lo-" 
3.373 x f 6.7 x lo-" 

events 
18,643 
18,208 
21,530 
61,476 
62,611 
62,611 
62,611 
62,611 

Table 3: ur( t )  simulation results for the fault-tolerant database system. 

t 
0.01 
0.1 
1 
10 
100 
103 
104 
105 

exact estimate events 
1.289 x lo-'' 1.294 x lo-'' f 2.6 x 10,094 
1.261 x lo-" 9,813 
1.023 x 1.022 x f 1.9 x lo-" 15,963 
2.960 x 2.976 x f 5.9 x 36,559 
3.353 x 3.351 x f 6.7 x 39,051 
3.387 x 3.388 x f 6.7 x 38,706 
3.340 x 3.336 x f 6.6 x 37,811 

0.2881 0.2862 f 5.6 x 26,061 

1.266 x lo-" f 2.5 x lo-'' 

Table 4: i u a ( t )  simulation results for the fault-tolerant database system. 
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Figure 3: CPU times required to achieve a 99% f2% 
confidence interval in the simulation of u r ( t )  for the 
fault-tolerant data processing system. 

when t is small or of the order of magnitude of the 
mean holding time in the state with all components 
unfailed h, , but their performance rapidly deteriorates 
as t increases. This behavior is specially problematic 
for the reliability, since this metric is often used to 
characterize the long-term dependability behavior of 
the system and values of 1 several orders of magnitude 
higher than h, will be typically of interest, particu- 
larly for large systems, where A, can be large. 

APPENDIX 

In this appendix we obtain the formulations 2), (3) 
for the Laplace transforms of, respectively, u a [ t )  and 
ur ( t ) .  

Let p ; ( t )  = P [ X ( t )  = i I X ( 0 )  = U ]  and q5:i(t) the 
probability that, given X ( 0 )  = U ,  X ( t )  = i and X 
has not hit U in [ O , t ] .  Remembering the definition of 
g 2 ( t )  given in Section 3 and denoting by g?’( t )  the 
n-fold convolution of g 2 ( t )  with itself and by * the 

4 

t ours.) 
Figure 4: Average path lengths in the simulation of 
ur( t )  for the fault-tolerant data processing system. 

convolution operator, we can write: 
00 

p i ( t )  = P [ X ( t )  = i A X has hit U 

k=O 

6 times in [O,t] I X ( 0 )  = U] = 
00 

= C g ? ’ ( t )  * 4: i ( t ) .  
k = O  

The point unavailability u a ( t )  can be computed as 
CiEDp,(t) and, according to its definition, g l ( t )  = 
CiED q5:i(t). Then, using (12): 

The formulation for the Laplace tranform of zlr(l) 
can be obtained by resorting to semi-Markov process 



Figure 5: Transition graph of the semi-Markov process 
Y ’ .  

theory [17]. Let Y be the transient CTMC with state 
space U U { d  which is obtained from X by collapsing 

Markov process Y’ whose transition graph is given in 
Figure 4 and is defined so that, provided Y ( 0 )  = U :  a) 
Y ’ ( t )  = U’ if Y ( t )  E U ,  b) Y ’ ( t )  = d if Y ( t )  = d ,  and 
c) Y’ makes a transition into U‘ whenever Y enters U .  

The functions h l ( t )  and h2( t )  defined in Section 3 
can be expressed in terms of the kernel functions of Y’ 

D into an a b sorbing state d and consider the semi- 

as: 
h l ( t )  = qu’d(t) (13) 

(14) h 2 ( t )  = qu#u,(t) -k qurd(t)  . 
By construction, u r ( t )  is the transition probability 
p u f d ( t ) .  Then, using semi-Markov process theory we 
can write: 

u r ( t )  = pu’d( t )  = qu’d(t) + lt pu’d(t - 7) dqulul(T) . 

Considering that qutuj(0) = 0 and taking Laplace 
transforms we obtain: 

uR(s)  = Q u i d ( S )  4- s p ” ~ d ( s ) Q u ~ u ~ ( s )  = 
= Q u t d ( S )  4- sUR(s)Qujut(s) . 

Finally, solving in UR(s)  and using (13, 14): 

UR( s )  = Q u ’ d ( s )  = H1 
1 - s Q ~ ~ ~ ~ ( s )  1 - s ( H ~ ( s )  - H ~ ( s ) )  ’ 
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