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Abstract

A new type of Petri nets: Generalized Stochastic High-Level Petri
nets (GSHLPN's), collecting the qualities of GSPN's and
SHLPN's, is presented. The automated construction of
compound continuous-time Markov chains (CTMC's) from
GSHLPN's is also considered. A formalism for the description
of compound markings allowing a symbolic firing of the net to
obtainac und CTMC with correct state grouping is derived.
The construction of the compound CTMC requires an algorithm
to test the equivalence of compound markings. It is shown that,
in the general case and for bounded number of rotation groups,
the problem is polynomially equivalent to GRAPH
ISOMORPHISM, a problem whose classification in the NP
world is currently open.

1. INTRODUCTION

The success of Pewi nets (PN's) to represent and analyze the
qualitative behaviour of complex systems with synchronization
and concurrency has motivated the introduction of stochastic
Petri nets (SPN's) for the quantitative analysis of such systems
[1], [2]. SPN's are PN's with exponentially distributed firing
times associated to transitions. Bounded SPN's are isomorphic
to finite continuous-time Markov chains (CTMC's). Therefore,
SPN's do not provide more modeling power than CTMC's, but
they are indeed an appropriate specification methodology for
Markov models having CTMC's of large size. Since the
introduction of SPN's, there have been a number of interesting
developments. Some of them extend the modeling power of
SPN's. Among these, we have the extended stochastic Petri nets
(3] and the stochastic activity networks [4], both of which allow
arbitrary firing time distributions. Other efforts are oriented to the
development of more expressive types of Petri nets with the same
modeling power as SPN's.

Generalized stochastic Petri nets (GSPN's) [5] extend SPN's by
introducing inhibitor arcs and immediate transitions. This class of
nets has recently be reextended [6] by allowing probabilities and

* priorities to be added to immediate ransitions. GSPN's not only

are more -expressive than SPN's, but also support the
specification of models with smaller CTMC's when some
activities are much faster than others so that the first can be
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modeled by immediate transitions firing in zero time. Efficient
algorithms for the generation of CTMC's from GSPN's have
recently been presented (7). '

Some systems are composed of sets of processing elements with
identical behaviour. These systems have been called
homogeneous. Since the size of the CTMC is the limiting factor
for the numerical analysis of the model, it is highly desirable to
take advantage of the symmetries exhibited by those systems to
reduce the size of the CTMC. Although SPN's provide some
support, they fail 1o exploit the symmetries in the behaviour of
the system when, as it is often the case, processes have
relationships. Since the tokens in a SPN do not convey any
information, except the place where they are, the relationships
can only be expressed by individualizing the processes. This not
only yields CTMC's of undue size, but also enlarges the Petri
net, making more arduous the specification of the model. In
order to overcome this problem Lin and Marinescu (81, [9] have
introduced stochastic high-level Petri nets (SHLPN's).
SHLPN's are high-level Petri nets (HLPN's) with constant, but
possibly marking dependent, firing rates attached to transitions.
HLPN's are an extension of standard PN's in which tokens
have colours, arcs have expressions with variables yielding bags
of colours, and transitions have predicates (guards) on the
variables used in the expressions of the surrounding arcs.
HLPN's were proposed by Jensen [10] to summarize the
qualities of predicate transition nets and coloured Petri nets.
Similar to SHLPN's, stochastic coloured Petri nets, were
proposed by Zenie [11]. SHLPN's have been shown 10 be a
powerful methodology for the specification of models of
homogeneous systems (8], [9], [12]. They allow the
specification of complex homogeneous systems in 2 more
succinct and readable way than standard PN's and yield CTMC's
of much smaller size.

Although some work has been done towards the automated
analysis of HLPN's [13], it is apparent that some problems have
not yet received a satisfactory solution. These problems are
identified for SHLPN's in (8], [9): derivation of compound
markings so that compound CTMC's have a correct state
grouping, computation of transition rates between compound



markings, and efficient testing of the equivalence of compound
markings.

The contents of this paper is as follows. Section 2 introduces a
new type of stochastic Petri nets: Generalized Stochastic High-
Level Petri Nets (GSHLPN's), combining the qualities of
SHLPN's and GSPN's. Section 3 presents a methodology to
derive a symbolism for the description of compound markings
which allows the symbolic firing of the net to obtain compound
CTMC's with correct state grouping. It is apparent that the
determination of the equivalence of compound markings is a
difficult combinatorial problem. In section 4 we analyze the
complexity of the problem from the point of view of the NP-
completeness theory. Finally, conclusions and suggested
directions for future work are presented in Section 5.

2. GSHLPN's

Generalized stochastic high-level Petri nets are obtained from
SHLPN's by the introduction of immediate transitions with
priorities, inhibitor arcs, and cases. This results in a better
framework for the modeling of conflict and contention than
SHLPN's. We first give a formal definition of GSHLPN's. The
modeling power of the nets is illustrated next with an example.

2.1. Definitions
A generalized stochastic high-level Petri net is a 9-tuple:

GSHLPN = (S, P, T, I(), TO(), CO(), H(), Mo) ,

where:

S is the set of token types. Each token type s €S has a list
of auributes with finite domains which, without lost of
generality, are assumed to be of the formD=(1,..IDI}. A
token of type s is denoted by <s, a1, ..., ax>, where g; is the
value of the ith attribute of s.

P is the set of places.

T is the set of transitions. As in GSPN's, there are two
types of transitions: timed transitions and immediate transitions.
Each timed transition ¢ has associated a, possibly marking
dependent’, firing rate (1) and each immediate transition ¢ a
priority level xt). A transition ¢ may have associated a predicate
P(t), i.e., a logical expression over the free variable set of ¢
(defined in the next paragraph). A transition may have cases or
not. The set of cases associated to a transition r is denoted by
C(t). Each case c € C(r) has a, possibly marking dependent”,
probability g(c).

* this dependency is restricted 10 be expressed in terms of the number of
1okens of given lype in each place, i.e., ignoring token attributes.

I() is the input function which assigns sets of places
transitions. Each pair (p, 1) with p € /(1) is called an input arc
and p is said to be an input place of r. Each input arc (p, t) has
associated a set of symbolic input tokens s/(p, 1). The values of
the atmributes of the symbolic input tokens of a ransition are
specified by independent free variables constituting the free
variable set of the transition.

TO() is the transition output function which assigns sets of
places to transitions without cases. Each pair (1, p) with
p € TO(1) is called a transition output arc and p is said to be an
output place of 1.

CO() is the case output function which assigns sets of
places to cases. Each pair (¢, p) withp e CO(c) is called a case
output arc and p is said to be an output place of ¢.

H() is the inhibitor function which assigns sets of places
to transitions. Each pair (1, p) with p € H(r) is called an inhibitor
arc and p is said to be an inhibitor place of 2.

My is the initial compound marking.

Transition output arcs, case output arcs and inhibitor arcs have
associated bags of symbolic tokens bro(t, p), bco(c. p). and
bu(t, p), respectively. The atwributes of the tokens contained in
these bags are either specified by expressions on the free variable
setof ¢ (c € C(f) for beo(c, p)) or left unspecified.

An atomic token is a token with all its atributes bound to values
of their respective domains. An afomic marking m of the net is
an assignment of bags of atomic tokens to places of the net. A
compound marking M is an assignment of bags of symbolic
tokens to places, where the attributes of the tokens are specified
by expressions over a set of free variables taking values in the
respective attribute domains. A compound marking M represents
the subset of atomic markings S(M) obtained by binding the free
variables with values of the atribute domains. Two compound
markings are equivalent if they represent the same subset of
atomic mariings.

In the graphical representation of the net, places are represented
by circles, timed transitions by rectangles, immediate transitions
by thin bars, and cases by ovals. Input arcs have an arrow in the
transition side, transition and case output arcs have an arrow in
the place side, and inhibitor arcs have a small circle in the
transition side. Cases are connected to their transitions by lines.

The facts that in GSHLPN's tokens have attributes and
transitions have predicates make necessary 2 more detailed
definition of the enabling and firing rules than for GSPN's. The
rules will be defined in terms of atomic markings. A firing ser F
of a transition ¢ in an atomic marking m is a selection for each
p € I(1) of a subset of tokens F(p) cm(p) binding s/p, 1)
satisfying the predicate P(r) and such that for no p € H(r) there
exists a subset of m(p) binding by(p. 1) with the values imposed
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by F 10 the variables in the free variable set of ¢. Note that F(p) is
a subset, and replicated elements in m(p) are seen as different
for the determination of the firing sets. Consider, for instance,
the transition and atomic marking shown in Figure 1. The
firing sets of the wansition are:

F\: F1(P2)=(<B, 1,2, 3>}, F1(P3)=(<C, 2>, <C, 3>)

Fa: F3(P2)={<B8, 1,2, 3>3), F2(P3)=(<C, 2>, <C, 3>} (1)
F3: F3(P2)=(<B, 1, 3, 4>}, Fa(P3)=(<C, 3>, <C, 4>)

Fa: Fa(P2)=(<B,2,4,5>), Fa(P3)=(<C, 4>, <C, 5>}

If the atomic token in place P] were <A, 1> instead of <A, 6>,
the only firing set of the transition would be F4. Two firing sets
F; F; of a transition.7 are conflicting if for some p € I(0),
Fip) N Fj(p) # D. A firing distribution is a maximum cardinality
set of non-conflicting firing sets. The firing distributions for the
transition T/ of Figure 1 are:

FD, = (F), Fa4) 2
FDy = (F2, F4)

AOmic mariung
Pl: <A 6>
P2 22<B.1,2%

<B, 1.3, 4>
<B,2.4,.5

AAAAA
pEVYV

Figure 1. Example to illustrate enabling and firing rules in GSHLPN's.

A transition ¢ (immediate or timed) is firable in an atomic
marking m if ¢ has some firing set in m. Firable timed transitions
are enabled only if no immediate transition is firable. ‘When there
are firable immediate ansitions only those with the highest
priority are enabled. Only enabled transitions actually fire.
Immediate transitions fire instantaneously in each firing set with
the same probability. Timed wansitions fire in cach firing set
belonging to some firing distribution with rates which are
computed by assigning the same probability to each firing
distribution and a rate A{z) to each firing set of the distribution.
The firing of a transition ¢ in a firing set F removes from each
input place p the set of tokens F(p). Cases have the same
semantics as in stochastic activity networks [4]): if 1 has cases,
one is sampled according to the probabilities g(c). Output tokens
are added 10 each transition (case) output place p according with
the bags of symbolic tokens bro(t, p) (beolc, p))- Specified
attributes are computed using the expressions defining them with
the values for the free variables bound by F. For unspecified
auributes, a value from the domain of the attribute is taken at

random. For instance, the transition T/ in Figure 1 has the firing
distributions (2) and a probability 1/2 is assigned to each of
them. Given a firing distribution, the transition fires in each
firing set of the distribution with rate A Then, T/ fires in F) and
F3 with rate A/2 and in F4 with rate A. If T/ were immediate it
would fire in each firing set (1) with probability 1/4. The firing
of T1 in the firing set F4 removes <B, 2, 4, 5> from P2, <C,
4> and <C, 5> from P3, and adds <B, 2,4, 5> 10 P4.

The original definition of GSPN's [5] allowed nets with
reachable markings enabling several immediate transitions and
left 1o the user the responsability of defining the random switches
required to disambiguate the model. Recognizing the practical
problems of the approach, GSPN's were redefined in (6]. The
new definition imposes some structural restrictions 1o the nets
and allows priorities for immediate transitions. Weights are
associated to immediate transitions as required in a computer-
aided process to disambiguate the net. In GSHLPN's
probabilistic selection is modelled by cases and the net has to be
defined so that no reachable marking enables immediate
transitions in the same immediate subnet of the corresponding
priority. Immediate subnets of a given priority are (7] the
connected components obtained by removing in the original net
timed transitions and immediate transitions of lower priority.
This approach has the advantage of allowing a highly efficient
construction of reachability graphs with reduced number of

vanishing states [7].

The firing policies adopted for immediate and timed transitions
have been chosen to provide a useful default. Immediate
transitions are commonly used as contention points and the firing
rule adopted for this type of transitions assumes a random policy
for the resolution of conflicts among contending processes.
Timed transitions are commonly used as resource usage points
and the firing rule adopted for this type of transitions implements
a random policy within the constraint of optimal use of
resources. The modeling of more complex contention and
resource usage policies would require the use of subnets with
combinations of immediate and timed wansitions.

2.2. An example

In order to illustrate the expressive power of GSHLPN's we give
an example in Figure 2. In this figure @ represents the addition
module the size of the domain of the involved arttributes. The
model is a slightly modified version of one described in (81, [9]
and describes a shared memory multiprocessor system in which a
set of identical processors with their own local memory access a
set of common memory modules through a set of buses. A
token-passing protocol is used in each bus for access control.
The token is circulated among processors and its reception gives
the processor the right to use the bus for accessing a common
memory module. The execution of a processor aliernates between
the private and the common domains. In the private domain the
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Figure 2. GSHLPN for a shared memory multiprocessor system with a
token passing protocol. :

processor accesses its local memory. In the common domain, it
accesses a given common memory module taken at random from
the set. The duration of an execution in the private domain is
exponentally distributed with mean 1/Ap . The duration of an
execution in the common domain has an hyperexponential
distribution with parameters &y, Ac,1, and a2, Ac 2. The token
pass delay has an exponential distribution with mean 1/Ar .

We follow the formal definition and give to each attribute of the
sets of input tokens associated to a given wansition a unique free
variable, even if they are required to be equal by the transition
predicate (see transition 72). An alternative would be to use the
same free variable for the attributes required to be equal by the
predicate. Unspecified atributes of output and inhibitor tokens
are represented by an underscore. In order to model the
contention for tokens and memory modules, we use a immediate
transition T2, which is given priority over the immediate
transition 76 modeling the start of a token pass. Thus, if a
processor waiting for an access to a memory module receives
a token, it captures the token and starts the execution in the
common domain if the memory module is free (transition T2),
and sends the token 1o the next processor if the memory module
is busy (transition T6). The execution in the common domain is
modeled by introducing cases in the immediate transition T2 with
probabilities equal to the selection parameters of the
hyperexponential distribution, and followed by places and timed
transitions with the rates associated to each mode of the
distribution.

GSHLPN's have over GSPN's the same advantages than
SHLPN's have over SPN's: compactness and reduced size of the
state-level model if a compound CTMC is constructed instead of
the atomic CTMC. The introduction of immediate transitions
makes also possible an economical modeling of processes which,
compared to others, complete in a negligeable amount of time.
For instance, using SHLPN's instead of GSHLPN's, the
previous example would have required the use of timed
wransitions with very high rates for the modeling of the contention
of processors for busses and memories, and the decission about
whether to pass the token to the next processor. This not only
would increase the size of the compound CTMC but also would
stress numerical methods during its solution.

3. A SYMBOLISM FOR COMPOUND MARKINGS

Assume that the atomic reachability graph obtained by firing the
GSHLPN from a given atomic marking of S(Mg) enabling only
timed transitions is finite, strongly connected, and contains all
the atomic markings in S(Mj). Under these conditions an ergodic
atomic CTMC (£2, X()) isomorphic to the GSHLPN can be
obtained in two steps as follows. In the first step, the atomic
reachability graph G is constructed by firing the net from any
atomic marking moe S(Mp), using the rules described in the
previous section. G has two types of nodes: tangible markings
(enabling only timed transitions) and vanishing markings
(enabling only immediate transitions), and associates rates 10 arcs
coming out of tangible markings and probabilities to arcs coming
out of vanishing markings. In the second step, vanishing
markings are reduced as shown in [5] to obtain (£2, X(7)).

We are however interested in the construction of a compound
CTMC (£, X'(1)) whose states be tangible compound
markings. The compound CTMC has to be a correct grouping of
(Q, X(1)), i.e., has 1o satisfy the following requisites [14]:

1) the sets of atomic markings associated to the compound
markings in £2' are a partition of 2

2) forall My, My e ', My=M, and all me M,:

z Amy, my =AMy My

mae S(M3)

J"'l:. My E

The construction of the compound CTMC can be done in analogy
with the construction of the atomic CTMC, substituting. the
atomic firing of ransitions by a symbolic firing working with
compound markings, and merging equivalent compound
markings instead of identical atomic markings. The requisites 1)
and 2) are satisfied if the symbolism for the representation of
compound markings and the symbolic firing are defined such
that:

Property 1 rwo compound markings My, M, are either
disjoint (S(M)NS(M-) = @) or equivalent (S(M,) = S(M3)).

(

(
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Property 2 all the atomic markings represented by a
compound marking enable the same transitions.

Property 3 symbolic firings are isomorphic to aromic firings.
More explicitely, the symbolic firing of a transition t in a
compound marking M yields compound markings
My, My, ..., M, (some could be equivalent) with rates Ay, u,
if t is timed, or probabilities pM. m; if t is immediate, such that
the firing of t in any meS(M) yields atomic markings
my, ma, ..., my with m; € S(M;) and with rates Am, m= AM. M;
if t is imed, or probabilities Pm, m= PM. M; if t is immediate.

If properties 1, 2, and 3 are satisfied then the compound CTMC
is a correct grouping of the atomic CTMC. A formal proof can
easily be derived by induction on the elementary processes
involved in the construction of the compound CTMC from the
GSHLPN, however it is rather long and is not given here. In this
section we define a symbolism for the description of compound
markings of a GSHLPN and a symbolic firing satisfying
properties 1, 2, and 3, and thus yielding compound CTMC's
with a correct state grouping. The symbolism is based on a
classification of the attributes of the token types of the net into
groups. The classification also considers the place where token
types can be held.

A located token rype of a net is a pair (s, p), where s is a token
type and p is a place of the net which can hold tokens of type s.
Let PH(s) be the set of places which, assumming that the
GSHLPN is not overspecified, can hold tokens of type 5. PH(s)
can be found by examination of the arc labels: p € PH(s) if
some input or inhibitor arc (p, 1) has a token of type s, or some
transition (case) output arc (1, p) ((c, p)) has a token of type s.
The net of Figure 2 has the following located token types:

(PP, P1),

(PW, P2),

(PC, P3), (PC, P4), (PC, P5),
(M, P6),

(B, P7), (B, P8)

Although in the net of the example each place can only hold
tokens of one type, it is clear that in general a place may hold
tokens of several types. An attribute of a located token type will
be called locared anribute and the notation an(s, p, i) will be used
to indicate the ith arribute of the located token type (s, p). Before
defining the classification of located attributes, it is necessary to
select a particular syntax for predicates and expressions used in
inhibitor and output token attributes. The syntax chosen is
appropriate to capture permutation and cyclic symmetries in the
values of the token atmributes.
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It is assumed that the predicate of a wansition 1 is a logical
expression with clauses of the types:

i=j (3)
izj (4)
A1n®. . BA =K (5)
A®.. . BA, 2 K (6)

and that expressions for attributes of inhibitor and output tokens
of a transition ¢ have one of the forms:

i - (€))]
A1N®...8ALDK (8)

where, i, j, and iz belong to the free variable set of ¢, the
attributes of the free variables in the same clause, and, for
expressions, the attributes of the free variables and the attribute
receiving the expression, have the same domain D, K and 4,
are non-negative integers smaller to 1D, and the summation is
taken modulus IDI. Note thati =j @K , i # j @K are clauses of,
respectively, the types (5), (6), and i @ K is an expression of
type (8).

Two located attributes are connected if the value of one of them
in some inhibitor or output token is defined by an expression
using a free variable of the other. For instance, at(PW, P2, 1)
and art(PP, P1, 1) of the net of Figure 2 are connected. Consider
the equivalence relaton link defined as the reflexive and transitive
(connect is symmetric by definition) closure of connect. We
define the following relation from the equivalence relation link:
two located attributes a, b are relared if they have free variables
appearing in a clause of some predicate or are linked to located
attributes satisfying that condition. Note that the relation is
symmetric and transitive, but not necessarily reflexive. A located
attribute is irrelevant if it is not related 1o any other located
attribute. Since the relation is symmetric and transitive, related
attributes are classified into subsets, with all the attributes in a
subset being related to each other. Such subsets are called
groups. A group G is a roration group if free variables for
several located auributes in G appear together in a clause of types
(5). (6) or an expression of type (8). A permutation group is a
group which is not a rotation group.

Irrelevant attributes indicate overspecification of token types.
They can be omitted in the corresponding located token types and
we will assume they are. A net with irrelevant located attributes
removed will be called normalized. For the net of Figure 2 it is
found that all the located attributes corresponding to the first
attribute of the token type B and the third attribute of the token
type PC are irrelevant. In this case, the normalization of the net is
accomplished by simply removing those attributes from those
token types and the fact that these attributes can be removed
indicates that the identity of the busses is irrelevant for the
modeling of the multiprocessor system. In the general case, it
may be necessary to define new token types, since token types



have by definition a fixed numbers of token attributes and the
same atribute could be irrelevant in some places and relevant in
others. The relevant attributes of the net of Figure 2 are classified
into one rotation group Ry and one permutation group Py:

R, = {ane(PP, P1, 1), at(PW, P2, 1), an(PC, P3, 1),
an(PC, P4, 1), an(PC, P5, 1), au(B, P7,2), an(B, P8, 2))

= (au(PW, P2, 2), arr(PC, P3, 2), att(PC, P4.2),
ant(PC, P5, 2), an(M, P6, 1)}

The located atributes of R, are processor identifiers and the
located attributes of P are memory identifiers. Even if attributes
in the same group have different semantics, the domain
requirements imposed for clauses and expressions guarantee that
all the atributes in a group will have the same domain.

Let R; and P; be, respectively, the rotation and permutation
groups of the net and denote by RD; and PD; the domains of the
located attributes in the respective groups. We associate to each
rotation group R; a free variable r; taking values in RD; , and to
each permutation group P;, a set of distinguished free variables
pij.Jj=1,..,\PD;l, taking different values in PD;. A
compound marking M is an assignment of bags of symbolic
tokens to places of the net where the located atmributes of each
group R; are specified by expressions r; ® K (K constant,
0 < K €IRD;l-1), and the located attributes of each group P; by
distinguished free variables py;, j = 1, ..., U{M), UM) < IPD|l.
The set S(M) of atomic markings represented by M is obtained
‘by assigning values to the free variables from their respective
domains (different values for the distinguished free variables
associated 10 the same permutation group).

Assume that the multiprocessor system taken as example has 4
processors, 2 memories and 2 busses. Then IRD)l=4 and
IPDyl=2. Let r be the free variable associated to R; and
P1. P2, P3, P4 the distinguished free variables associated to Py. A
reachable compound marking of the normalized net is:

Pl
P2:
P3:

Pé6:
P7:

<PP,r>,<PP,r @®l1>
<PW.,re@ 2, g
<PC, re 3. P>

<M, p2>
<B,r>,

)

which describes the state of the system in which two consecutive
(according to the cyclic ordering defined by the token passing
protocol) processors are executing in the private domain, the next
processor is waiting for a memory currently used, the remaining
processor is executing in the common domain in the mode with
mean duration 1/A¢ ;, accesing the memory for which the later is
waiting, and the token of the free bus is being passed to the
second processor executing in the private domain. We show next
that the compound markings thus defined satisfy Property 1.

Proposition 1 Two compnund markings My,M> of a
GSHLPN are either disjoint or equivalent.

Proof

From the definition of compound markings it is clear that the
elements of S(M) can be generated from any atomic marking
me S(M) by combinations of rotations pi(x)=x @K
(0 < K <IRD{-1) of the values of located atmributes in each
rotation group R; and substitutions of the U{M) different values
of the located attributes of each permutation group P; by
different values of PD;. Assume me S(M;)NS(M;). This
imposes UiM,) = U{M7) for all the permutation groups P;.
Then, all the elements in S(M,) and S(M3) can be obtained by
combinations of the same mappings of the attribute values of m
and S(M,) = S(M2) ..

The symbolic firing of a GSHLPN is defined in complete
isomorphism with its atomic firing but using the free variables
supporting the description of compound markings, instead of
values of the attribute domains, for the determination of the firing
sets and firing distributions, and for the evaluation of the
predicates and specified attributes of output and inhibitor tokens.
For unspecified attributes, each of the expressions
ri, ri®1, ..., ri®(IRD)-1) is taken with the same probability if the
located attribute belongs to the rotation group R;, and each of
the variables pj,j=1,..,IPD{l is taken with the same
probability if the located attribute belongs to the permutation

group P;*

For instance, the transition T/ of the GSHLPN of Figure 2 is
enabled in the compound marking (9) and has one firing
distribution comprising the firing sets {(<PP, r>} and
(<PP,r ®1>). The transition fires in each firing set with rate
Ap . Since the second attribute of the output token of the
transition is unspecified, there are two modes for each firing set,
each associated to a memory module of the system. Each mode
has a probability 1/2. Thus, the firing of T/ yields 4 compound
markings, each with rate Ap/2. The compound markings are:

Pl:
P2:
P3:
P6:
o i

<PP,r>

<PW,r @1, p\>, <PW, r ®2, p;>
<PC,r $3. P>

<M, p2>

<B,r>

M,

" Although this is not the most efficient approach, it shows clearly the
isomorphism (Property 3). A more efficient and equivalent method is 1o take
any of the U; free variables of the permutation group P; remaining in the
compound marking with probability 1APD4, and, if Ui<IPD, a different frec
variable of the group with probability (PDid - U)APD,
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M, Pl <PP,r>
P2 <PW,r @1, p2>, <PW, r®2,p\>
P3: <PC,r@3,py>
P6: <M, p2>
Pl: <B,r>

M, PL <PP,r@®1>
P2 <PW,r,p1> <PW,r @2, p>
P3: <PC,r@3,p>
P6: <M, p2>
P7: <B,r>

M, PL <PP,r @&1>
P2: <PW,r,py>, <PW,r @2, p1>
P3; <PC,r@3,p1>
P6: <M, p2>
P7: <B,r>

Given the definition of the symbolic firing of a transition, it
should be clear that properties 2 and 3 are satisfied if the
symbolism for compound markings is coherent with the
predicates and specified attributes of output and inhibitor tokens.
This is stated by the following proposition:

Proposition 2 The symbolism for compound markings
satisfies the following properties: .

a) located artributes with free variables in the same clause belong
to the same group G, and if the clause is of rype (5) or (6) G
is a rotation group.

b) the located anributes with free variable in an expression (7) or
(8) and the located attribute whose value is defined by the
expression belong 1o the same group G, and if the expression
is of type (8) G is a rotation group.

Proof

To prove a), consider first clauses of types (3), (4), leta, bbe
the located attributes of, respectively, £, J, and assume a#b (a=b
is a trivial case). Then, by definition, a and b are related and
belong to the same group. Parallel arguments show that the
located attributes with free variable in a clause of type (5) or (6)
are related and belong to the same group G. In addition, since G
has located attributes with free variables appearing together in a
clause of type (5) or (6), G isa rotation group.

To prove b), consider an expression of type (7), let a be the
located atribute of i, b the located attribute whose value is
defined by the expression, and assume a=b. By definition, a and
b are connected and, since link is the closure of the connect
relation, linked. Since a is not irrelevant (irrelevant attributes are
suppressed), a is related to some other located attribute ¢. But,
being a and b linked, b is also related to c. Therefore, a and b

belong to the same group. It can be shown similarly that the
located atmributes with free variable in an expression of type (8)
and the located atmibute whose values is defined by the
expression belong 10 the same group G. In addition, since G has
located atmibutes with free variables appearing together in an
expression of type (8), G is a rotation group ..

Therefore, we can state the result looked for in this secton:

Theorem 1 The compound CTMC obtained by firing
symbolically a GSHLPN with the compound markings as
defined in this section is a correct siate grouping of the atomic
CTMC of the GSHLPN.

To end this section we justify why located attributes and not just
atributes of token rypes have been used to define the symbolism
for compound markings. The reason is that disregarding the
place would produce in some cases less compact compound
markings. Consider, for instance, the GSHLPN shown in Figure
3, where all the attributes have the same domain D, with /D=2.
Disregarding the place would force compound markings with all
the attributes in a unique rotation group. Considering, as
proposed, located attributes two rotation groups are obtained:

Ry = {an(B, P2, 1), anr(C, P3, 1))
Ry = (an(B, P4, 1), an(D, P5, 1)}

This makes that, in general, each of the last compound marking
contain several of the former. For instance, the compound
marking:

P2: <B,r>
P3: <C,n®1>
P4: <B, >
P5: <B,r®1>

Figure 3. A GSHLPN 1o illustrate the advantages of using located atributes.



represents the same set of atomic markings that the following
compound markings together:

P2: <B,r> P2: <B,r>
P3: <C,r®l1> P3: <C,re@l>
P4: <B,r> P4: <B,r ®1>
P5: <D, r ®1> P5: <D, r>

4. COMPOUND MARKING EQUIVALENCE

The construction of the compound CTMC requires the
determination of the equivalence of compound markings. Two
compound markings M1, M3 are equivalent if the subsets
S(M,), S(M3) coincide. By renaming free variables of
permutation groups we obviously get equivalent compound
markings. Therefore, without lost of generality, it will be
assummed that the set of distinguished free variables of each
permutation group used in any compound marking M has the
form (pij, 1S/SU{M)). If UM,) # U{M2) for some Pi, the
compound markings are clearly not equivalent. Assuming
UdM,) = UM,) for all P;, the markings are equivalent if and
only if there exists a rotation pi(x) = x @K; for the located
attributes of each rotation group and a permutation of each set of
distinguished variables pij associated t0 a permutation group P;
mapping M, into M. Since the construction of large compound
CTMC's will involve a large number of equivalence tests, an
efficient algorithm should be found to carry them out. However,
although heuristics which will work well in most cases are easily
found, our attempts to derive an algorithm with a polynomial
complexity were unsuccessful. Therefore, we decided to study
the complexity of the problem from the point of view of the NP-
completeness theory (see, for instance (15]). We present in this
sections the results of the analysis.

Let RG be the number of rotation groups and PG the number of

permutation groups of the GSHLPN. We first show that for
bounded RG, the problem is polynomially equivalent to GRAPH
ISOMORPHISM, a well-known problem whose classification in
the NP world is still unknown. We then show that if token types
have at most one permutation attribute the problem is in P (2
polynomial deterministic algorithm exists).

The problem is obviously in NP. In addition it is known [15] that
DIRECTED GRAPH ISOMORPHISM is polynomially
equivalent to GRAPH ISOMORFPHISM. Therefore, it is enough
to find Karnap reductions, in both directions, between
COMPOUND MARKING EQUIVALENCE and DIRECTED
GRAPH ISOMORPHISM. Before describing the reductions we
give some additional definitions. A classification of a compound
marking M is a partitioning of the tokens in M in classes holding
tokens in the same piace, of the same token type, with the same
multiplicity, and with the same expressions for each located
attribute belonging to a rotation group. A grouping of 2
compound marking M is a partitioning of the classes of M into

groups holding classes associated to the same place, token type
and multiplicity.

Reduction from COMPOUND MARKING EQUIVA.-
LENCE to DIRECTED GRAPH ISOMORPHISM

Compute the classes and groups of M) and M. If it is not
possible to define a one-to-one mapping between corresponding
groups (groups with the same place, token type and muldplicity),
or the numbers of classes in some pair of corresponding groups
are different, the markings are not equivalent. Note that the
mapping of groups is unique if exists. Take classes
Ccl.1<isk of M, from different groups G}, 1 < i<k such
that all the variables r; instantiated in M, appear in some C/
(note that this can always be done with k € RG ). Consider the
groups G,-2 mapped to G, and all the selections of classes
C?,1<i <k of My with C? € G? and such that IC} = IC]1. If
there not exists any selection with ICH = IC]I. 1 <iSk, the
markings are not equivalent. For a given selection, each pair
(C!,C?) requires a rotation p; for each located attribute of R; in
the token type of the classes. For instance, if the tokens in C; are
of the form <s, ..., r;, 2@ 1> and those in C? are of the form
<s, .., r® 1, r® 3>, the rotations px) =x@® 1and
pa(x) =x @ 2 are required. The required rotations may be
incompatible. If the required rotations are incompatible for all the
selections, the markings are not equivalent.

Consider the selections requiring compatible rotations. By
construction, there is a rotation for each rotation group with
located attributes instantiated in the compound markings,
mapping the rotation attributes of the tokens in C! into those of
C,-i, but this may not be the case for the remaining classes. The
sets of rotations mapping rotation atributes for all the classes
constitute an arrangement of compatible rotations. If no
arrangement of compatible rotations exists for any selection
CZ, 1<i sk . the markings are not equivalent. Since tokens in
classes have unique expressions for their rotation attributes, an
arrangement defines a one-to-one mapping of the classes of the
compound markings. The arrangement maps M, into My except
for the variables pjj . It is enough to check whether a permutation
exists for each set of variables pjj, 1 <j < U; mapping each class
of M, into the corresponding class of M. We assume any
ordering of the classes of M) and consider the ordering of M
induced by the one-to-one mapping between classes. Then, for
each compound marking, we construct a directed graph "writing"
the compound marking except for permutations of the variables
pij as follows.

Let M be the compound marking, CS the set of classes, with
ordering C1, ..., Cm, and VS the set of variables pij instantated
in M. The directed graph D associated to M contains a node r,
and the subsets CS and VS. D also contains the arcs required to
build the circuit (r,C1, ..., Cm). and rooted at each node C; atee
constructed to represent the set of tokens in C;, with each node
of the tree receiving an arc from some node in VS. The
construction is illustrated in Figure 4. It should be clear that there
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Figure 4. Example illustraling the construction of directed graphs in the
reduction of COMPOUND MARKING EQUIVALENCE 10
DIRECTED GRAPH ISOMORPHISM.

is a one-to-one mapping between the set of leaves of the ree
rooted at C; and the set of tokens C; . If the directed graphs
D, and D, obtained for some arrangement of compatible rotations
are isomorphic, the markings are equivalent Otherwise, they are
not ...

It can easily be seen that the reduction is correct. Note that
(r, Cy, ..., Cm) is the only cycle of the directed graphs, r the
only node in the cycle with output degree 1, and pij the only
nodes without input arcs. Therefore, r, Ciy <y Cm , the trees
rooted at nodes C; , and the set of nodes (pij } are identified in
the directed graphs and any permutation of nodes mapping the
graphs has to be restricted to (Pij ). Let N be the number of
tokens in the compound markings. Since at most RG classes c}
will have to be taken and the number of tokens in a class is
bounded by N, the number of sets of rotations is bounded by
NRG and so is the number of arrangements of compatible
rotations. Therefore, the number of times that DIRECTED
GRAPH ISOMORPHISM is invoked is bounded by N &G . By
construction, the size of the graph is lincarly related with the size
of the compound markings. It is a trivial task to check that all the
other operations involved are polynomial in the size of the
compound markings. Therefore, the reduction is polynomial for
bounded RG.

Reduction from DIRECTED GRAPH ISOMORPHISM
to COMPOUND MARKING EQUIVALENCE

This reduction is trivial. For each directed graph D a compound
marking M is built having tokens of the same type, in the same
place and with multiplicity 1. The marking uses distinguished
free variables of one permutation group. Tokens have two
attributes and a distinguished variable i is used for each node of
the directed graph. There is a token <A, i, j> for each arc (ij)of
D. The compound markings thus obtained are checked for
equivalence. The directed graphs are isomorphic if the compound
markings are equivalent .".

The last reduction shows that is enough to allow token types with
more than one permutation attribute to have a polynomial
equivalence between the problems. In the case in which token
types have only one permutation aturibute, the invocations of the
DIRECTED GRAPH ISOMORPHISM PROBLEM done in the
first reduction are trivial and can be solved in polynomial time.
Therefore, in this case, COMPOUND MARKING
EQUIVALENCE is polynomial. This allows to state the
following theorems:

Theorem 2 COMPOUND MARKING EQUIVALENCE with
bounded number of rotation groups is polynomially equivalent 1o
GRAPH ISOMORPHISM if the compound markings have token.
rypes with more than one permutation anribute.

Theorem 3 COMPOUND MARKING EQUIVALENCE with
bounded number of rotation groups is polynomial if compound
markings have token rypes with at most one permutation
arnribuse.

5. CONCLUSIONS

We have presented generalized stochastic high-level Petri nets, a
new type of nets obtained by the combination of the qualities of
stochastic high-level Petri nets and generalized stochastic Petri
nets and have discussed their semantics, paying special atiention
to the firing policies, which become more complicated than for
standard stochastic Petri nets due to the existence of token types
with atmibutes. After illustrating the expressive power of the nets
with an example we have considered the automated construction
of compound CTMC's from GSHLPN's.

We have given properties of symbolisms for compound
markings which guarantee that the compound CTMC obtained by
symbolically firing the net will have a correct state grouping. For
a particular, yet highly expressive, syntax, a symbolism for
compound markings with those properties has been derived. The
procedure is amenable of automation. The construction of the
compound CTMC requires an algorithm to test the equivalence of
compound markings. We have shown that, in the general case
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and for bounded number of rotation groups, the
EQUIVALENCE COMPOUND MARKING problem is
polynomially equivalent to the well-known GRAPH
ISOMORPHISM problem. The classification of the last problem
is currently open, but there is strong evidence that it cannot be
NP-complete (see, [16] for details). Although the existence of a
polynomial algorithm to test the equivalence of compound
markings would constitute an important asset for GSHLPN's
(and SHLPN's as well), its inexistence does not rule out their
application, since it seems apparent that heuristics which will be
efficient in most cases can be developed. We are currently
working in that direction.
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