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Abstract

We propose an algorithm to obtain bounds for the steady-state availability using Markov

models in which only a small portion of the state space is generated. The algorithm is applicable

to models with group repair and phase type repair distributions and involves the solution of only

four linear systems of the size of the generated state space,independently on the number of

“return” states. Numerical examples are presented to illustrate the algorithm and compare it

with a previous bounding algorithm.
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1 Introduction

A major drawback of continuous-time Markov chain (CTMC) models is that they usually have

state space cardinalities which are far beyond the available computational resources. An approach

which has been developed in the last few years is the use of bounding algorithms which require the

generation of only a portion of the state space [2, 3, 5, 6, 8, 9, 10, 12, 17, 18]. Those algorithms

perform well when, as in the case of availability models, theprobability mass is concentrated in

a small portion of the state space. The first of such algorithms was developed by Muntz et al.

[12] using results from Courtois and Semal [5, 6] concerningbounds for conditional steady-state

distributions in subsets of Markov chains. LetN be the number of components of the system.

Denoting byCk, 0 ≤ k ≤ N , the subset of states with exactlyk failed components, byG the subset

of generated states, and byU the subset of non-generated states, the basic algorithm proposed in [12]

takesG = ∪0≤k≤KCk and bounds the behavior inU using a submodel with statesck, K < k ≤ N

associated to the subsetsCk. This basic algorithm requires the solution of|CK | linear systems of

size |G| + N − K, which is typically very costly. In order to reduce the computational cost of

the algorithm a state cloning technique is developed in [12]which introduces some looseness in

the bounds but reduces the number of linear system to be solved to |CF |, where0 ≤ F < K.

Lui and Muntz [8] have proposed a refinement of the algorithm for the particular caseF = 0

including a reuse technique which, at the price of an additional looseness in the bounds, avoids a

complete reapplication of the algorithm each timeK is incremented in the search for the desired

accuracy. The additional looseness has been reduced in another paper from the same authors [9].

Souza e Silva and Ochoa [18] have developed state space exploration techniques in whichG is

generated incrementally following heuristics which try toobtain the tightest possible bounds for a

given number of generated states. Semal has developed recently [17] a bounding algorithm which

refines iteratively the bounds using detailed knowledge about the model inU in the proximities of

G. In [2] a bounding algorithm is developed which exploits thefailure distance concept to bound

the behavior inU more tightly than in [12]. State space exploration techniques specifically targeted

to that bounding algorithm have also been developed [3]. Finally, the algorithm described in [12]

has been extended in [10] to models with infinite state spacesand subsetsCk, k > K in which no

every state has a transition to the left (subsetCk−1). Performance models were considered in [10]

and the bounding part of the model was found using special developments for the models under

consideration.

All previous algorithms to bound the steady-state availability assume that repair actions involve

just one component and assume exponential repair time distributions (the only exception being the

machine repair model considered in [11], an extended version of [10], but the developments were

specific for the considered model). In this paper we develop anew bounding algorithm for a larger

class of models of repairable fault-tolerant systems whichallow group repair (the simultaneous

repair of several components) and phase type repair time distributions. The algorithm generates the

subset of statesG = ∪0≤k≤KCk and computes the bounds without using state cloning techniques

by solving only four linear systems of size|G|. The rest of the paper is organized as follows.

Section 2 describes the type of models considered. Section 3describes the bounding algorithm.
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Section 4 compares the efficiency of the algorithm with that of the algorithm proposed in [12] using

an example without group repair and with exponential repairtime distributions and illustrates the

extended range of applicability of the proposed algorithm using an example with group repair and

phase type repair time distributions. Section 5 concludes the paper.

2 Type of models and assumed knowledge

We consider fault-tolerant systems made up of components which fail and are repaired. Failure

processes have exponential distributions; repair processes have phase type distributions [13]. Com-

ponents are grouped into types, the components of the same type being indistinguishable, and thus

collections of components will be bags of component types (see, for instance [14] for a brief sum-

mary of bag theory). Any bag of component types which can failsimultaneously will be called

failure bag. LetE be the set of failure bags of the model. In general, we will assume that for each

component type there is a collection of failed modes in whichthe components of the type may fail.

Failed modes differ in how the failed components are repaired. Failure bags may occur with rates

which depend on the bag of failed component types and the failed modes of the failed components.

We will assume knownE and, for eache ∈ E, an upper bound[λ(e)]ub for its rate. Repair actions

can involve any bag of failed component types. We will denoteby β the maximum cardinality of the

bags of component types involved in repair actions. Each repair actioni has a repair time phase type

distributionPi. Each phase type distributionPi is defined by a transient CTMCZi = {Zi(t), t ≥ 0}

with finite state spaceLi ∪ {a}, where all states inLi are transient,a is an absorbing state and

P [Zi(0) ∈ Li] = 1: the repair time is the time to absorption ofZi. We allow repair interruption.

Thus, the failure of a component of higher repair priority may preempt an undergoing repair pro-

cess; the repair process may be resumed later from the point it was stopped (preemptive-resume)

or retaken as it had just started (preemptive-restart). Thestate of the system can be completely de-

scribed by giving the number of unfailed components of each type, the number of failed components

of each type in each failed mode, the set of scheduled repair actions, which of them are active (in

progress), and for each scheduled repair actioni the statea ∈ Li of the corresponding phase type

repair distributionPi.

We will denote byX = {X(t), t ≥ 0} the resulting CTMC model and byΩ its state space. Let

N be the number of components of the system and letCk be the subset ofΩ including the states with

k failed components. As in [12] we will takeG = ∪0≤k≤KCk and, accordingly,U = ∪K<k≤N ′Ck,

whereK < N ′ ≤ N . According to the assumed type of state description, we willhave|C0| = 1 and

will denote byo the only state belonging toC0. We will assume that some repair process is active

in every state with failed components. Thus,o will be the only state without active repair processes

andX will be irreducible.
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3 Bounding algorithm

3.1 Preliminaries

Although our bounding algorithm is mainly addressed to the computation of bounds for the steady-

state availability, it can, in fact, be used to bound any steady-state reward rate measure. Letri, i ∈ Ω

be an arbitrary reward rate structure defined overX. We are interested in bounding the steady-state

reward rate

R = lim
t→∞

E[rX(t)] =
∑

i∈Ω

ripi ,

wherepi = limt→∞ P [X(t) = i]. The steady-state availability is a particular case ofR in which

ri = 1 for the up (operational) states andri = 0 for the down (non-operational) states. LetS =

∪max{0,K+1−β}≤k≤KCk be the subset of states inG which may have some transition fromU (the

so-called “return” subset), and for eachs ∈ S consider the CTMCXs = {Xs(t), t ≥ 0} obtained

from X by redirecting tos all transitions fromU to S. Consider the regenerative behavior ofXs

with Xs(0) = s (Xs may be in general non-irreducible) defined by the times at which Xs hits s

from U . In this section we obtain lower and upper bounds forRs expressed in terms of metrics

related toXs, s ∈ S. Our bounding algorithm is based on these bounds. The boundsare identical

to those obtained in [12], but are expressed in a way from which our bounding algorithm follows

naturally. Also, the bounds are justified using semi-regenerative and regenerative Markov process

theory instead of results from Courtois and Semal [5, 6], as it was done in [12]. LetTs andCs be,

respectively, the mean time and mean reward ofXs between regenerations. Using semi-regenerative

Markov process theory [4, Section 10.6] we have:

Theorem 1. There exist βs, s ∈ S with βs > 0,
∑

s∈S βs = 1 such that R =

(
∑

s∈S βsCs)/(
∑

s∈S βsTs).

LetRs the steady-state reward rate ofXs with Xs(0) = s, i.e.

Rs = lim
t→∞

E[rXs(t)|Xs(0) = s] ,

we have:

Corollary 1. mins∈S{Rs} ≤ R ≤ maxs∈S{Rs}.

Proof. From regenerative process theory (see, for instance, [15])we haveRs = Cs/Ts. Letn = |S|

and assume the states inS numbered from 1 ton. The proof is by induction onn. The casen = 1

is trivial. Consider the casen = 2. Usingβ1 + β2 = 1 we have

R =
β1C1 + β2C2

β1T1 + β2T2
=

C2 + β1(C1 − C2)

T2 + β1(T1 − T2)
.

We havedR/dβ1 = (C1T2 − C2T1)/[T2 + β1(T1 − T2)]
2. Note thatT2 + β1(T1 − T2) = β1T1 +

β2T2 > 0. It follows that dR/dβ1 ≥ 0 if and only if C1T2 − C2T1 ≥ 0. This implies thatR
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is either monotonically increasing or monotonically decreasing onβ1 and that either its maximum

is R(1) = C1/T1 and its minimum isR(0) = C2/T2 or its maximum isR(0) = C2/T2 and its

minimum isR(1) = C1/T1. This completes the casen = 2.

We proceed with the induction step forR ≤ maxs∈S{Rs}. Without loss of generality assume

max1≤s≤n{Cs/Ts} = C1/T1. Assume that there existβ1, . . . , βn with βs > 0,
∑n

s=1 βs = 1 for

whichR > C1/T1. We can write

R =

β1C1 + (1− β1)

n∑

s=2

qsCs

β1T1 + (1− β1)

n∑

s=2

qsTs

, (1)

with qs > 0,
∑n

s=2 qs = 1. Using the induction hypothesis forn = 2, R > C1/T1 implies
∑n

s=2 qsCs/
∑n

s=2 qsTs > C1/T1. Using the induction hypothesis forn − 1, there must exist

i, 2 ≤ i ≤ n, such thatCi/Ti ≥
∑n

s=2 qsCs/
∑n

s=2 qsTs, which impliesCi/Ti > C1/T1, a

contradiction. Therefore, we haveR ≤ C1/T1 = max1≤s≤n{Cs/Ts}.

Similarly, for the induction step forR ≥ mins∈S{Rs}, let min1≤s≤n{Cs/Ts} = C1/T1 and

assume that there existβ1, . . . , βn with βs > 0,
∑n

s=1 βs = 1 for whichR < C1/T1. Considering

again (1) withqs > 0,
∑n

s=2 qs = 1 and using the induction hypothesis forn = 2, R < C1/T1

implies
∑n

s=2 qsCs/
∑n

s=2 qsTs < C1/T1. Using the induction hypothesis forn − 1, there must

exist i, 2 ≤ i ≤ n, such thatCi/Ti ≤
∑n

s=2 qsCs/
∑n

s=2 qsTs, which impliesCi/Ti < C1/T1, a

contradiction. Therefore, we haveR ≥ C1/T1 = min1≤s≤n{Cs/Ts}.

Corollary 1 allows us to compute lower ([R]lb) and upper ([R]ub) bounds forR from lower

([Rs]lb) and upper ([Rs]ub) bounds forRs, s ∈ S:

[R]lb = min
s∈S

{[Rs]lb} , (2)

[R]ub = max
s∈S

{[Rs]ub} . (3)

Let TG,s andTU,s (CG,s andCU,s) be the contributions of, respectively, the states inG andU

to Ts (Cs). We have (Rs = Cs/Ts from regenerative process theory)

Rs =
CG,s + CU,s

TG,s + TU,s
.

Assume thatCG,s,TG,s, an upper bound[TU,s]ub for TU,s, and lower and upper bounds[r]lb and[r]ub
for ri, i ∈ Ω are known (for the steady-state availability we would take[r]lb = 0 and [r]ub = 1).

We have:

Theorem 2.

[Rs]lb =
CG,s + [r]lb[TU,s]ub
TG,s + [TU,s]ub

≤ Rs ≤
CG,s + [r]ub[TU,s]ub

TG,s + [TU,s]ub
= [Rs]ub . (4)
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Proof. Consider the functionf1(x) = (CG,s + [r]ubx)/(TG,s + x). Since [r]ub upper bounds

the reward rate from any state ofXs, we haveCG,s ≤ [r]ubTG,s and df1/dx = ([r]ubTG,s −

CG,s)/(TG,s + x)2 ≥ 0. Also,CU,s ≤ [r]ubTU,s. Then

Rs ≤
CG,s + [r]ubTU,s

TG,s + TU,s

= f1(TU,s) ≤ f1([TU,s]ub) =
CG,s + [r]ub[TU,s]ub

TG,s + [TU,s]ub
.

Similarly, consider the functionf2(x) = (CG,s+[r]lbx)/(TG,s+x). Since[r]lb lower bounds the re-

ward rate from any state ofXs, we haveCG,s ≥ [r]lbTG,s anddf2/dx = ([r]lbTG,s−CG,s)/(TG,s+

x)2 ≤ 0. Also,CU,s ≥ [r]lbTU,s. Then

Rs ≥
CG,s + [r]lbTU,s

TG,s + TU,s
= f2(TU,s) ≥ f2([TU,s]ub) =

CG,s + [r]lb[TU,s]ub
TG,s + [TU,s]ub

.

3.2 Derivation of [TU,s]ub

In the rest of the paper we will denote byλij, i, j ∈ Ω the transition rate from statei to state

j, by λi =
∑

j∈Ω λij , i ∈ Ω the output rate of statei, and byλiC =
∑

j∈C λij , i ∈ Ω, C ⊂

Ω the transition rate fromi to subsetC, all of them referred toX, unless otherwise stated. We

will also consider a number of transient CTMCsY . Each CTMCY has a state space of the form

B ∪ {a}, where all states inB are transient anda is an absorbing state, and has a well-defined

initial probability distribution withP [Y (0) ∈ B] = 1. We will denote byτ(i, Y ), i ∈ B the

mean time spent byY in i before absorption (τ(i, Y ) =
∫∞
0 P [Y (t) = i]dt). We will also use the

notationτ(C, Y ) =
∑

i∈C τ(i, Y ). It is well-known (see, for instance, [1]) that the mean times to

absorption vectorτ = (τ(i, Y ))i∈B is the solution of the linear systemτ TAB = −qT , whereAB

is the restriction of the transition rate matrix ofY to B andq = (P [Y (0) = i])i∈B . The expected

number of times that a transition(i, j) with rateλij is followed isµij = τ(i, Y )λij . The result

follows easily: µij =
∫∞
0 P [Y (t) = i]λijdt = λij

∫∞
0 P [Y (t) = i]dt = λijτ(i, Y ). It can be

similarly shown that, given a partitionB ∪Bc of the state space ofX and assumingX(0) ∈ B, the

probability thatX entersBc through a statej ∈ Bc is
∑

i∈B τ(i, YB)λij , whereYB is the transient

CTMC trackingX till exit of B (YB has state spaceB′ ∪ {a}, wherea is an absorbing state and

B′ is the subset ofB including the states reachable before exitingB from the states with non-null

initial probability, same initial probability distribution inB′ and transition rates among states inB′

asX, and transition ratesλ′
i,a = λi,Bc , i ∈ B′, so thatYB entersa wheneverX exitsB). Note that

τ(i, YB) > 0 for i ∈ B′.

In this section we derive an upper bound forTU,s, [TU,s]ub, which can be obtained by solving

a “bounding” transient CTMCY with failure and repair transitions. The hardcore of this section is

Lemma 1, which generalizes the related mean holding time lemma of Muntz et al. [12] by allowing

group repair.

Let Y m
U , m ∈ U be the transient CTMC with initial statem trackingX from m till exit from

U and letTm
U be the mean time to absorption ofY m

U . Letαs,m be the probability thatX with initial
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states ∈ S will enterU through statem. We have

TU,s =
∑

m∈U

αs,mTm
U . (5)

Invoking Eq. (5), we can easily upper boundTU,s from upper bounds forTm
U , m ∈ U . To obtain

these bounds we will invoke the exact aggregation theorem for transient CTMCs and a lemma, which

generalizes the mean holding time lemma proved in [12]. Exact aggregation results for irreducible

CTMCs are given in [5]. These results extend easily to transient CTMCs. We have:

Theorem 3 (Exact aggregation for transient CTMCs). Let Y = {Y (t); t ≥ 0} be a transient CTMC

with state space B ∪ {a}, where all states in B are transient and a is an absorbing state, transition

rates λij , i ∈ B, j ∈ B ∪ {a}, i 6= j, and initial probability distribution P [Y (0) = i] = πi,

i ∈ B,
∑

i∈B πi = 1. Assume τ(i, Y ) > 0 for all i ∈ B. Let B1 ∪ B2 ∪ . . . ∪ Bn be a partition

of B. Then, there exists a transient CTMC Y ′ = {Y ′(t); t ≥ 0} (the exact aggregation of Y ) with

state space {b1, b2 . . . , bn} ∪ {a}, transition rates λ′
bk,bl

=
∑

i∈Bk
wk
i λi,Bl

, 1 ≤ k, l ≤ n, k 6= l

and λ′
bk,a

=
∑

i∈Bk
wk
i λi,a, 1 ≤ k ≤ n, with wk

i > 0,
∑

i∈Bk
wk
i = 1, and initial probability

distribution P [Y ′(0) = bk] = π′
k =

∑
i∈Bk

πi, such that τ(bk, Y ′) = τ(Bk, Y ).

Proof. See Appendix A.

Note The conditionτ(i, Y ) > 0, i ∈ B of Theorem 3 is verified if and only if each statei ∈ B is

reachable from some state with non-null initial probability.

Consider the exact aggregation,Y m′
U of Y m

U , m ∈ Ck, K < k ≤ N ′ under the partition

∪
N ′

m

k=K+1C
m
k , whereCm

k is the subset ofCk including the states reachable fromm before exitingU

andK + 1 ≤ N ′
m ≤ N ′. Y m′

U has a transition state diagram like the one given in Fig. 1(a)with N ′

substituted byN ′
m. The following lemma shows how the times to absorption vector of Y m′

U can be

upper bounded.

Lemma 1. Assume N ′ ≤ N . Let Y ′ = {Y ′(t); t ≥ 0} be a transient CTMC with the state transition

diagram of Fig. 1(a) and initial probability distribution P [Y ′(0) = ci] = πi, K + 1 ≤ i ≤ N ′,
∑N ′

i=K+1 πi = 1. Let Y = {Y (t); t ≥ 0} be the transient CTMC with the state transition diagram

of Fig. 1(b) and initial probability distribution P [Y (0) = ci] = πi, K + 1 ≤ i ≤ N ′, P [Y (0) =

ci] = 0, N ′ < i ≤ N . Assume fi,j ≤ f+
i,j and

∑β
j=1 gi,j ≥ g−i > 0, K + 1 ≤ i ≤ N ′. Then,

τ(ci, Y ) ≥ τ(ci, Y
′), K + 1 ≤ i ≤ N ′.

Proof. For notational conciseness letτi = τ(ci, Y ), τ ′i = τ(ci, Y
′). We will use as a basic tool

the balance equation for a subset of states of a transient CTMC, which establishes that the initial

probability of the subset plus the expected number of entries must be equal to the final probability of

the subset plus the expected number of exits. The statesci of Y andY ′ are transient and, therefore,

have final probabilities equal to 0.
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The proof is by induction onk, k = K + 1, . . . , N ′. The balance equation applied toY ′ and

the subset{cK+1, cK+2, . . . , cN ′} gives

1 =

N ′∑

i=K+1

τ ′i

β∑

j=i−K

gi,j , (6)

τ ′K+1 =

1−

N ′∑

i=K+2

τ ′i

β∑

j=i−K

gi,j

β∑

j=1

gK+1,j

. (7)

The balance equation applied toY and the subset{cK+1, cK+2, . . . , cN} gives

1 = τK+1g
−
K+1 , (8)

τK+1 =
1

g−K+1

. (9)

Sinceg−K+1 ≤
∑β

j=1 gK+1,j, using (9) and (7), we have

τK+1 ≥
1

β∑

j=1

gK+1,j

≥ τ ′K+1 ,

showing the base case.

For the induction step, considerK + 1 < k ≤ N ′ and assumeτi ≥ τ ′i , K + 1 ≤ i < k. The

balance equation applied toY ′ and the subset{cK+1, cK+2, . . . , ck−1} gives

k−1∑

i=K+1

πi +

N ′∑

i=k

τ ′i

i−K−1∑

j=i−k+1

gi,j =

k−1∑

i=K+1

τ ′i

β∑

j=i−K

gi,j +

k−1∑

i=K+1

τ ′i

N ′−i∑

j=k−i

fi,j ,

which, using (6) and1−
∑k−1

i=K+1 πi =
∑N ′

i=k πi gives

τ ′k

k−K−1∑

i=1

gk,i =

N ′∑

i=k

πi +
k−1∑

i=K+1

τ ′i

N ′−i∑

j=k−i

fi,j − τ ′k

β∑

j=k−K

gk,j −
N ′∑

i=k+1

τ ′i

β∑

j=i−K

gi,j −
N ′∑

i=k+1

τ ′i

i−K−1∑

j=i−k+1

gi,j ,

τ ′k =

N ′∑

i=k

πi +

k−1∑

i=K+1

τ ′i

N ′−i∑

j=k−i

fi,j −

N ′∑

i=k+1

τ ′i

β∑

j=i−K

gi,j −

N ′∑

i=k+1

τ ′i

i−K−1∑

j=i−k+1

gi,j

β∑

i=1

gk,i

. (10)

The balance equation applied toY and the subset{cK+1, cK+2, . . . , ck−1} gives

k−1∑

i=K+1

πi + τkg
−
k = τK+1g

−
K+1 +

k−1∑

i=K+1

τi

N−i∑

j=k−i

f+
i,j ,
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(a)

a . . .

(b)

a . . .

gK+3,2

∑β

i=2 gK+2,i

∑β

i=3 gK+3,i

fK+1,1 fK+2,1

cN ′cK+1 cK+2 cK+3

fK+1,2

gK+2,1 gK+3,1

cN
g−K+1

f+
K+1,1 f+

K+2,1

f+
K+1,2

cK+3cK+2cK+1

g−K+2
g−K+3

∑β

i=1 gK+1,i

Figure 1: State transition diagrams of CTMCs of Lemma 1.

which, using (8) and1−
∑k−1

i=K+1 πi =
∑N ′

i=k πi gives

τk =

N ′∑

i=k

πi +

k−1∑

i=K+1

τi

N−i∑

j=k−i

f+
i,j

g−k
. (11)

Finally, using (11), (10),N ≥ N ′, f+
i,j ≥ fi,j,

∑β
i=1 gk,i ≥ g−k , and the induction hypothesis

τk ≥

N ′∑

i=k

πi +

k−1∑

i=K+1

τi

N ′−i∑

j=k−i

f+
i,j

β∑

i=1

gk,i

≥

N ′∑

i=k

πi +

k−1∑

i=K+1

τ ′i

N−i∑

j=k−i

fi,j

β∑

i=1

gk,i

≥ τ ′k .

Let αs(k) =
∑

m∈Ck
αs,m be the probability thatX with initial states ∈ S will enter U

through subsetCk. Let f+
i,j be upper bounds for the transition ratesfm′

i,j of Y m′
U from ci to ci+j

associated with the failure ofj components. Letg−i be lower bounds for
∑β

j=1 g
m′
i,j , wheregm′

i,j is

the transition rate ofY m′
U from ci to ci−j if j ≤ i−K− 1,

∑β
j=i−K gm′

i,j is the transition rate ofY m′
U

from ci to a, andgm′
i,j is associated with the repair ofj components. LetT (k) be the mean time to

absorption of the transient CTMCY of Fig. 1(b) with initial stateck. We have

Theorem 4. TU,s ≤
∑N ′

k=K+1 αs(k)T (k) = [TU,s]ub.

Proof. Let Y k be the transient CTMC with the state transition diagram of Fig. 1(b) and initial

stateck. Y m′
U , m ∈ Ck andY k satisfy the conditions of Lemma 1 and, therefore,τ(ci, Y

m′
U ) ≤

τ(ci, Y
k). By Theorem 3 we haveTm

U =
∑N ′

m

i=K+1 τ(ci, Y
m′
U ). Then,Tm

U ≤
∑N ′

m

i=K+1 τ(ci, Y
k) ≤

8



∑N
i=K+1 τ(ci, Y

k) = T (k). It follows (5):

TU,s =
∑

m∈U

αs,mTm
U =

N ′∑

k=K+1

∑

m∈Ck

αs,mTm
U ≤

N ′∑

k=K+1

∑

m∈Ck

αs,mT (k) =

N ′∑

k=K+1

αs(k)T (k) .

Upper boundsf+
i,j for the transition ratesfm′

i,j can be easily derived. LetEj be the subset of

E including the failure bags of cardinalityj. It is clear thatλn,Ci+j
, n ∈ Ci is upper bounded by

∑
e∈Ej

[λ(e)]ub. Using Theorem 3:

fm′
i,j =

∑

n∈Cm
i

wi
nλn,Ci+j

,

with wi
n > 0,

∑
n∈Cm

i
wi
n = 1. Then, it follows

fm′
i,j ≤

∑

n∈Cm
i

wi
n

∑

e∈Ej

[λ(e)]ub =
∑

e∈Ej

[λ(e)]ub = f+
i,j . (12)

In [12] the lowest repair rate of the model is used as lower boundsg−i . Unfortunately, a similar

approach cannot be taken for the models considered in this paper, since depending on the character-

istics of the phase type distributions the lowest rate to theleft from the states of a subsetCi may be

0. A more sophisticated approach is needed. That approach isdeveloped in the next section.

3.3 Computation of g−i

In this section we derive lower boundsg−i > 0 using easy to compute characteristics of the phase

type repair distributionsPi of the model. To derive the boundsg−i we need results from [10, 16]

which are obtained for irreducible CTMCs. To establish a link with these results we define irre-

ducible CTMCsXm
U , m ∈ U as follows:Xm

U has state spaceUm ∪ {a}, whereUm is the subset

of U including the states reachable fromm before exitingU , transition rates fromUm toUm ∪ {a}

asY m
U and a transition rate 1 froma to m. Let Xm′

U be the exact aggregation ofXm
U under the

partition(∪N ′
m

k=K+1C
m
k ) ∪ {a}. Given the connection between Theorem 3 and the exact aggregation

theorem for irreducible CTMCs [5] and the relationships between the involved CTMCs, it is easy

to prove that the transition rates ofXm′
U from {cK+1, . . . , cN ′

m
} to {cK+1, . . . , cN ′

m
, a} are equal to

the corresponding transition rates ofY m′
U . Thus, we will consider the CTMCsXm′

U instead ofY m′
U .

Let qm,L
k,i , i ∈ Cm

k be the probability thatXm
U will jump from Cm

k to∪k−1
j=K+1C

m
j ∪ {a} (i.e. to

the left) given entry inCm
k through statei and lethmk,i, i ∈ Cm

k be the mean holding time ofXm
U in

Cm
k given entry inCm

k through statei. Let qm,i′
k be the probability thatXm′

U will jump from ck to

ck−i, let qm,a′
k be the probability thatXm′

U will jump from ck to a, let qm,L′
k =

∑k−K−1
i=1 qm,i′

k +qm,a′
k

be the probability thatXm′
U will jump from ck to∪k−1

i=K+1ci ∪ {a} (i.e. to the left), an lethm′
k be the

mean holding time ofXm′
U in ck. We have

hm′
k =

1

β∑

i=1

gm′
k,i +

N ′
m−k∑

i=1

fm′
k,i

,

9



qm,i′
k = hm′

k gm′
k,i , 1 ≤ i ≤ k −K − 1 ,

qm,a′
k = hm′

k

β∑

i=k−K

gm′
k,i .

Combining them we obtain

β∑

i=1

gm′
k,i =

k−K−1∑

i=1

qm,i′
k + qm,a′

k

hm′
k

=
qm,L′
k

hm′
k

. (13)

Denote byAm the transition rate matrix ofXm
U , by Am

C the restriction ofAm to the subset of

statesC, by Am
C,C′ the subblock ofAm including the transition rates from states inC to states inC ′,

and letLm
k = ∪k−1

i=K+1C
m
i ∪ {a}. Let vmk denote the steady-state entry distribution ofXm

U in Cm
k ,

and denote byvmk,i the component ofvmk associated with statei ∈ Cm
k . Denote by1 a column vector

of all ones of the appropriate dimension and byvT the transpose of vectorv. From [16, Corollary

4.6] we have:

Lemma 2.

hm′
k = −vmT

k Am−1
Cm

k
1 .

Lemma 2 says thathm′
k is equal to the mean holding time ofXm

U in Cm
k whenCm

k is entered

with probability distributionvmk . Then, it follows that

hm′
k =

∑

i∈Cm
k

vmk,ih
m
k,i . (14)

Also, by analogy with Lemma 2 of [10], we have:

Lemma 3.

qm,L′
k = −vmT

k Am −1
Cm

k
Am
Ck ,L

m
k

1 .

Lemma 3 says thatqm,L′
k is equal to the probability thatXm

U will jump from Cm
k to Lm

k when

Cm
k is entered with probability distributionvmk . Then, it follows that

qm,L′
k =

∑

i∈Cm
k

vmk,iq
m,L
k,i . (15)

Combining the results obtained so far it can be proved:

Theorem 5.
β∑

i=1

gm′
k,i ≥ min

i∈Cm
k

qm,L
k,i

hmk,i
.

10



Proof. Combining (13)–(15) we have

β∑

i=1

gm′
k,i =

∑

i∈Cm
k

vmk,iq
m,L
k,i

∑

i∈Cm
k

vmk,ih
m
k,i

.

Note thatvmk,i ≥ 0 and
∑

i∈Cm
k
vmk,i = 1 and we are in a position similar to provingR ≥ mins∈S{Rs}

of Corollary 1. Then, the result follows.

Assume that a lower bound,q−, for qm,L
k,i , K +1 ≤ k ≤ N ′

m, i ∈ Cm
k and an upper bound,h+,

for hmk,i, K + 1 ≤ k ≤ N ′
m, i ∈ Cm

k are available. Using Theorem 5 we have

β∑

i=1

gm′
k,i ≥

q−

h+
= g−k . (16)

In the following we show howq− andh+ can be derived. To that end we first introduce some

notation. Let a statei ∈ Cm
k , K + 1 ≤ k < N ′

m. We will denote byλi,C>k
the transition rate

from i to ∪
N ′

m

k′=k+1C
m
k′ (note thatλj,C>k

is the same for all statesj which are visited inCm
k from

a given entry statei, since all these states have the same bag of failed componenttypes and same

failed modes of the failed components), byAi the number of active repair processes ini, by aj(i),

1 ≤ j ≤ Ai the phase type distribution of thejth active repair process in statei (1 ≤ aj(i) ≤ L),

and bysj(i) the state of the phase type distributionZaj(i) in statei. LetW s
j be the random variable

time to absorption ofZj with initial states. Let λub =
∑

e∈E[λ(e)]ub and let EXP(λ) denote an

exponential random variable with parameterλ. Sinceλi,C>k
≤ λub and the random variablesW s

j ,

EXP(λi,C>k
) and EXP(λub) are independent we have:

qm,L
k,i = P

[
min

1≤j≤Ai

W
sj(i)

aj(i)
< EXP(λi,C>k

)
]
≥ P

[
min

1≤j≤Ai

W
sj(i)

aj(i)
< EXP(λub)

]

≥ min
1≤j≤Ai

P
[
W

sj(i)

aj(i)
< EXP(λub)

]
≥ min

1≤j≤L
min
s∈Lj

P [W s
j < EXP(λub)] .

Also

hmk,i = E
[
min

{
EXP(λi,C>k

), min
1≤j≤Ai

W
sj(i)

aj(i)

}]
< E

[
min

1≤j≤Ai

W
sj(i)

aj(i)

]

≤ max
1≤j≤Ai

E
[
W

sj(i)

aj(i)

]
≤ max

1≤j≤L
max
s∈Lj

E[W s
j ] .

Let us denoteP [W s
j < EXP(λub)] by Qs

j andE[W s
j ] byHs

j . We use

q− = min
1≤j≤L

min
s∈Lj

Qs
j , (17)

h+ = max
1≤j≤L

max
s∈Lj

Hs
j . (18)

Let Bj be the transition rate matrix ofZj restricted to the transient statesLj and letbj be the

vector whose entries are the transition rates ofZj from Lj to the absorbing statea. Let Qj andHj

be the vectors with entriesQs
j andHs

j , respectively,s ∈ Lj. Qj andHj can be obtained as:

Qj = −(Bj − λubI)−1bj , (19)
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Hj = −B−1
j 1 . (20)

Eq. (20) is trivial since the component in rows and columni of −B−1
j is the mean time to absorption

spent byZj in statei given that the initial state iss. Eq. (19) follows considering transient CTMCs

Z ′
j with state spaceLj ∪ {a, b}, wherea andb are absorbing states, same transition rates fromLj

to a asZj and transition ratesλs,b = λub, s ∈ Lj. The transition rate matrix ofZ ′
j restricted toLj

is Bj − λubI andQs
j is the probability of being absorbed in statea given that the initial state iss.

These comments justify the equation.

3.4 Computation of T (k)

Let M be the set of indicesk associated to the subsetsCk, K < k ≤ N with λi,Ck
6= 0 for some

i ∈ G. Remember thatT (k) is the mean time to absorption of the transient CTMCY of Fig. 1(b)

with initial stateck. In order to obtain the bounds[TU,s]ub given by Theorem 4 we have to compute

T (k), k ∈ M . A direct computation of eachT (k) solvingY with initial stateck would require the

solution of|M | linear systems. In this section, we derive a more efficient procedure, specially for

large |M |. The procedure is based on the following equations, whereφk = g−k +
∑

i f
+
k,i denotes

the output rate ofY from ck (see Fig. 1(b)):

T (k) =
1

φk

+
g−k
φk

T (k − 1) +
∑

i

f+
k,i

φk

T (k + i) , K + 2 ≤ k < N , (21)

T (N) =
1

g−N
+ T (N − 1) . (22)

These equations are obtained as follows. First, consider (21). T (k), mean time to absorption ofY

with initial stateck, is equal to the mean sojourn time inck, 1/φk, plus the mean time to absorption

from the next visited state, which isck−1 with probabilityg−k /φk andck+i with probabilityf+
k,i/φk.

Eq. (22) is obtained similarly; in this case,φN = g−N and statecN−1 is the next visited state with

probability 1. Eqs. (21) and (22) can be solved recursively in terms ofT (N), yielding

T (N − 1) = T (N)−
1

g−N
, (23)

T (k) =
1

g−k+1

[
φk+1T (k + 1)− 1−

∑

i

f+
k+1,iT (k + 1 + i)

]
, k = N − 2, . . . ,K + 1 . (24)

It remains to discuss the computation ofT (N). Let τNi denote the mean time to absorption in

stateci of Y with initial statecN . Then

T (N) =
N∑

i=K+1

τNi . (25)

The row vectorτNT = (τNK+1 . . . τ
N
N ) is the solution of the linear system

τ
NTA = −(0 . . . 01) , (26)
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whereA is the restriction of the transition rate matrix ofY to the transient states. A direct solution

of (26) is possible exploiting the upper Hessenberg structure of A and the fact that all components

except the last one of the right-hand vector of (26) are null.Definingνi = τNi /τNK+1 (νK+1 = 1),

all the equations except the last one give a triangular linear system onνi, K + 2 ≤ i ≤ N which

can be solved easily. Substituting thenτNi by νiτ
N
K+1, K + 2 ≤ i ≤ N , in the last equation of (26)

and using the solution forνi, K +2 ≤ i ≤ N found in the previous step gives an equation onτNK+1.

Solving that equation and usingτNi = νiτ
N
K+1, K + 2 ≤ i ≤ N we obtainτNi , K + 2 ≤ i ≤ N .

The solution procedure can be described as follows:

νK+1 = 1 ,

νi =
1

g−i

[
φi−1νi−1 −

i−2∑

j=K+1

f+
j,i−j−1νj

]
, i = K + 2, . . . , N ,

(27)

τNK+1 =
1

φNνN −
N−1∑

i=K+1

f+
i,N−iνi

,

τNi = νiτ
N
K+1 , i = K + 2, . . . , N .

(28)

3.5 Computation of the bounds

TG,s, CG,s andαs(k), k ∈ M could be computed from the mean times to absorption vector of

the transient CTMCsY s
G trackingX from states till exit from G. This however would involve

the solution of|S| linear systems of size|G|, which is very expensive. In this section we develop a

computational procedure which obtains the bounds[R]lb and[R]ub solving only four linear systems.

Let:

T ′
s = TG,s + [TU,s]ub ,

C ′
s = CG,s + [r]lb[TU,s]ub ,

C ′′
s = CG,s + [r]ub[TU,s]ub .

Using (4), the bounds (2), (3) forR can be expressed in terms ofT ′
s, C

′
s andC ′′

s , s ∈ S as

[R]lb = min
s∈S

{C ′
s

T ′
s

}
, (29)

[R]ub = max
s∈S

{C ′′
s

T ′
s

}
. (30)

The key of the new computational procedure is the derivationof forward equations forT ′
i ,

C ′
i andC ′′

i , i ∈ G. To that end we first write these variables in terms ofαi(k) andT (k) using

Theorem 4:

T ′
i = TG,i +

∑

k∈M

αi(k)T (k) , i ∈ G ,

C ′
i = CG,i + [r]lb

∑

k∈M

αi(k)T (k) , i ∈ G ,
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C ′′
i = CG,i + [r]ub

∑

k∈M

αi(k)T (k) , hspace ∗ 1emi ∈ G .

Each of these variables can be expressed as the sum of a contribution associated with the visit to state

i plus the corresponding variable for the next visited state in G. This gives the forward equations

(note that1/λi is the mean time in statei, λi,Ck
/λi is the jump probability from statei to subsetCk,

andλij/λi is the jump probability from statei to statej):

T ′
i =

1

λi

+
∑

k∈M

λi,Ck

λi

T (k) +
∑

j∈G

j 6=i

λij

λi

T ′
j , i ∈ G , (31)

C ′
i =

ri
λi

+
∑

k∈M

λi,Ck

λi
[r]lbT (k) +

∑

j∈G
j 6=i

λij

λi
C ′
j , i ∈ G , (32)

C ′′
i =

ri
λi

+
∑

k∈M

λi,Ck

λi
[r]ubT (k) +

∑

j∈G

j 6=i

λij

λi
C ′′
j , i ∈ G . (33)

Letρij = λij/λi. The sets of equations (31)–(33) can be formulated as linearsystems introduc-

ing the matrixB = I − (ρij)i,j∈G,i 6=j and the vectorsT′ = (T ′
i )i∈G, C′ = (C ′

i)i∈G, C′′ = (C ′′
i )i∈G,

µ
′ = ((1/λi) +

∑
k∈M (λi,Ck

/λi)T (k))i∈G, c′ = ((ri/λi) +
∑

k∈M (λi,Ck
/λi)[r]lbT (k))i∈G, and

c′′ = ((ri/λi) +
∑

k∈M(λi,Ck
/λi)[r]ubT (k))i∈G:

BT′ = µ
′ , (34)

BC′ = c′ , (35)

BC′′ = c′′ . (36)

Matrix B can be large and iterative methods should be used to solve thelinear systems (34)–

(36). From the properties ofB it is easy to prove [19] that Gauss-Seidel will converge. We found

though that the convergence under Gauss-Seidel was typically extremely slow. However, a decom-

position technique can be used to speed up the convergence. The price is to solve one more linear

system, but we have found that then Gauss-Seidel converges very fast. See [7] for an analysis of the

convergence properties of the linear systems obtained withthe decomposition technique.

To describe the decomposition technique let us consider thegeneric problem of computing

for i ∈ G the expected accumulated reward up to absorptionVi of the transient CTMCY i
G with

initial statei trackingX till exit from G for the generic reward rate structurevj , j ∈ G. Note

thatT ′
i , C

′
i andC ′′

i can be formulated asVi with vj equal to, respectively,1 +
∑

k∈M λj,Ck
T (k),

rj +
∑

k∈M λj,Ck
[r]lbT (k) and rj +

∑
k∈M λj,Ck

[r]ubT (k). Let the vectorsV = (Vi)i∈G and

b = (vi/λi)i∈G. Then,V is the solution of the linear system

BV = b .

Without loss of generality let us assume that the stateo in which all components are up has index

1. Let Ṽi denote the expected accumulated reward to absorption or hitof state 1. Letγi denote
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the probability thatY i
G will exit G without hitting state 1. DecomposingVi in its two contributions

delimited by the time at whichY i
G gets absorbed or hits state 1, we obtain

Vi = Ṽi + (1− γi)V1 , i ∈ G , (37)

The set of equations (37) can be solved inVi, i ∈ G, yielding:

Vi = Ṽi +
1− γi
γ1

Ṽ1 , i ∈ G . (38)

Note thatṼi is the expected accumulated reward to absorption of the transient CTMCỸ i
G obtained

from Y i
G by directing to the absorbing state the entries in state 1. Then,Ṽi, i ∈ G can be computed

asVi, i ∈ G, using the matrix̃B:

B̃ =




1 −ρ12 · · · −ρ1,|G|

0 1 · · · −ρ2,|G|

. . .

0 −ρ|G|,2 · · · 1




instead ofB. Let the vectors̃T
′
= (T̃ ′

i )i∈G, C̃
′
= (C̃ ′

i)i∈G, C̃
′′
= (C̃ ′′

i )i∈G. Applying the previous

result we have that these vectors are the solutions of the linear systems

B̃T̃
′
= µ

′ , (39)

B̃C̃
′
= c′ , (40)

B̃C̃
′′
= c′′ . (41)

The probabilitiesγi can be formulated as the expected accumulated reward up to absorption of

Ỹ i
G with reward rateλi,U . Then, letting the vectorsγ = (γi)i∈G andω = (λi,U/λi)i∈G, γ is the

solution of the linear system

B̃γ = ω . (42)

Finally, using (38)T ′
s, C

′
s andC ′′

s , s ∈ S can be computed from̃T ′
s, C̃

′
s andC̃ ′′

s , s ∈ S using

T ′
s = T̃ ′

s +
1− γs
γ1

T̃ ′
1 , (43)

C ′
s = C̃ ′

s +
1− γs
γ1

C̃ ′
1 , (44)

C ′′
s = C̃ ′′

s +
1− γs
γ1

C̃ ′′
1 . (45)

The complete algorithm to compute the bounds can be summarized as follows:
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Algorithm

1. Computef+
i,j using (12) andg−i solving (19) and (20), and using Eqs. (17), (18) and (16).

2. ComputeT (N) using (27), (28) and (25).

3. ComputeT (k), K + 1 ≤ k < N using (23), (24).

4. Solve the linear systems (39)–(42).

5. ComputeT ′
s, C

′
s andC ′′

s , s ∈ S using (43)–45).

6. Compute[R]lb, [R]ub using (29), (30).

4 Numerical results

In this section we illustrate the bounding algorithm and compare it with that proposed in [12] using

two examples. The first example is an availability model without group repair and with exponentially

distributed repair times. The model falls within the scope of application of the algorithm proposed

in [12]. We use this first example to compare our algorithm with the algorithm proposed in [12]. For

our algorithm we take asg−i a lower bound for the repair rate from any state with failed components,

as done in the algorithm described in [12]. The example is a variant of the large example used

in [12]. Fig. 2 shows the block diagram of the system. The system is operational (up) if at least

one processor PA or PB is unfailed, at least one controller ofeach set (C1, C2) is unfailed, and

at least three disks of each disk cluster (set of disks D1, D2,D3, D4, D5, and D6) are unfailed.

Only one processor of each set is active. Non-active processors do not fail. A fault in the active

processor PA is propagated to the active processor PB with probability 0.1. Active processors and

controllers C1 fail with rate1/2000 h−1. Controllers C2 fail with rate1/4000 h−1. Disks fail with

a different rate for each cluster. The disk failure rates are1/6000 h−1 for disks D1,1/8000 h−1

for disks D2,1/10 000 h−1 for disks D3,1/12 000 h−1 for disks D4,1/14 000 h−1 for disks D5

and1/16 000 h−1 for disks D6. Components can fail in two modes with equal probabilities. There

is only one repairman which selects the component to be repaired at random from the set of failed

components. The repair rate of a component depends on the failed mode of the component and on

the operational/down state of the system. When the system isoperational repair rates are0.1 h−1 in

one failed mode and0.05 h−1 in the other failed mode. The repair rates are 10 times largerwhen

the system is down. The difference in repair rates between the operational and down states of the

system can be due to more careful repair procedures in the operational state to avoid system crashes

as a consequence of erroneous maintenance operations. The system has a moderate complexity (36

components of 10 different types) but a very large state space: of the order of1010 states. The size

of the state space precludes an exact numerical solution of the Markov model. Thus, the example

illustrates the type of models for which bounding algorithms are an attractive approach.

Table 1 gives the failure bags of the example and for each failure bage the corresponding upper

bound for its rate[λ(e)]
ub

. We use the notationc[n] to indicaten instances of component typec.

The upper boundsf+
i,j aref+

i,1 = 4.93571 × 10−3 h−1 andf+
i,2 = 5 × 10−5 h−1. For g−i we take
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PA PB

C1 C2

D1 D2 D3 D4 D5 D6

Figure 2: Block diagram of the first example.

Table 1: Failure bagse and[λ(e)]ub in h−1 for the first example.

e [λ(e)]ub

PA[1] 5× 10−4

PA[1] PB[1] 5× 10−5

PB[1] 5× 10−4

C1[1] 10−3

C2[1] 5× 10−4

D1[1] 6.66667 × 10−4

D2[1] 5× 10−4

D3[1] 4× 10−4

D4[1] 3.33333 × 10−4

D5[1] 2.85714 × 10−4

D6[1] 2.5 × 10−4

0.05 h−1. The measure of interest is the steady-state unavailability, which can be formulated asR

with ri = 1 for down states andri = 0 for up states. We then have[r]lb = 0, [r]ub = 1.

Table 2 gives the results obtained for the first example with the bounding algorithm described

in [12] and the algorithm proposed in this paper. We give bounds, CPU times (measured in a 167

MHz UltraSPARC 1 workstation) and total number of Gauss-Seidel iterations (asking a relative

tolerance in the solution of10−8) for the algorithm described in [12] for several pairsK, F and the

CPU time and total number of Gauss-Seidel iterations consumed by our algorithm for several values

of K. We also show the number of generated states (|G|) and the number of “return” states (|S|).

Our algorithm obtains the same bounds as the algorithm proposed in [12] forF = K. The CPU

times of the algorithm of [12] forF = K are large because of the high number of linear systems

(|S| = |CK |) which have to be solved. The CPU times of the algorithm can bemade reasonable

selecting a small value ofF (for instance,F = 1) but then the bounds become looser and, as the

example shows, they can be significantly looser that the bounds obtained with our algorithm. The
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Table 2: Steady-state unavailability bounds, CPU times in seconds and number of Gauss-Seidel

iterations (nI ) for the algorithm described in [12] and the proposed algorithm for the first example.

CPU time (nI )

K F |G| |S| lower bound upper bound [12] proposed

2 0 265 1 2.9965 × 10−5 1.7579 × 10−3 0.165 (79)

1 55 2.9972 × 10−5 1.1930 × 10−3 0.595 (496)

2 209 2.9972 × 10−5 6.7213 × 10−4 4.73 (5001) 0.118 (41)

3 0 1796 1 3.5522 × 10−5 1.9900 × 10−4 1.28 (77)

1 55 3.5524 × 10−5 1.5832 × 10−4 4.43 (439)

2 209 3.5526 × 10−5 1.2123 × 10−4 40.2 (4485)

3 1531 3.5526 × 10−5 8.4473 × 10−5 296 (35276) 0.920 (54)

4 0 10496 1 3.6233 × 10−5 4.9960 × 10−5 10.3 (76)

1 55 3.6233 × 10−5 4.7222 × 10−5 35.1 (379)

2 209 3.6233 × 10−5 4.4729 × 10−5 308 (3876)

3 1531 3.6233 × 10−5 4.2237 × 10−5 2478 (31042)

4 8700 3.6233 × 10−5 3.9768 × 10−5 > 10000 7.26 (62)

5 0 51391 1 3.6306 × 10−5 3.7359 × 10−5 57.8 (75)

1 55 3.6306 × 10−5 3.7184 × 10−5 167 (305)

2 209 3.6306 × 10−5 3.7024 × 10−5 1492 (3148)

5 40895 3.6306 × 10−5 3.6542 × 10−5 > 10000 44.7 (67)

decomposition technique used by our algorithm is extremelyefficient and makes the total number

of Gauss-Seidel iterations required to solve the four linear systems even smaller than the number of

iterations required to solve the single linear system of thealgorithm proposed in [12] forF = 0. The

CPU times of our algorithm are accordingly smaller than the CPU times of the algorithm described

in [12] for F = 0. In summary, our algorithm compares favorably with the algorithm proposed in

[12], when the latter is applicable.

The second example illustrates the broader applicability of our bounding algorithm. It has both

group repair and phase type repair time distributions. The block diagram of the example is given

in Fig. 3. The system is made up of two processing subsystems,each including one processor P

and two memories M, two sets of controllers C1 and C2, each with two controllers, and four sets

of disks D1, D2, D3 and D4, each with three disks. The system isup if at least one processor

and one memory connected to it are operational, one controller of each set is operational, and two

disks of each set are operational. Processors fail with rate10−5 h−1; a processor failure is soft with

probability 0.8 and hard with probability0.2. In addition, either being soft or hard, a processor

failure contaminates (fails) the operational memories to which it is connected with probability0.05.

Memories fail with rate5×10−5 h−1, controllers fail with rate2×10−5 h−1. Disks D1 fail with rate

10−6 h−1, disks D2 fail with rate1.5 × 10−6 h−1, disks D3 fail with rate2 × 10−6 h−1, and disks
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Figure 3: Block diagram of the second example.

D4 fail with rate3 × 10−6 h−1. There are two repairmen. One performs restarts of processors in

soft failure and the other performs all the other maintenance actions with first priority given to disks,

next to controllers, next to processors, and last to memories. Failed memories of the same processing

subsystem are repaired simultaneously (in a single repair action); thus the model has group repair.

Components with the same repair priority are chosen at random. The policy is preemptive-resume.

Fig. 4 gives the phase type distributions for all repair actions, with the initial probabilities shown

inside the circles denoting the states ofZi and all transition rates in h−1. The state of the system can

be described by giving the number of components of each type which are operational and for each

component type, failed mode pair the number of failed components of the type in the failed mode

in each state of the phase type distribution associated to the component type, failed mode pair. The

complete model has about4.9 × 109 states, clearly outside of current computing capabilities.

The second example has 10 component types andN = 22 components. Table 3 gives the

failure bags of the model and for each failure bage the upper bound[λ(e)]ub for its rate. The upper

boundsf+
i,j aref+

i,1 = 5.225 × 10−4 h−1, f+
i,2 = 10−6 h−1 andf+

i,3 = 10−6 h−1. The upper bound

λub is λub = 5.245 × 10−4 h−1. We also haveh+ = 5 h, q− = 0.997384 andg−i = 0.199477 h−1.

Table 4 gives the bounds for the steady-state unavailability obtained forK = 2, 3, 4 and 5. We

also give the number of generated states (|G|). By profiling the code we have found out that about

50% of the CPU time is devoted to the generation of the models,while the solution of the four linear

systems accounts for the remaining 50%. The CPU time forK = 5 was about 4 minutes in a 167

MHz UltraSPARC 1 workstation.

The 4-Erlang phase type distribution used for processor restarts can be imagined as an approx-

imation to a deterministic restart time of value1 h−1. The goodness of the approximation improves

with the number of exponential stagesk. We explored that issue and obtained results with increas-

ing k for K = 5. Table 5 gives the results. We can note that the steady-stateunavailability is quite

insensitive to the shape of the restart time distribution and a small value ofk is enough to obtain an

accurate approximation.
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Figure 4: Phase type repair distributions for the repair actions of the second example.

Table 3: Failure bagse and[λ(e)]ub in h−1 for the second example.

e [λ(e)]ub

P1[1] 10−5

P1[1] M1[1] 5× 10−7

P1[1] M1[2] 5× 10−7

M1[1] 10−4

P2[1] 10−5

P2[1] M2[1] 5× 10−7

P2[1] M1[2] 5× 10−7

M2[1] 10−4

C1[1] 4× 10−5

C2[1] 4× 10−5

D1[1] 3× 10−6

D2[1] 4.5× 10−6

D3[1] 6× 10−6

D4[1] 9× 10−6
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Table 4: Results for the second example and increasingK.

K |G| lower bound upper bound

2 513 4.44759 × 10−9 1.00362 × 10−5

3 5079 4.47533 × 10−9 1.33280 × 10−8

4 36385 4.53283 × 10−9 4.56180 × 10−9

5 202333 4.53383 × 10−9 4.54889 × 10−9

Table 5: Results for the second example withK = 5 and increasing number of stages of thek-Erlang

distribution of processor restart time.

k |G| lower bound upper bound

1 105658 4.53468 × 10−9 4.54888 × 10−9

2 134637 4.53413 × 10−9 4.54886 × 10−9

3 166862 4.53393 × 10−9 4.54888 × 10−9

4 202333 4.53383 × 10−9 4.54889 × 10−9

5 Conclusions

An algorithm to bound the steady-state availability applicable to models with group repair and phase

type repair distributions has been developed. Previous bounding algorithms assumed that repair

actions involved a single component and assumed exponential repair distributions. In addition,

previous bounding algorithms either had to solve many linear systems to obtain the tightest possible

bounds or introduced looseness if state cloning techniqueswere used to reduce the number of linear

systems to be solved, whereas our algorithm does not clone states and requires the solution of only

four linear systems of the size of the generated state space,being the time devoted to the solution

of these linear systems comparable with the time to generatethe model. Our algorithm per se is not

confined to compute bounds for the steady-state availability: it can be used to compute bounds for

the steady-state reward rate of models exhibiting similar structures.
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Appendix A. Proof of Theorem 3

Without loss of generality, assume that the transient states of Y are sorted following the subset

orderingB1, B2, . . . , Bn. For notational conciseness letτi = τ(i, Y ) andτ ′k = τ(Bk, Y ). Note

thatτ ′k > 0. Let the vectorsτ = (τi)i∈B , π = (πi)i∈B and letA be the transition rate matrix ofY

restricted toB. τ satisfies the linear system

τ
TA = −π

T . (46)

Let wk
i = τi/τ

′
k, i ∈ Bk, 1 ≤ k ≤ n. Note thatwk

i > 0 and
∑

i∈Bk
wk
i = 1. Defining the column

vectorsw(k) = (wk
i )i∈Bk

, π(k) = (πi)i∈Bk
, we can rewrite (46) as

(
τ ′1w(1)T · · · τ ′nw(n)T

)



A11 · · · A1n

. . .

An1 · · · Ann


 = −

(
π(1)T · · ·π(n)T

)
,

whereAkl are the blocks ofA induced by the partition ofB. This block decomposition gives the set

of equations
n∑

k=1

τ ′kw(k)T Akl = −π(l)T , 1 ≤ l ≤ n .

Postmultiplying by1, a column vector of all ones with appropriate dimension

n∑

k=1

τ ′kw(k)T Akl1 = −π(l)T 1 , 1 ≤ l ≤ n .

Definingπ′
k = π(k)T 1 =

∑
i∈Bk

πi, λ′
bk,bl

= w(k)T Akl1 =
∑

i∈Bk
wk
i λi,Bl

, k 6= l, andλ′
bk

=

−w(k)T Akk1, we get
n∑

k=1
k 6=l

τ ′kλ
′
bk,bl

− τ ′lλ
′
bl
= −π′

l , 1 ≤ l ≤ n .

Thus,τ ′ = (τ ′k)1≤k≤n satisfies the linear system

τ
′TA′ = −π

′T ,

with π
′ = (π′

k)1≤k≤n and

A′ =




−λ′
b1

λ′
b1,b2

· · · λ′
b1,bn

λ′
b2,b1

−λ′
b2

· · · λ′
b2,bn

· · ·

λ′
bn,b1

λ′
bn,b2

· · · −λ′
bn




. (47)

In summary, under the conditionλ′
bk,a

= λ′
bk
−
∑n

l=1
l 6=k

λ′
bk,bl

≥ 0, 1 ≤ k ≤ N , τ ′k = τ(Bk, Y ) (< ∞

since all states inB of Y are transient) is the mean time to absorption in statebk of the transient

CTMCY ′ with state space{b1, b2, . . . , bN}∪{a}, transition rate matrix (47), and initial probability

distributionP [Y ′(0) = bk] = π′
k, 1 ≤ k ≤ N . The transition ratesλ′

bk,bl
satisfy the conditions of
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the theorem. It remains to show that the transition rates to the absorbing stateλ′
bk,a

also satisfy those

conditions and are≥ 0. First, note that the output rates ofY ′ can be written as

λ′
bk

= −w(k)T Akk1 =
∑

i∈Bk

wk
i λi −

∑

i∈Bk

wk
i λi,Bk

.

Then, usingλ′
bk,a

= λ′
bk

−
∑n

l=1
l 6=k

λ′
bk,bl

andλia = λi −
∑n

l=1 λi,Bl
:

λ′
bk,a

= λ′
bk

−

n∑

l=1
l 6=k

λ′
bk,bl

=
∑

i∈Bk

wk
i λi −

∑

i∈Bk

wk
i λi,Bk

−

n∑

l=1
l 6=k

∑

i∈Bk

wk
i λi,Bl

=
∑

i∈Bk

wk
i

(
λi −

n∑

l=1

λi,Bl

)
=

∑

i∈Bk

wk
i λia ≥ 0 .
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[11] S. Mahévas and G. Rubino, “Bound Computation of Dependability and Performance Measures,” INRIA

Technical Report no. 3135, March 1997, available from ftp.inria.fr.

23



[12] R.R. Muntz, E. de Souza e Silva and A. Goyal, “Bounding Availability of Repairable Computer Sys-

tems,”IEEE Trans. on Computers, vol. 38, no. 12, pp. 1714–1723, December 1989.

[13] M. F. Neuts,Matrix-Geometric Solutions in Stochastic Models. An Algorithmic Approach, Dover Pub-

lications Inc., New York, 1994, chapter 2.

[14] J. L. Peterson,Petri Net Theory and the Modeling of Systems, Appendix, Prentice-Hall, 1981.

[15] S.M. Ross,Stochastic Processes, John Wiley & Sons, New York, 1983.

[16] G. Rubino and B. Sericola, “Sojourn Times in Finite Markov Processes,”J. Appl. Prob., vol. 27, 1989,

pp. 744–756.

[17] P. Semal, “Refinable Bounds for Large Markov Chains,”IEEE Trans. on Computers, vol. 44, no. 10,

October 1995, pp. 1216–1222.

[18] E. de Souza e Silva and P.M. Ochoa, “State Space Exploration in Markov Models,”Performance Eval-

uation Review, vol. 20, no. 1, June 1992, pp. 152–166.

[19] W. J. Stewart,Introduction to the Numerical Solution of Markov Chains, Princeton University Press,

Princeton, 1994.

24


