
On the Wiener and Hammerstein Models for 
Power Amplifier Predistortion  

 

P.L. Gilabert, G. Montoro and E. Bertran  
Department of Signal Theory and Communications, Universitat Politècnica de Catalunya (UPC), Spain 

 
 

Abstract  — This paper presents a comparative study on the 
suitability of using Hammerstein or Wiener models to 
identify the power amplifier (PA) nonlinear behavior 
considering memory effects. This comparative takes into 
account the operational complexity regarding the 
identification process as well as their accuracy to follow the 
PA behavior. Both identified PA models will be used to 
estimate a Hammerstein based predistorter in order to see 
which model combination provides better linearization 
results. In addition, two adaptive algorithms for 
predistorting both PA models are compared in terms of 
accuracy and converge speed.  

I. INTRODUCTION 

The significant growth of digital predistortion solutions 
to linearize power amplifiers (PA’s) has to do with the 
fact that nowadays, most of the communication 
equipment already incorporates some digital processor 
for mandatory issues within the wireless standards (i.e, 
coding, interleaving, OFDM,…). So then, such digital 
processors can also be used to implement digital-based 
linearizers avoiding the need for including a specific 
digital device with its consequent cost increment and 
energy consumption [1]. Most of the digital predistorters 
proposed in the recent past years have been modeled 
using memoryless techniques, aiming at compensate the 
instantaneous nonlinear behavior of the PA, characterized 
by the AM/AM and AM/PM static curves. This PA 
memoryless model might be an acceptable approximation 
for narrowband signals (e.g. nearly-constant envelope 
modulations). However, memoryless predistortion has 
shown insufficient cancellation performance since new 
multilevel (and multicarrier) modulation formats claim 
for power handling capability and higher baseband 
bandwidth.   

Current wideband multilevel modulation formats 
demand better PA models, all considering memory 
effects. Some of the proposed PA and predistorter (PD) 
models in literature are based on Volterra series (or 
pruned Volterra)[2][3], memory polynomials [4], 
Wienner-Hammerstein models [5] [6], or neural networks 
[7]. Leaving apart the Volterra or neural networks models 
for being more computational complex, this paper studies 
the suitability in terms of complexity and accuracy of 
using the Wiener and Hammerstein models for the PA 
identification and predistortion.    

II. PROBLEM STATEMENT 

In order to carry out the predistortion learning process 
there are two basic configurations aimed at estimating the 
predistorter coefficients. These basic configurations are 
the direct learning (predistortion) and the indirect 

learning, also called postdistortion and translation 
method. In the indirect learning, see Fig. 1, the inverse 
PA model is estimated by using its input and output data, 
as described in eq. (1), 

( )( ) 0postF G x G x= ⋅                         (1) 

Once the learning process has finished, the postdistorter 
coefficients are copied to an identical model that is used 
to predistort the input. With this configuration there is no 
need to calculate the PA model, only its input and output 
data is needed to estimate the postdistortion model. But 
applying the commutative property (translation method) 
in nonlinear systems is not properly formal in the 
mathematical sense. 

  

 
Fig. 1. Indirect learning  (postdistortion  and translation method). 

 
The direct learning approach, depicted in Fig. 2, 

permits a direct (more formal) predistorter estimation but 
requires the real PA or a good model of it to train their 
coefficients, as described in eq. (2):  

( )( ) 0preG F u G u= ⋅                            (2)     

Thus for obtaining a good predistorter estimation, first it 
is necessary to obtain a reliable PA model that respects 
the trade-off between accuracy and simplicity.  

 
 

Fig. 2. Direct learning predistortion. 
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III. POWER  AMPLIFIER AND PREDISTORTER MODEL  

Volterra series and Neural Networks show good 
performance in estimating general nonlinear models with 
memory, but their predistortion is complex and its real-
time implementation difficult.  

          

  
Fig. 3. Block diagaram of the Hammerstein and Wiener models. 

Apart from those accurate but complex models, the 
Hammerstein and Wiener models are two simple but 
effective possibilities for describing the PA and/or the 
predistorter nonlinear behavior taking into account 
memory effects. Hammerstein models are composed by a 
memoryless nonlinearity followed by a linear time-
invariant system, as it is shown in Fig. 3. While the 
Wiener model (Fig. 3) consists of the same subsystems 
but connected in the reverse order. The use of memory 
polynomials has been also considered in literature to 
model the PA or the predistorter, but memory 
polynomials can be seen as a particular configuration of a 
more generic Hammerstein model.  

A. Hammerstein Models 

In this paper we have considered to use an IIR filter in the 
linear time invariant block, since IIR filters present better 
resolution than FIR filters at the same filter order, so 
then, reducing computational load in the DSP. For the 
nonlinear system a general power series is used. Thus, the 
Hammerstein model depicted in Fig. 3 can be defined by 
the following equations: 
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Being y(k) the PA (or the predistorter) output and v(k) the 
output of the memoryless non-linear block. P is the order 
of the memoryless polynomial, while N and D are the 
general zero/pole order respectively. By combining eq. 
(3) and (4) we obtain the following closed expression,  
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Rewriting eq. (5) in a more compact matrix notation, it 
results: 
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and pn γβ ⋅=npd . Vectors are noted in bold and matrices 
are noted in bold and with a hat. The superindex H 
denotes hermitian transpose.  
Note that the Hammerstein model permits linear 
regression, since the predicted output ( )y k , is a linear 
combination of known data ( kq ). The parameter 
estimation ( kc ) is easy to calculate by minimizing a cost 
function (defined as the real output minus the predicted 
output ) using gradient techniques.  

B. Wiener Models 

On the contrary to Hammerstein models, we have 
considered to use a FIR filter in the linear time invariant 
block for simplicity, since Wiener models are more 
complicated to estimate than Hammerstein ones. For the 
nonlinearity we have considered power series as well as 
in the Hammerstein model.  So then, eq. (7) and eq. (8) 
describe the relation between the input (x(k)) and output 
(y(k)) in a Wiener model (see Fig. 3) by means of an 
unknown intermediate variable v(k), 
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If we now combine eq. (7) and eq. (8) we obtain, 
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But as it can be deduced from eq. (9), an easy linear 
regression of its coefficients it is not possible since the 
filter coefficients are integrated in the power series. In 
order to solve this problem, it is possible to first estimate 
the intermediate variable v(k), as it is proposed in [8], for 
later divide the estimation problem into two steps. To 
estimate the intermediate variable, it is necessary to use 
the following assumptions [8]: a) the linear subsystem 
(the FIR filter) is stable, b) the nonlinear function (power 
series) is invertible, and c) there is no noise in the system. 
Assuming this, it is possible to calculate the intermediate 
variable as described in eq. (10), 
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So then, eq. (10) describes an equation where the 
parameters come in linearly and thus can be estimated by 
linear regression. The error that wants to be minimized is 
described in eq. (11), where to avoid the trivial solution 
( , 0γ β = ), it is possible to fix one parameter ( )1 1β =  



without loss of generality due to the over-
parameterization ([8]).   
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Rewriting eq. (11) in matrix notation, we obtain eq. (12) 
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minimized, the intermediate variable v(k) is available, 
permitting a two steps estimation of the Wiener 
coefficients by linear regression by using eq. (7) and eq. 
(8).   

Since the estimation of Wiener models is reasonably 
more complicated than the Hammerstein ones, in this 
paper we have considered, for simplicity, that the 
predistorter (PD) is based on a Hammertein model. 

IV. PREDISTORTION ADAPTIVE ALGORITHMS 

In order to estimate the predistorter (PD) coefficients 
in Fig. 2, we have considered a PD based on a 
Hammerstein model. The cost function to be minimized 
( ( ) 2

( )J k e k= ), is defined as the mean square error 
between the output samples of the PA (previously divided 
by the desired linear gain 0G ) and the input samples of 
the PD, as is described in eq. (13)    
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being ( )G ⋅  the PA response. 

To minimize this cost function two algorithms are 
proposed: the Least Mean Square (LMS) algorithm and 
the Fast-Kalman Filter. Other algorithms such Least 
Squares or Recursive Least Squares are suitable for 
training the predistorter or for estimating the PA model, 
but result more computational complex if real-time (or 
quasi real-time) adaptation is pretended.  

A. Least Mean Square Algorithm 

The Least Mean Square algorithm is described in eq. 
(15). 

( )*1 keµ kkk ⋅⋅+=+ qcc                        (14)  

being µ  the error step (trade-off between speed of 
convergence and accuracy), and its bounds are:   

[ ]H
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µ
qq ⋅

<<
20                            (15)  

where Tr[·] denotes the trace of the data (signal) matrix. 

 
Fig. 4. Comparison between the Fast Kalman and the LMS algorithms 

in the predistorter adaptation process 

B. Fast Kalman Filter 

Fast-Kalman algorithms ([9]) use the optimum Kalman 
filtering technique to adaptively estimate the predistorter 
coefficients without the need of knowing a priori any 
transition matrix (unlike the conventional Kalman filter). 
The Fast-Kalman equations describing the algorithm are 
[9] the following:  
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where QM  y pQ  are related to the estimation and measure 

error variance [9]. The kλ matrix is recursively updated as 
defined in eq. (19). 

Fig. 4 shows the mean square error (MSE) in dB of the 
Fast Kalman and the LMS algorithm in the adaptation 
process of the predistorter coefficients. It is possible to 
observe how the Fast Kalman algorithm provides a faster 
and more accurate estimation than the LMS algorithm. 
For that reason, in the following the Fast Kalman 
algorithm will be used to estimate and adapt the PD 
coefficients.   
 

V. RESULTS 

A. PA model estimation 

The PA model has been identified using modulated 
input and output data of a class-A PA designed with the 
Agilent ATF-54143 PHEMT transistor. The PA has been 
estimated by means of the Narendra-Gallman (NG) 
algorithm [10], which is based in a Least Squares 
estimation. After some empirical simulations of the 
optimum order for identifying the PA (trade-off between 
accuracy and complexity), the Hammerstein model 
consists in a 7th order memoryless polynomial and a 
second order IIR filter, while the Wiener model is 
composed by a FIR filter with 15 delays and a 7th order 
memoryless polynomial. 

Fig. 5 shows the MSE resulting from the PA model 
estimation for both Hammerstein and Wiener models. 



The PA identification with the Hammerstein model 
provides better accuracy (MSE around -90 dB) in 
comparison to the Wiener model  (MSE around  -60 dB). 

 
Fig. 5. MSE (dB) of a Hammerstein model (P=7, N=2 and D=2) and 

Wiener  model (P=7, N=15) respectively in the identification of the PA. 

As it can be observed in Fig. 6, the output spectrum of 
the 16-QAM modulated signal provided by the 
Hammerstein model resembles the real PA output power 
spectrum much more than the Wiener model does. 

 
Fig. 6. Output power spectra of a 16-QAM modulated signal for: a real 

PA, a Hammerstein and a Wiener based PA model 

B. Predistortion results 

The 1-dB compression point of our particular PA is at 
7.5 dBm of input power and 23 dBm of output power. A 
256-QAM Gray constellation ordered modulation, 
filtered by a root raised cosine (RRC) filter with a roll-off 
factor of α=0.35 has been considered in the predistorter 
adaptation process.  

 
Fig. 7. BER for different IBO’s considering both Wiener and 

Hammerstein PA models. 

In order to see the performance achieved by the 
Hammerstein based predistorter when considering both 
PA models, Fig. 7 shows the BER at reception for both 
Wiener PA-Hammerstein PD and Hammerstein PA-
Hammerstein PD combinations. An additive white 
Gaussian noise (AWGN) channel with SNR=10 dB has 
been considered. The PAPR of a  256-QAM RRC filtered 
(α=0.35) is around 7.5 dB which means that an IBO 
bigger than 7.5 dB is necessary for having linear 
amplification. Fig. 7 shows how the Hammerstein PA-
Hammerstein PD combination permits operating less 
backed off than Wiener one, what corresponds to a power 
efficiency improvement. 

VI. CONCLUSION 

This paper has presented an study on the suitability of 
using Wiener or Hammerstein models to identify the 
power amplifier nonlinear behavior taking into account 
memory effects. Results has shown that a PA identified 
using a Hammerstein model presents better performance 
than using a Wiener model, since it is easier to estimate, 
needs less parameters for the identification and achieves 
better results when predistorting the PA with a 
Hammerstein based predistorter. Finally, the fast Kalman 
algorithm has demonstrated quality skills to be 
considered for real time adaptation in memory limited 
embedded signal processors. 
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