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ABSTRACT:

In the field of ITS applications evaluation, micro-simulation is becoming more and more a
useful and powerful tool. In the evaluation process, one of the most important steps is the
safety analysis. For that purpose, classical micro-simulation outputs give some helpful
information, but which aren’t sufficient for an accurate analysis in many cases. Nevertheless,
the microscopic level of traffic description offers the possibility of tracking the simulated
vehicles getting at each time step their relative position, speed and deceleration. This paper
explains how a safety indicator can be calculated with these different parameters. This safety
indicator is used in a ramp metering case study to illustrate the utility of such output for a
safety analysis. However, this indicator is limited to the linear collision probability and gives
therefore no information on crossing trajectories conflicts like in junctions. On the other hand
the likelihood of an incident to happen depends not only on traffic conditions but on the
influence of many other factors as for example the geometry of the road, the visibility or the
pavement conditions (wet, dry, etc.). When significant statistical information is available an
estimation of the probability of an incident to happen can be computed, and used in micro-
simulation analysis. The paper is completed with the development and testing of hierarchical
logit based model to estimate this probability.
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1. INTRODUCTION

There is a general agreement on the importance of safety analysis in the implementation
and operation of traffic systems. This analysis can be conducted from a preventive as well as
from a reactive point of view. A preventive safety analysis will have the objective of
identifying the incident prone traffic conditions, determine the relevant factors and evaluate
their importance. This type of preventive analysis can provide indices and indicators which
can help the traffic operator to intervene, implementing management strategies which could
hopefully help to reduce the incident likelihood. A reactive analysis concerns the intervention
when an incident has occurred, an early intervention being critical to alleviate or, ideally
avoid the traffic disturbance caused by the incident.

The typical methodology to conduct these types of safety analysis is usually based on a
long term carefully designed incident data collection process to gather sufficient statistical
data on which conduct the analysis. The object of the analysis is very often to derive
indicators helping to understand or to evaluate the phenomena. These indicators usually
depend on threshold values that have to be previously calibrated. An example of that, in the
case of the reactive analysis would be the thresholds that activate most of the Automatic
Incident Detection Algorithms. Thresholds for operational algorithms have been typically
calibrated by trial and error, empirical experimentation on historical data, and performance
curves obtained from multiple runs of the respective algorithm on the data with incrementally
changing thresholds. On the other hand, to remain operational, these algorithms should be
frequently recalibrated.

Improvements on these estimation processes could be expected from the possibility of
reproducing the traffic conditions before and after the incident. Also it would be desirable to
explore the sensitivity of the estimated thresholds by changing some of the incident related
parameters, i.e. location, severity in terms of the length of the blocked lane by the incident,
etc. Microscopic traffic simulation can provide the technological framework to achieve these
objectives. Microscopic traffic simulation has proven to be a useful tool to capture the full
dynamics of time dependent traffic phenomena, but also being capable of dealing with
behavioral models accounting for drivers’ reactions, it is not only a simulation tool that
emulates realistically the flow of vehicles on a road network but it is also capable of
reproducing accurately the situation generated by an incident in terms of length of the blocked
lane and duration of the incident, allowing in this way the replication of the traffic congestion
due to the incident. All these characteristics make microscopic simulation a tool to assist the
analyst in the preventive as well as in the reactive safety analysis.

A typical use of microscopic traffic simulation is for the evaluation of traffic systems,
namely those involving ITS applications. Given the relevance of safety in traffic systems it
becomes obvious that safety analysis should be an important issue in an ITS application
evaluation process. The implementation of an ITS application cannot be justified only by the
increase in performance of a network if it implies a decrease in user safety. So, the knowledge
of the safety level is crucial for taking good decisions. But safety analysis has also an indirect
impact on the evaluation process. Indeed, if the safety level of a network decreases, the
number of accident rises. The presence of new accidents will create congestions and thus a
decrease in network performance. The safety and performance evaluations are directly linked,
the first having an important influence on the second. In microscopic simulation based
evaluation, this phenomenon becomes critical. However, most of the currently existing
microscopic traffic simulators are based on the family of car-following, lane changing and
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gap acceptance models to model the vehicle’s behavior [1], and that makes of microscopic
traffic simulation an ideal world where no incidents can occur, as far as the basic modeling
hypothesis in the underlying car-following models is that vehicles should keep a “safety to
stop distance” [2], [3]. Hence, a decrease in safety doesn't imply a decrease in network
performance as it must do. This particular aspect of the microscopic simulation increases the
need of a safety analysis tool providing useful micro-simulation safety indicators to be used in
the evaluation processes. In the literature, few articles have dealt with this particular field of
the micro-simulation. Among them are the research works of Archer [4], Minderhoud & Bovy
[5] and Kosonen & Ree [6]. The first one has demonstrated the potential of micro-simulation
for safety assessments. The second one has presented a first safety indicator but which was
only based on the time to collision (TTC) parameter. The last one has introduced the SINDI
project and proposed an indicator combining the TTC and the speed for a non-constant
reaction time simulator (HUTSIM).

The situation described so far has provided the motivation for the research whose results
are presented in this paper. The research has been carried out with the microscopic traffic
simulator AIMSUN, [7], [8], [9], embedded in the GETRAM software environment for traffic
modelling and analysis, [10]. The paper is structured as follows, section 2 presents the
development of a different approach to get a micro-simulation safety indicator, and its testing
on a site in the peripheral motorway of Lausanne in Switzerland. Section 3 addresses the
development of an incident probability estimator, to be used in preventive safety analysis to
help the traffic management in trying to prevent incident, it is part of the results of PRIME, a
EU project of the 5th Framework Programme, for the test site of Barcelona, Spain. Section 4
summarizes the results achieved.

2. SAFETY INDICATOR FORMICRO-SIMULATION BASED ASSESSMENTS

2.1 The Approach

As explained in the introduction, micro-simulation models prevent all type of collision
between vehicles. In the particular case of linear conflicts, which is one of the topics in this
paper, the car-following model is in charge of avoiding collision situations. Micro-simulation
software has its own car-following model, an improved version evolved from the seminal
Gipps model, [11], in the case of AIMSUN, but all models are generally based on an
important behavioural parameter: the driver's reaction time. Depending on the software, the
reaction time can be a global parameter for all the vehicles (including their driver) or
differentiated for each class of vehicles and it can be a deterministic value or a stochastic one
(following a distribution rule). But the reaction time of a particular vehicle remains constant
during all the simulation. In every case, the car-following model controls the acceleration and
deceleration and consequently the headway of the follower vehicle depending on its reaction
time. Obviously, the less a vehicle's reaction time is, the less its minimum acceptable
headway is.

If this approach offers an excellent approximation of the traffic flows and the relative
position of the vehicles, it doesn't permit to extract potential collision situation from the
simulation process as they exist in reality. The main reason is that, in the simulation, the
headway between two vehicles is in accordance to the reaction time of the follower, but in
real world this accordance is not always guaranteed. The big difference between the model
and the real behaviour of drivers is that in reality the reaction time is always changing and is
not constant during a travel. The reaction time and, consequently, the concentration of the
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driver are permanently influenced by his state of tiredness, a phone call, a dialog with other
passengers, a look in another direction, etc.

As the behaviour model approximates with a satisfactory accuracy the vehicle's
movements, the reaction time, which is obtained after the calibration process, represents then
the average of the reaction times of the vehicles in reality. Better said, it represents the
average of the reaction times the drivers believe they have! A lot of standards fix limits or
standard values for reaction time in the field of road transport. Usually, a standard reaction
time represents a maximum limit that only few drivers exceed and only during some limited
moments of their journey. This standard reaction time is generally used in road geometry
studies and planning. For example, the Swiss standards have adopted 2 seconds as standard
reaction time which is divided in a physiological reaction period and a mechanical one, [12].

The definition of the standard reaction time implies that the potential of collision becomes
significant if the headway between two vehicles is below this value. In fact, this statement is
only valid if both vehicles are driving with the same speed and have the same deceleration
capacity, which is rarely the case. More precisely, the approach to determine the crash
potential between to vehicles (a follower and a leader) is to respond to the following question:

If the follower vehicle's reaction time is equal to the standard time reaction (2 seconds in

the Swiss case) and the leader vehicle breaks with its maximum deceleration capacity, will

a crash occur?

Obviously, the importance of this "hypothetical" crash will be proportional to the
difference of speed between both vehicles at collision time (first impact) but also to the speed
of the follower vehicle at collision time (potential impacts with other cars or lateral obstacles
after the first impact).

2.2 The "unsafe" density parameter

The application of this approach during a micro-simulation process is:

During each simulation step, the position, the speed and the maximum breaking capacity of
a particular vehicle is known and can be obtained. The same parameters can be obtained for
its leader vehicle. The two following hypotheses are taking into account:

- Follower vehicle's reaction time = standard reaction time (2 seconds for the Swiss
case)

- Leader vehicle breaks with its maximum braking capacity

With this information and by applying the basic dynamic rules, it's possible to determine if
the "hypothetical" crash will occur or not. If it occurs, the speed of the follower vehicle S and
the difference of speed ∆S at collision time can be calculated.

As explained in the previous section, the importance of this "hypothetical" crash is
proportional to S and ∆S. An "unsafe" parameter could then be defined as the multiplication
of both parameters. But this value represents the maximum importance possible. But the real
deceleration of the leader vehicle can be obtained (if it is decelerating). So, this maximum
value must be multiplied by the ratio Rd between the deceleration of the leader vehicle and its
maximum deceleration capacity. The "unsafe" parameter can then be defined as:
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dRS∆Sunsafety ⋅⋅=

This parameter determines the level of "unsafe" in the relation between two consecutive
vehicles on the road for a determined simulation step. If the "hypothetical" crash doesn't occur
or the leader vehicle isn't breaking, the value of the "unsafe" parameter is zero.

But this parameter doesn't give a global situation of the safety in a network or part of it.
For that purpose, an "unsafe" density parameter must be calculated. It will be done for each
link of the microsimulation model network and for each aggregation period as follows:

LT
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Where:

Vt = nb of vehicles in the link

St = nb of simulation steps within aggregation period

d = simulation step duration [s]

T = aggregation period duration [s]

L = section length [m]

The "unsafe" density (UD) parameter allows to compare the safety level between different
links of the network, and to observe its evolution from one time period to another. But the
most significant is that it permits comparison between different simulation scenarios and can
therefore be the principal indicator to use in a safety assessment process.

2.3 Case study

The UD parameter was used within the framework of an evaluation study of a ramp
metering implementation on one of the Lausanne (Switzerland) by-pass junctions. In this
section of the by-pass, frequent congestion problems are reported during peak hours. The
traffic flow on this section increases dramatically in some few kilometers by an important
traffic input coming from Morges-West (first entrance) and Morges-East (second entrance)
junctions. Generally, congestions appear in the second entrance area.

A micro-simulation based performance evaluation using AIMSUN, shows that the
implementation of a ramp metering on the second entrance permits to limit the length of the
congestion queue and, consequently, the duration of the congestion. At the safety assessment
level, clear conclusions are more difficult to get. Indeed, typical micro-simulation outputs
give two contradictory results:

- Presence of the ramp metering decreases the duration of congestion ⇒ decrease in
accidents potential⇒ increase in user safety
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- The ramp metering strategy implies important variations of speed in the junction area
and on the on-ramp⇒ increase in accidents potential⇒ decrease in user safety

Without safety indicators, it's difficult to get a global balance between these two
conclusions, but the application of the UD parameter allows it. But, before being applied to
this ramp metering study, a validation process has been conducted. It demonstrated a good
correlation between the UD evolution in the studied area and the accident reports provided by
the police.

Figure 1 shows the one hour average UD for each section of the AIMSUN micro-
simulation model. The case with ramp metering (RM) is compared to the one without. In both
cases, the UD before the first entrance is close to zero because the normal flow allows regular
headways and a fluid traffic without important breaking manoeuvres. Between both entrances,
the UD is much more important in the case without RM, because the back of the queue moves
back close to the first entrance and because the congestion duration is more important. In the
case with RM, the safety problem due to congestion appears only after section ID 35. The
phenomenon of speed variations in the second entrance area in the case with RM is confirmed
by a UD level more important. Figures 2 and 3 illustrate more accurately both phenomena.
However, from a global point of view, the network overall “unsafe” density calculation
permits to say that the case with RM is a safer scenario.

This indicator could be also used for the evaluation of applications like Intelligent speed
adaptation, variable speed limitation signs and so on.

3. A STATISTICAL APPROACH TO DYNAMIC INCIDENT PROBABILITY

ESTIMATION

A contribution to the preventive safety analysis is a model to estimate incident
probabilities. The aim of the dynamic incident probability estimation model (EIP) is to
establish the association between traffic conditions, weather conditions, road geometry and
incident occurrence. The association is established according to statistical models that take
dynamic traffic and weather conditions and static road geometry as explanatory variables and
the presence of incidents as a response variable (possibly for each incident type), giving
dynamically as a result the probability of incident occurrence for each segment of the road
network. A previous research on this topic was done by Hamerslag, [13] , who proposed a
procedure based on a statistical approach following a Poisson regression model. The
procedure was conceived and implemented as a static tool for incident occurrence analysis,
but real-time traffic management systems require procedures that are able to work in real-time
and cannot be derived from Hamerslag’s approach. The idea of a logit statistical model as a
way of improving Hamerslag’s approach was the objective of the research in PRIME. That
the topic is of interest is proven by other recent research as the reported in [14], an namely
the TRAVELAID project sponsored by FHWA, [15].

The model proposed by the authors is not considered previously in the literature, since the
response variable in the Hamerlag’s model is the number of expected incidents during a long-
period (year) in a section given its average level of daily volume and length; for a shorter
period of time, as for example 5 minutes, as incidents are rare events, it makes no sense to
formulate an statistical model with response variable the number of expected incidents for 5
minutes !!! The response variable must be reformulated to be the presence or absence of
incidents and thus the expected presence of incidents is the incident probability (Bernoulli
response variable). This is the proposal of the authors and it is properly captured by a binary
response logit model in particular or in general, a hierarchical binary response logit model to
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predict the expected probability by each incident type (given a previous classification leading
to the structure of the hierarchical model).

The statistical approach developed in this paper for the dynamic estimation of incident
probabilities is called EIP-HLOGIT. The association between the probability of occurrence of
an incident and the explanatory variables is established by means of a generalized linear
regression model that for each incident type j (under a hierarchical underlying structure)
establishes a logit link relationship for each section i (EIP-HLOGIT). The estimated
probability for section i and incident type j, ijp , can be described as

( )
( )ij
ij

ijp
η

η

exp

exp

+
=
1

(1)

where jij βη T

ijx= is a linear predictor defined as a linear combination of model

parameters (β ’s) and current values of explanatory variables defined for section i and

incident type j ( T

ijx ’s). Equation (1) is equivalent to

ij

ij

ij

ij
p

p
p η=

−
=

1
loglogit (2)

which shows a clearer relation to generalized linear regression models for binary response for
each hierarchical level and logit link function, see McCullagh and Nelder, [16].

The EIP-HLOGIT model is built after:

• Model variable definition: identification of variables that play a role as predictors of the
incident occurrence. This set of variables is clearly site-dependent and must be
defined/identified in the model selection stage. Variables can be continuous variables
(covariates) or factors (discrete variables). Factor variables can be included in generalized
linear regression models by means of dummy variables related to each category of factors.
Interactions between factors and covariates are technically possible and have been
considered in this case. Predictor variables are considered at section level and vary for
each interval period (1 minute in this case): dynamic section predictor variables are used
to predict incident probability in the current section and time period.

• Model parameter estimation: each variable selected in a EIP-HLOGIT model, either
covariate or dummy variable related to a level factor, has an associated real number that
plays the role of the coefficient in the linear combination defining the contribution to the
prediction. The values of these parameters, once the model variables are selected, are
estimated by the calibration of model parameters.

• Threshold tuning for risk level definition: thresholds are numerical values related to
probabilities, and are used to classify a computed incident probability as a low, medium or
high-risk probability situation. The stage of threshold setting is called threshold tuning or
calibration of high-risk threshold.

The model selection and calibration stages require a significant amount of recorded
historical data related to:

• Traffic data for incident and non-incident periods. In the latter case only a proportion of
the total time is registered, otherwise the huge amount of data would be impossible to
manipulate. The result is an increase in the incident probability values, given a random
selection of the non-incident registers, Ben Akiva et al., [17], and this affects the risk
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threshold tuning stage. Traffic data variables depend on the data available at the site. In
our case volume, speed and occupancy per lane per minute were considered.

• Incident data: location of the incident on the road section, time stamp (time at which the
incident occurred), severity, duration, etc.

• Weather data: sun, rain, wind, fog, snow, etc.

• Road surface conditions: dry, wet, etc.

• Geometric data: straight or curved road sections, presence of entrance or exit ramps,
gantries, etc.

General multivariable regression models are powerful tools that can use a mixture of
categorical and continuous variables; however, uncritical application of modelling techniques
can result in models that fit the available data set poorly, or even more likely, predict incident
risk on new situations inaccurately. To avoid these risks we measured model fits in order to
avoid poorly fitted or overfitted models by assessing calibration quality and measuring the
predictive accuracy, using the Somers D rank correlation index to quantify the predictive
discrimination, Harrell et al., [18]. Discrimination measures the model’s ability to separate
situations with different responses (high-risk and non-high-risk in our case).

In order to estimate the values of the parameters by maximum likelihood in the generalized
linear regression proposal for modelling the association between incident type probabilities
and the explanatory variables (Hierarchical Logit approach), a particular case of the method
of scoring for the estimation of generalized linear models in statistics, McCullagh et al.[16],
Dobson [19], has been implemented.

3.1 Data collection at the Barcelona test site

The ring road of Barcelona is an urban freeway that articulates the main accesses/exits to
and from the city, distributes the traffic around the city and channels the main traffic streams,
between two main industrial areas north (from the Trinitat Node) and south (from the
Diagonal Node) of the city respectively. The Trinitat Node is an urban/interurban interchange
node acting as a collector/distributor of all traffic from/to the motorways A-18 (to/from the
Vallès industrial and residential area, generating a large amount of business and commuter
traffic every day), A-7 (to/from Girona and the French border) and A-19 (to/from the
Maresme industrial area along the Mediterranean coast north of the city, which also generates
a large amount of commuter traffic). The Diagonal Node is an urban/interurban interchange
node distributing the flows from/to the A-2 motorway, which links the city to other major
industrial and residential areas and to the cities of Madrid, Zaragoza and Valencia. The
selected site has been the 15 km section of urban motorway between the Trinitat and Diagonal
Nodes, a section that interacts closely with densely populated urban areas, causing traffic
problems in the ring road to be easily overflow into the neighboring urban arterials and streets
and vice versa. The whole test site was used to calibrate, test and evaluate the EIP-HLOGIT
module using the field data collected from detectors at the site.

Traffic data (traffic volumes, occupancies and speeds, per lane and aggregated) at each
detection station are recorded every minute for all detectors in the site, 24 hours a day, 7 days
per week, from Monday 00:00 hours until Monday 00:00 hours. Incident data are recorded by
the urban police; all the information gathered corresponds to incidents that have been verified
by a police officer. Incident data are recorded during the week also from Monday 00:00 hours
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until Monday 00:00 hours. The data recorded for each incident are: incident severity, incident
identifier, police officer reporting the incident, incident starting date and time, ending time,
duration, location (direction, km point and description of the zone), incident type, queue
length and delays caused by the incident and description of road conditions.

These are the data sets employed for EIP-HLOGIT calibration and testing purposes The
testing methodology was designed using independent data sets at each step. The full set of
explanatory variables for the Barcelona site is composed for each section and minute from
September 2000 to September 2001, namely: length, volume, occupancy, speed, indicator of
existence of VMS, indicator of existence of entry and exit ramps. Problems were found
concerning the reliability of the collected data, therefore it was necessary to filter out the field
data so that only time periods for which reliable traffic and incident data were available were
used in the calibration and testing processes.

3.2 Testing methodology

The division of the collected data into test data sets was as follows:

• Data set 1: field data from 01.01.01 until 07.30.01 (the whole reliable time period, not
including the summer seasonal effect), in order to have the maximum number of
incidents, to be used for model selection, calibration and threshold tuning. It contains 646
incidents.

• Data set 2: field data from 01.01.01 until 03.31.01, to be used for the first testing on model
selection, calibration and threshold tuning. It contains 295 incidents.

• Data set 3: field data from 03.01.01 until 06.30.01, to be used for the second testing.
Recalibration and threshold tuning. It contains 335 incidents.

• Data set 4: field data from 07.01.01 until 08.31.01, to be used for the third testing. It
contains 170 incidents.

The testing methodology was as follows:

• A data set (Data Set 1) was used to select the statistical model (specification of
explanatory variables), calibrate the model (estimation of model parameters) and carry out
threshold tuning. The false alarms, correct estimates and failures of this data set were also
analysed. This data set will be referred to as the training data set, using a statistical
terminology.

• Subsets of Data Set 1 (i.e., Data Sets 2 to 3) and Data Set 4, reflecting summer seasonal
conditions, were used for model testing. They also estimate the incident probability for
each of the recorded incident periods and reliable incident-free data during the time period
under study, and determine false alarms, correct estimates and failures after partial model
redefinition.

Due to the lack of data, since incidents are rare events, a single level (non-hierarchical)
model was considered that takes as a response a dichotomic variable indicating the occurrence
or otherwise of an incident: no specific incident type model was tested.

Model validation by examination of the apparent accuracy of a generalized linear
regression model using the training data set is not very useful [18]. The most stringent test of
a model is an external validation -- the application of the ‘frozen’ model to a new data set --
but data is very expensive to obtain. There are several methods for obtaining internal
assessments of accuracy: internal model validation, data-splitting, cross-validation and
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bootstrapping. An approach to data-splitting internal validation was selected, given the
constraint that incidents are rare events and incident data are too precious to waste.

The Estimation Rate, ER, is defined as the number of pass results (successful prediction of
incident) divided by the total number of incidents selected from the historical database. The
target value defined in the PRIME Project was 80%.

The False Alarm Rate, FAR, is defined as the number of false alarms raised over the total
test period divided by the total number of test records in the test period. The target value
defined in the PRIME Project is 10%. A false alarm occurs when a high risk is predicted for a
section in a given time period in a non-incident situation; this happens when the probability
exceeds the high-risk threshold, but no incident occurred.

The purpose of the EIP-HLOGIT model is to identify dangerous situations that might lead
to an incident occurrence. Thresholds are tuned in such a way that incidents are properly
identified, all incidents (or at least as many as possible), and yielding an Estimation Rate, ER,
that should be as high as possible. There is a trade-off between Estimation Rate and False
Alarm Rate. Since incidents are rare events, risk thresholds must be tuned in such a way that
the Estimation Rate is high and the False Alarm Rate is as low as possible. FAR proved to be
very high and the target values in the PRIME Project were not met, since the threshold for
high-risk situations must be tuned to a very low probability value.

3.3 Results for Data Set 1: Model Selection, Calibration and Threshold Tuning

The statistical results after model selection, calibration of model parameters and threshold
tuning show: 2404 alarms raised over 6389 time periods, 982 of them raised in an incident
period situation (1536 registers in a total of 6389), some of them corresponding to 219
incidents of a total of 283 included in Data Set 1, leading to an ER of 78%. In contrast, 1422
alarms raised in a non-incident situation and 554 incident situations were not detected as
‘high-risk’, leading to a failure result of 1976 of 6389 registers leading to a Failure Rate of
31%, and a FAR of 1422 to 6389 or 22% (see Table 1).

Threshold tuning for high-risk setting was established according to statistical analysis of
the estimated probabilities in incident and non-incident situations

In the model selection phase, the model containing direct variables (from the Historical
Datastore) was not explanatory. In order to improve the model quality, the statistical analysis
conducted led to a discretization of some continuous variables available for the Barcelona site
in order to smooth real data and clarify the model selection process. The discretization
considered was the following:
• Volumes were classified into four groups: Low (0 to 1500, represented by 600), Medium
(1500 to 3000, represented by 2100), High (3000 to 4500, represented by 3600) and Jam
(more than 4500, represented by 5100).

• Speeds were classified into four groups: Low (0 to 50, represented by 30), Medium (50 to
75, represented by 60), High (75 to 100, represented by 90) and Extreme (more than 100,
represented by 120).

• Sections were classified according to their length: Short, less than 300 m (represented by
200); Medium, 300 to 600 m (represented by 450); Long, more than 600 m (represented
by 700).

• Occupancies were classified in four groups: Low, from 0 to 15% (represented by 5%),
Medium, from 15 to 25% (represented by 20%), High, from 25 to 50% (represented by
35%) and Jam, over 50% (represented by 75%).
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The most significant variables found were speed and occupancy. Speed is included in the
statistical model as a covariate, and terms of order 1, 2 and 3 are necessary (terms of order 2
and 3 are included centered with respect to the mean speed). Occupancy is included in the
model as a factor and volume is included as a covariate. From a statistical point of view,
section length has no validity as an explanatory variable.

The statistical analysis showed that a simple additive model including speed and
occupancy was not statistically significant. However, interactions between linear, quadratic
and cubic terms of speed and discretized occupancy were found to be significant, and
therefore it was necessary to include them in the model.

The resulting statistical model uses 16 degrees of freedom out of a total of 5697 (number
of covariate classes in statistical terms), and it conforms to Pearson and Hosmer-Lemeshow
statistical tests of goodness of fit.

The constant (intercept) coefficient is not meaningful for the proposed model. The
coefficient in the additive scale represented by the logit transformation of estimated
probabilities for each level of the factor occupancy shows non-linear behavior, since the
likelihood (of incident occurrence) in the 20% level of occupancy increases by 6182% with
respect to that of the reference occupancy (5%, the lowest), but the likelihood decreases for
75% occupancy. First order effects of the covariates speed and volume show a negative
coefficient, indicating a reduction in the probability of incident occurrence as speed and
volume increase. The key variables in the model are the second and third order interactions
between the factor occupancy and speed, which lead to significant third order curves on the
logit scale on speed, one for each level of the factor occupancy. These have the corrective
effect of decreasing the probabilities of the linear effects with low occupancies and increasing
the probabilities with high occupancy.

For low occupancy situations, lower speeds identify higher risk situations. For high
occupancy (75%), the observed risk increases from 0 to 15 kph, but decreases as speed
increases. Obviously, no simple model can be adjusted to observed probabilities in the
transformed logit scale. For low speeds, the model is able to reproduce observed data, but the
behavior is very difficult to understand and reproduce for high-speed situations. The
estimated model is very soft (a third order curve is estimated for each occupancy level),
compared to observed probabilities in the logit scale which are extremely non-linear (and
show a very different pattern for each occupancy level), but from a statistical point of view,
given the small number of incidents present in the reference data, more complex models could
be too sparse, leading to non-valid inference results, in other words, for the amount of
available data, the model is complex enough, and in fact, observed incident probabilities (in
the logit scale) have been shown to be very difficult to model.

In order to mathematically describe the estimated third order curves in the logit scale of
incident probability, let x be the covariate speed, and y be the covariate volume, then the
estimated probability of incident occurrence (any incident type) for section i can be described
as:

( )
( )i
i

ip
η

η

exp1

exp

+
=

Where for current section i, if its level of occupancy is 5%:

( ) ( ) %
.....

532
00000130000083000007390014035040 iiiiii xxxxyx ηη =−+−+−−−=
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For current section i, if its level of occupancy is 20%:

( ) ( )325 00001970002004890144 xxxxx iiiii −−−−−+= ....
%ηη

For current section i, if its level of occupancy is 35%:

( ) ( )325 0000030800005660068805244 xxxxx iiiii −−−−−+= ....
%ηη

For current section i, if its level of occupancy is 75%:

( ) ( )325 00007900087302454060314 xxxxx iiiii −+−++−= ....
%ηη

All coefficients are statistically significant.

A similar analysis was conducted for each data set. The results are summarized in Table 1.
A detailed description can be found in [20].

The results of testing the performance of the EIP-HLOGIT can be summarized in terms of
False Alarm Rate versus Estimation Rate, the most significant MOE’s for the authors (see
Table 1). The trade-off between these two performance indicators achieved by the tests
conducted with the data sets collected during the PRIME Project’s life shows that the EIP-
HLOGIT can be interpreted as a promising method for early identification of incident
conditions and represents an added value to the traditional analysis based only on aggregated
traffic variables. The quality of the results, in spite of the reported inadequacy of a significant
part of the collected data, is good enough to encourage the follow-up of the tests with new and
more accurate data. In particular, from the available data sets and corresponding results it is
clear that:

• The quality can be improved if data for longer periods are available.

• The observed discrepancies between the results for the various data sets indicate a clear
seasonal impact. Data sets for longer periods will allow us to verify this perceived
tendency and, if applicable, to adjust the models for different seasons.

• Unfortunately the current recording methods have not allowed us to collect data for some
other variables initially suspected as being of potential interest. The achieved results
suggest that if it were possible to collect data for additional variables, the quality of the
estimation would be substantially improved.

According to high-risk threshold tuning criteria, Estimation Rate and False Alarm Rate can
vary substantially for each data set. The results for Data Set 3 are depicted in Figure 4. The
criteria for fixing the ‘high-risk’ threshold are the 25% and 75% quartile expected probability
of incident (predicted for the model) under a real incident situation and under a real incident-
free situation.

4. CONCLUSIONS

4.1 Safety indicators for micro-simulation assessment

The "unsafe" density parameter is an important indicator for safety assessment and gives
more accurate information than typical micro-simulation outputs. It allows, among other
things, to highlight the difference in safety level between a fluid and a "jerked" traffic flow
situation, which cannot be shown by using traditional macroscopic outputs like speed, flow or
occupancy. The "unsafe" density parameter is based on the direct interaction between pairs of
vehicles, which is the most appropriate for treating safety problems.
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However, some limitations must be taken into account. The value of this parameter doesn't
really have a sense in itself and must be used only for comparison purposes. The "unsafe"
density parameter takes into account only potential for rear-end collision and is therefore
particularly planned for highways network assessments.

4.2 Estimation of Incident Probability

The EIP-HLOGIT statistical approach for the estimation of dynamic incident probabilities
has achieved promising results in terms of the Estimation Rates and False Alarm Rates
reached, over 80% for ER and an average FAR in the range 20-40%, making the approach
suitable for application as an early indicator of static and dynamic variables affecting incident
conditions and for assisting traffic managers in applying preventive strategies. Furthermore,
the innovative approach that the flexibility of a statistical general regression model applied to
dynamic data represents provides information for real-time traffic management purposes that
goes beyond what is achievable using traditional static analysis based on aggregated variables
[13], [14], [15].

The strongest points are the relative simplicity of the statistical model and the systematic
procedure provided for the model calibration process. The EIP-HLOGIT concept is applicable
to any road network provided it is possible to collect the sensitive data. The integration of the
EIP-HLOGIT in the GETRAM-AIMSUN micro-simulation environment allows the
assessment of incident management strategies and improves the possibilities of AIMSUN as a
component of a traffic management tool.

As reported in the results of EIP-HLOGIT for Barcelona’s test site, data collection is still the
bottleneck to applying this statistical approach. Nevertheless, despite the problems with field
data in the Barcelona site (inconsistent field data, different departments of Barcelona City
Council as sources for traffic and incident data), results in terms of statistical association
between traffic data and incident occurrence are very promising, leading to meaningful
explanatory models in all cases. The weak point in the approach identified during testing is
the high False Alarm Rate (it does not meet the target value of 10%), which we hope could be
improved if better data, reliable data for longer time periods, and data for additional variables
were available.
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TABLES

EIP Validation

Measure of

Effectiveness

Data Set 1 Data Set 2 Data Set 3 Data Set 4

Estimation

Rate

219 of 283
incidents;
i.e., 78%

19 of 22
incidents;
i.e., 86%

210 of 254
incidents;
i.e., 83%

18 of 23
incidents;
i.e., 78%

False Alarm

Rate
1422 of 6389
registers; i.e.,
22%

900 of 2741
registers; i.e.,
32%

1211 of 4005
registers; i.e.,
30%

182 of 482
registers; i.e.,
37%

Table 1. Barcelona test site: EIP-HLOGIT performance
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Figure 1: One hour average UD for each of the microsimulation model's sections
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Figure 2: Evolution of the UD on a section (ID 35) between both entrances during the
simulation process
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Figure 3: Evolution of the UD on a the entrance area section (ID 43) during the simulation
process

Figure 4. EIP-HLOGIT: FAR-ER trade-off for Data Set 3
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