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Abstract. The formulation of suitable boundary conditions is a very crucial task when 
modeling water infiltration into macroporous hill slopes. The processes of water infiltration 
and exfiltration vary in space and time and depend on the flow on the surface as well as in the 
subsurface. In this contribution we have purposed special system process dependent boundary 
conditions can be formulated for a two-phase dual-permeability model to simulate infiltration 
and exfiltration processes. The presented formulation analyses the saturation conditions of the 
dual-permeability model (e.g. saturation) at the boundary nodes and adopts the boundary 
conditions depending on the processes at the soil surface such as rainfall intensity. Using a 
simplified macroporous hill slope and a heavy rainfall event we demonstrate the functionality 
of our formulation.  

 
 
1 INTRODUCTION 

Fast water infiltration into hill slopes during rainfall is an important issue since it can 
reduce slope stability and act as trigger for landslides. Modelling the water infiltration is an 
important key to understand the processes that can lead to a slope failure. The soil of natural 
slopes may be highly strongly heterogeneous and contains often macropores which strongly 
affect water flow1. For this reason, dual-permeability models are frequently used to simulate 
the coupled flow processes in such macroporous soils, where the soil is separated into two 
coupled overlaying domains, a matrix domain containing the small matrix pores and a 
macropore domain containing larger pores (e.g. earthworm channels, fissures and fractures). 
Separate balance equations are defined for each domain and mass transfer functions are 
introduced to describe the fluid exchange depending, for example on the pressure differences 
between macropore and matrix and the resistance along its interface. Dual-permeability 
models that simulate the water infiltration into the unsaturated zone are typically based on the 
Richards equation for both domains as found in Gerke and van Genuchten2. A more general 
dual-permeability model can be obtained when applying the two-phase flow equations instead 
of the Richards equation. This is necessary when the mobility of the soil air must be taken 
into account and the air pressure deviates from atmospheric pressure. Typical examples for 
that are strongly heterogeneous and layered soils where water is ponding and soil air escape is 
limited3. As such a case is investigated here, we decided to use the two-phase (water/air) dual-
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permeability model developed by Stadler et al.4 of the multi-scale multi-physics toolbox 
DuMux5 for our work.  

A special difficulty for modelling the water infiltration processes with a dual permeability 
model is the definition of reasonable boundary conditions. Most of the rainwater will usually 
infiltrate via the matrix into the soil until the infiltration capacity of the matrix is exceeded. 
When surface runoff occurs, water will also infiltrate directly into surface connected 
macropores. Consequently, the formulation of boundary conditions must be flexible since 
those for matrix and macropores are coupled and depend on the pressure and saturation 
conditions which vary in space and time. Such special boundary conditions are also called 
system-dependent boundary conditions6. In this paper we discuss all the different cases which 
can occur during infiltration and exfiltration and we describe the way they are implemented as 
boundary conditions in an external module of our two-phase dual-permeability model within 
DuMux.  

2 DUAL-PERMEABILITY MODEL 
Our dual-permeability model is based on the separation of the soil pores into matrix pores 

and macropores. Mass balance equations combined with the extended Darcy’s law are first 
defined for both pore systems (domains) separately. They are then linked by a mass transfer 
equation to describe the fluid exchange between matrix and macropore domain. A detailed 
review of models and concepts for dual-permeability models can be found in Šimůnek et al. 7.   

2.1 Model equations  
The balance equations for a two-phase flow dual-permeability system for the wetting phase 

w and the non-wetting phase n can be written for the matrix domain  and the macropore 
domain  as: 
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Where  [L3L-3] is the porosity of a domain i (matrix/macropore),  [L3L-3] the fluid 

saturation of a phase

i iS

 ,  [kg m-3] the density, i


iv
 [m s-1] the vector of the Darcy velocity, 

[kg s-1] is a source/sink term and iq  [kg s-1] a mass transfer term that describes the 
exchange between matrix and macropore domain. In a two-phase water/air system the water 
will be the wetting phase and the air the non wetting phase. The pressure difference between 
both phases in each domain (i) is equivalent to the capillary pressure  [Pa] and can be i

cp
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described as function of the effective saturation .  i
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i
rS  is the residual saturation of a fluid. In the presented work we use the formulation after 

van Genuchten8 to compute the capillary pressure relationship:  
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The van Genuchten parameters nm,,  are parameters that describe the shape of the 
relationship. The parameters depend on the soil properties and are different for each domain 
of the dual-permeability model. The fluids in each domain fill the full pore space of the 
domain so that the sum of both saturations is in each domain is equal to one:  
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The Darcy velocity of a phase in a domain can be computed with the extended Darcy law: 
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where K [m2] is the intrinsic permeability tensor, [kg m-1 s-1] the dynamic viscosity and i


ik [-] is the relative permeability which can be calculated with the van Genuchten relationship 
in combination with the model of Mualem9: 
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Where  are again the van Genuchten parameters which depend on the considered 
domain.  The mass transfer between both domains is approximated by a first-order transfer 
equation10 that depends on the pressure differences between both domains 

nm,

)fm ps    , (9)

s [m-1] is a scaling factor between the regarded soil volume [m3] and the macropore 
surface.   [m] is a surface resistance parameter and   [kg m-1 s-2] the mobility (relative 
permeability over dynamic viscosity).   

2.2 Numerical model 
The four balance equations (eq. 1) of the two-phase dual-permeability model together with 

supplementary and further conditions (eqs. 2-9) yield to a strongly coupled system of four 

 3
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non-linear partial differential equations with mixed parabolic / hyperbolic character. DuMux 

applies a local and global mass conservative box method (mixture of Finite-Element and 
Finite-Volume Method) for the spatial discretization of the dual permeability model. The time 
discretization is done with a full implicit Euler scheme11. Further, the Newton-Raphson 
Me

es on the actual time level while the primary variables 
are computed on the new time level.  

3 

ater infiltration 
during rainfall and water exfiltration during saturated conditions (see Fig. 1).  

thod is used for the linearization of the system12. 
We selected the pressures of the non-wetting phase and the saturation of the wetting phase 

as primary variables. The switch of the boundary conditions presented in the following is 
determined by an analysis of the valu

DEFINITION OF SYSTEM DEPENDEND BOUNDARY CONDITIONS 
Natural systems like hill slopes are characterized by a strong temporal and spatial variation 

of subsurface (e.g. saturated/unsaturated) and surface-water flow conditions (e.g. overland 
flow/dry conditions). It is urgently required to simulate subsurface flow in a natural slope 
with varying boundary conditions since soil and surface are representing a coupled system. 
The most common cases where boundary conditions must be adopted are w

 
Figure 1: Water infiltration and exfiltration. 

. The presented concept can be easily extended and 
co

Surface runoff can occur in steep hill slopes and when the permeability and / or rainfall 
intensity are high. However, surface runoff is not taken into account here. The impact of this 
simplification is reduced when the hill slope gets flatter and when the permeability and 
rainfall intensity are getting smaller

upled with surface runoff models.  
It is possible to define four different inner states of the system (Fig. 2, left) which depend 

on the soil conditions in the matrix and macropore domain. In combination with the available 
water for infiltration, this leads to eight possible cases which must be distinguished for the 
definition of which will be explained in the following. The available water can be water from 

 4
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a rainfall event, overland flow or ponding surface system-dependent boundary conditions and 
water.  

 
re domain (left) in coFigure 2: Possible states matrix and macropo mbination with possible states at the soil 
surface (right). 

 
negative sign indicates that water will infiltrate over the surface boundary. 

In a first step it is necessary to determine the system state. Therefore, the saturations at 
boundary nodes are regarded. If a cell is saturated, the mass fluxes (Fig. 3) are additionally 
computed to analyze whether water is infiltrating or exfiltrating over the boundary surface. 
The corresponding cell fluxes over the cell surfaces (inner boundaries) are surfaceF  and the 
fluxes between matrix and macropore domain are mass transfers transferF . If the sum of both 
fluxes is positive, outflow over the boundary will occur when the element is saturated. A

 5
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Figure 3: Fluxes at boundary node (i) for matrix and macropore domain and mass transfer fluxes for fluid 

exchange between both domains.  

In the following we discuss the four possible cases and the corresponding sub-cases which 
can occur. Based on the presented concept Dirichlet and Neumann boundary conditions can 
be prescribed for both domains. The pressure of the gas phase is chosen as primary variable in 
both domains and is set to atmospheric pressure as long no water table stands above the soil 
surface. The saturation of the water phase is variable and Dirichlet or Neumann boundary 
conditions are set depending on the system state.  

3.1 Case 1 – unsaturated matrix and unsaturated macropore domain  
No ponding of water occurs as long as both domains are unsaturated. Thus, atmospheric 

pressure is set as Dirichlet boundary condition for the gas phase of both domains (1a, 1b). A 
Neumann no-flow boundary condition is set for the water phase in both domains (1b) if no 
water is available for infiltration. If water is available, it is checked whether the actual 
infiltration capacity  of the matrix is exceeded. If yes, the remaining water infiltrates via 

the macropores ( q  and ). If not, the whole water infiltrates via the 

matrix (  and ). Due to the high macropore conductivity there is usually no 
limitation for the water infiltration into the macropores until they are saturated.   
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3.2 Case 2 - unsaturated matrix and saturated macropore domain  
Macropore flow will usually only occur when the matrix is saturated. However, in some 

cases the water can bypass an unsaturated matrix and flow through the macropore domain. 
This is a special case which may occur at the toe of a slope where water can flow out through 
saturated macropores. Regardless of whether water infiltrates or exfiltrates (2a, 2b), 
atmospheric pressure is set for the gas phases in both domains (Dirichlet boundary condition).  

The definition of boundary conditions is very complex for case 2 since a high non-
equilibrium between matrix and macropore domain exists. For single domain concepts water 
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will only exfiltrate when the soil is fully saturated. This can be also prescribed for dual-
permeability models when a Neumann no-flow boundary condition for both domains is set. 
However, the water can bypass an unsaturated matrix and escape to the surface. Thus, a 
Neumann boundary condition is set for the water phase of the matrix and a Dirichlet boundary 
condition is set for the macropore domain (2a). The water can also infiltrate from the surface 
into saturated macropores during infiltration (2b). If more water than available infiltrates via 
the macropores the Dirichlet boundary condition for the water phase is switched to a 
Neumann boundary condition. 

3.3 Case 3 – saturated matrix and saturated macropore domain 
For this case it is necessary to check the mass fluxes at the boundary node to control 

whether water is infiltrating or exfiltrating. As mentioned above, surface runoff can be 
neglected for macroporous slopes and the pressure in both domains is set as Dirichlet 
boundary condition, assuming atmospheric pressure during ex-filtration (3a). The influence of 
the pressure increase du the water level will be negligible for small water depths. However, 
when water stands above the surface (e.g. river), the pressure must be adopted. For infiltration 
(3b) it is checked whether if the infiltration capacity exceeds the available water and in case a 
switch to a Neumann boundary condition for the water phases in one or both domains 
(depending on the infiltration rates) is carried out.  

3.4 Case 4 – saturated matrix and unsaturated macropores 

The last case generally occurs during infiltration (4a) if the infiltration capacity of 
the matrix is lower than the available water for infiltration. Then the rest of the available 
water will infiltrate via the macropores ( ). This case is 
implemented by a Neumann boundary condition for the water phase of the macropore domain 
and Dirichlet boundary conditions for the water phase in the matrix domain (fully saturated). 
The pressure of the gas phase is set again to atmospheric pressure. If no water is available for 
infiltration, outflow may occur via the matrix pores (4b). However, the water will directly 
infiltrate into the macropores. A Neumann no-flow boundary condition is set for the water 
phase in the matrix domain. This leads to an increasing saturation in the macropore domain 
and avoids water exfiltration until the macropores are saturated.     

m
wq max,

f
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4 EXAMPLE 
Common examples where system-dependent boundary conditions can be demonstrated are 

small slopes where the water infiltration leads to an increasing groundwater table during 
infiltration. The model domain (Figure 4) for our example is a simplified macroporous hill 
slope similar as shown in Figure 1. The soil parameters for the study are given in Table 1. A 
rainfall event with a intensity of 40mm/h and a duration of two hours is investigated to study 
water infiltration. The groundwater table at the initial state (Figure 3a) is influenced by the 
water body at the right side where a water level (e.g. lake) is imposed using Dirichlet 
boundary conditions for the matrix and macropore domain. The level of the water body is 
assumed to be constant during the whole simulation time. The initial saturation in the matrix 
and macropore domain is very low (~0.3). The rainfall intensity will exceed the infiltration 
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capacity of the matrix so that macropore flow will occur directly. Soil parameters and initial 
conditions are chosen to test most of the possible cases during this extreme situation. 

Starting with a low saturated zone (Figure 3a), the water table increases mainly in the right 
part of the hill slope during water infiltration, the nodes on the right boundary above the water 
table get saturated and switch to Dirichlet conditions (Figure 3b, right). Most of the water 
infiltrates via the macropores and bypasses the matrix because of the low permeability of the 
matrix domain. After the rainfall event has finished, the saturation of the boundary nodes at 
the right side is reduced and they switch back to Neumann no-flow boundary conditions 
(Figure 3c, right).  

 
Figure 4: Water saturation of the matrix (left) and macropore domain (right) for various times (a = 0h, b = 2h 

and c = 2.5h) for an infiltration rainfall rate of 40mm/h and a period of two hours. 
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Table 1: Soil parameters 

 matrix domain  macropore domain 
Swr [-] 0.14 0.05 
Snr [-] 0.05 0.05 
K [m2] 1.0E-13 1.0E-11  

van Genuchten n [-] 2.2 4.2 
van Genuchten α [Pa-1] 5.0E-4 8.0E-3 

Φ [-] 0.4 0.08 
β [m] 2.0E-13 2.0E-13 

s [m-1] 1 1 
 

5 CONCLUSIONS 
In this paper we have proposed a concept to simulate simplified interactions between 

surface and subsurface flow on macroporous hill slopes where the overland flow is not taken 
into account yet. The two-phase dual-permeability model of the numerical simulator DuMux 
was extended by special system-dependent boundary conditions to simulate infiltration and 
exfiltration processes on macroporous hill slopes. An idealized system with a low matrix 
infiltration capacity was investigated to test the model capabilities during a high rainfall 
event. Due to the low permeability of the soil matrix the rainwater bypassed the soil matrix 
and water infiltration and exfiltration mainly occurred via the macropores. In future work the 
proposed concept will be further extended and coupled with a surface runoff model.  
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