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Abstract:  5 

In this paper, flexural stiffness reduction factor formulations, applicable to stainless steel members with compact cold-6 

formed square and rectangular hollow section (SHS and RHS), are extended to account for local buckling effects and initial 7 

localized imperfection (ω). Local buckling effects and the influence of ω are accounted for by means of reducing the gross 8 

section resistance using a strength reduction factor ρ. ρ, determined by the Direct Analysis Method, depending on cross-9 

section slenderness, is adopted. For in-plane stainless steel elements with non-compact and slender sections, results 10 

determined by the extended flexural stiffness reduction factor coupled with Geometrically Nonlinear Analysis (GNA) are 11 

verified against those determined by Geometrically and Materially Nonlinear Analysis with Imperfections (GMNIA). It is 12 

found that GNA with the extended flexural stiffness reduction factor (using beam element) generally achieves the accuracy 13 

of GMNIA (using shell element). Probabilistic studies based on 3D models with random ω are carried out to evaluate the 14 

effect of uncertainty in ω on the accuracy of GNA with the extended beam-column flexural stiffness reduction factor. 15 

Keywords: Local buckling; stiffness reduction; stability; probabilistic studies; stainless steel  16 

Notation 17 

c :  Column slenderness 18 

l :  Cross-sectional slenderness 19 

r and p : Limiting width-to-thickness ratio 20 

ρ:  Strength reduction factor accounting for local buckling effects 21 

τM:  Flexural stiffness reduction factor for beam with compact cross-sections 22 

τN:  Flexural stiffness reduction factor for column with compact cross-sections  23 

τMN:  Flexural stiffness reduction factor for beam-column with compact cross-sections 24 

τM-ρ:  Flexural stiffness reduction factor for beam with non-compact and slender cross-sections considering local  25 

buckling effects 26 

τM-shell τM derived from the M-k curve determined by GMNIA-shell 27 

τM-beam τM derived from the M-k curve determined by GMNIA-beam  28 

τN-:  Flexural stiffness reduction factor for column with non-compact and slender cross-sections considering local  29 

buckling effects 30 



2 
 

τMN-ρ: Flexural stiffness reduction factor for beam-columns with non-compact and slender cross-sections considering  31 

local buckling effects (determined based on minimum strength reduction factors) 32 

τMN-ρmem: Flexural stiffness reduction factor for beam-columns with non-compact and slender cross-sections considering 33 

local buckling effects (determined based on corresponding strength reduction factors) 34 

ω:  Initial localized imperfection 35 

ωmax:  The maximum initial localized imperfection 36 

γ:  A parameter used to facilitate the comparison of results provided by different methods 37 

γS:  γ determined by GMNIA-shell 38 

γB:  γ determined by GMNIA-beam 39 

γ:  γ determined by GNA-τMN- 40 

γm:  γ determined by GNA-τMN-mem 41 

µ:  Mean value 42 

B2-E :  Amplification factor evaluates P-∆ effects (including P-δ effects) on elastic beam-columns  43 

Cm :  Equivalent uniform moment factor  44 

COV: Coefficients of Variation 45 

DM:  Direct Analysis Method provided in AISC 360-16 46 

DSM: Direct Strength Method 47 

GMNIA: Geometrically and Materially Non-linear Analysis with Imperfections 48 

GMNIA-shell: GMNIA using shell element 49 

GMNIA-beam: GMNIA using beam element 50 

GNA: Geometrically Non-linear Analysis  51 

GNA-τN-: GNA coupled with τN-  52 

GNA-τMN-: GNA coupled with τMN- 53 

GNA-τMN-mem: GNA coupled with τMN-mem 54 

LA:  Linear Elastic Analysis 55 

M1 and M2 :Applied external end moments, |M1| ≤ |M2|. 56 

Mn:  Nominal flexural strength of a beam 57 

Mne:  Nominal global (lateral-torsional) buckling moment 58 

Mnl:  Nominal local buckling moment 59 

Mcrl:  Elastic critical local buckling moment. 60 
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MP :  Moment at full cross-section yielding  61 

My :  Moment at yielding of the extreme fiber 62 

Mr1:  Maximum internal first order moment within the member 63 

Mr2:  Maximum internal second order moment within the member 64 

Mr2-GMNIA-S: Mr2 determined by GMNIA-shell 65 

Mr2-τMN-: Mr2 determined by GNA-τMN- 66 

Mr2-τMN-mem: Mr2 determined by GNA-τMN-mem 67 

Mu:   Ultimate external moment 68 

Mu-GMNIA-B:Mu determined by GMNIA-beam 69 

Mu-GMNIA-S:Mu determined by GMNIA-shell 70 

Mu-τMN-ρ Mu determined by GNA-τMN-ρ 71 

Mu-τMN-ρmem Mu determined by GNA-τMN-ρmem 72 

Mu-rand Mu for each model with random ω 73 

Pcrl:  Elastic critical local buckling strength of the column 74 

Pe :  Elastic critical global buckling strength of the column 75 

Pe-τN-: Pe determined by the reduced flexural stiffness (τN-times initial flexural stiffness) 76 

Pn:  Nominal compressive strength of a column 77 

Pne:  Nominal global buckling strength in compression 78 

Pnl:  Nominal local buckling strength in compression 79 

Pr1:  Maximum internal first order axial force within the member 80 

Pr2:  Maximum internal second order axial force within the member 81 

Pu:  Ultimate axial load of the member  82 

Pu-GMNIA-B: Pu determined by GMNIA-beam 83 

Pu-GMNIA-S: Pu determined by GMNIA-shell 84 

Pu-τMN-:  Pu determined by GNA-τMN- 85 

Pu-τMN-mem: Pu determined by GNA-τMN-mem 86 

Pu-τN-:  Pu determined by GNA-τN- 87 

Pu-rand :  Pu for each model with random ω 88 

Py :  Cross-section yield strength 89 

RM:  Factor accounts for P-δ effects on the global behavior of the structure 90 
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1. Introduction  91 

Stainless steel is a high-performance material for the construction industry and has attracted much attention [1-2]. It has 92 

been studied for structural applications at material, member, and system level [3-9]. A stiffness reduction-based design 93 

approach: Geometrically Nonlinear Analysis (GNA) coupled with flexural stiffness reduction factor, for the in-plane 94 

stability design of stainless steel elements and frames has been established by Shen and Chacón [10]. In this approach, the 95 

flexural stiffness reduction factor accounts for the deleterious influence of spread of plasticity, residual stresses, and 96 

member out-of-straightness, while GNA accounts for second order effects. The ultimate limit state for this approach is the 97 

formation of first plastic hinge.   98 

In [10], flexural stiffness reduction functions were developed and verified for compact cold-formed rectangular hollow 99 

section (RHS) and square hollow section (SHS). In practical situations, many economical cold formed stainless steel hollow 100 

box sections contain slender thin-walled elements that are susceptible to local buckling. For these sections, adequate 101 

flexural stiffness reduction functions that are capable of taking into consideration local buckling effects should be 102 

developed. Although great efforts have been made to stiffness reduction-based design approaches [11-18], when it comes 103 

to local buckling effects on the flexural stiffness reduction of slender elements, less information is available. For Direct 104 

Analysis Method (DM) provided in AISC 360-16[19], which is a representative example of GNA with stiffness reduction 105 

approach, the influence of local buckling on the flexural stiffness reduction of slender elements subjected to compression 106 

are accounted for by means of reducing the resistance of the gross section. A similar approach to account for local buckling 107 

effects on column flexural stiffness was adopted by White et al. [15]. This reduction in gross section resistance can be 108 

considered through either using the effective cross-sectional area (effective widths of elements) determined by Effective 109 

Width Method (EWM)[20-23], or adopting a strength reduction factor (ρ) that accounts for local buckling effects for 110 

compression elements [24-26]. 111 

In the current paper, for stainless steel elements with non-compact and slender sections, the flexural stiffness reduction 112 

formulations provided in [10] are extended by reducing gross section resistance. Non-compact section here refers to cross-113 

section that is able to reach the yield stress (0.2% proof stress) in its compression elements before inelastic local buckling 114 

occurs, but is unable to develop fully plastic stress distribution due to local buckling. Slender section here refers to cross-115 

section in which inelastic local buckling will occur in the range between proportional limit and yield stress (0.2% proof 116 

stress). The proportional limit of stainless steels ranges from 40% to 70% of the 0.2% proof strength [27]. Cross-sections 117 

in which elastic local buckling occurs below 40% of the 0.2% proof strength are not considered in this paper. According 118 

to [28], stainless steel hollow sections under compression containing elements with width-to-thickness ratios greater than 119 

λr from Table 1, are defined as slender. For stainless steel hollow box sections subjected to bending, if one or more 120 
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compression element with width-to-thickness ratios great than λp but less than λr provided in Table 1, these sections are 121 

defined as non-compact, while if the width-to-thickness ratio of any compression element exceeds λr, these sections are 122 

designated as slender.  123 

Table 1. Limiting width-to-thickness ratios for stainless steel box sections (E and fy are Young’s Modulus and 0.2% proof 124 

stress, respectively) 125 

Limiting width-to-

thickness ratios 

Compression elements 

subject to axial compression 
Compression elements subject to flexure 

λr  λp λr  

Flange  1.24 (E/fy )0.5 1.12 (E/fy )0.5 1.24 (E/fy )0.5 

Web 1.24 (E/fy )0.5 2.42 (E/fy )0.5 3.01 (E/fy )0.5 
 126 

Besides local buckling effects, cross-sections that contain slender elements are susceptible to initial localized imperfection 127 

ω (as illustrated in Fig.1.). Localized imperfections, which are induced from rolling and fabrication process, have sufficient 128 

variability and have no definitive characterization [29]. Therefore, it is necessary to evaluate the sensitivity of the extended 129 

stiffness reduction factor (in conjunction with GNA) to random ω (both the shape and magnitude of ω varied randomly). 130 

In the following sections of the paper, strength reduction factors used to reduce the resistance of the gross section are first 131 

presented, followed by a brief description of the adopted finite element modelling approach. The extension of the flexural 132 

stiffness reduction formulations by incorporating strength reduction factors, and subsequent verification are presented in 133 

Section 4. Probabilistic studies to evaluate the effect of uncertainty in localized imperfection on the accuracy of GNA 134 

coupled with the extended flexural stiffness reduction factor are then presented.  135 

2 Strength reduction factors for considering local buckling effects   136 

A strength reduction factor (ρ), which is a function of cross-sectional slenderness (λl), accounting for local buckling effects 137 

for compression elements, is used to reduce the resistance of a cross-section due to local buckling reduction. In general, ρ 138 

can be determined by two methods: the Effective Width Method (EWM) and Direct Strength Method (DSM). For DSM, 139 

ρ, depending on λl, is given directly. And the same strength reduction curve is adopted for both columns and beams to take 140 

into consideration the interaction of global buckling with local buckling [26]. For EWM, since formulations that determine 141 

the resistance of members subject to local buckling reduction are based on effective cross-sectional area (effective widths 142 

of elements) [30-33], they have to be rewritten in terms of cross-sectional slenderness, to obtain the expression of ρ. The 143 

strength reduction factors derived from different design codes and specifications that adopt EWM may vary slightly. 144 

The accuracy of both DSM and EWM highly depends on the accuracy of the adopted flexural buckling strength curves that 145 
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determine the global buckling strength. The study of Arrayago et al. [34-35] showed that, compared to EWM, DSM-based 146 

approach gave more accurate predictions for most cold-formed stainless steel RHS and SHS members, when the same 147 

flexural buckling strength curve was adopted in DSM and EWM to determine the global buckling strength. Therefore, the 148 

strength reduction factors determined by DSM rather than EWM are adopted in this paper. They are shown in the following 149 

sections:  150 

2.1 ρ for members subjected to axial compression 151 

For members in compression, ρ is given by Eq.(1) and (2), shown in Fig.2. The strength reduction factor ρ considers 152 

interaction between global and local buckling. 153 

when ߣ௟ ൑ 0.776     
௉೙೗
௉೙೐

ൌ ߩ ൌ 1                (1) 154 

when ߣ௟ ൐ 0.776     
௉೙೗
௉೙೐

ൌ ߩ ൌ ௟ߣ
ି଴.଼ െ ௟ߣ0.15

ିଵ.଺            (2) 155 

where λl=(Pne/Pcrl)^0.5; Pnl is the nominal local buckling strength in compression; Pnl is equal to the nominal compressive 156 

strength (Pn) of a column (without distortional buckling); Pne is the nominal global buckling strength in compression; Pcrl 157 

is the elastic critical local buckling strength.  158 

2.2 ρ for members subjected to bending 159 

The strength reduction curve shown in Fig.2 is applicable to members subjected to bending, provided that inelastic reserve 160 

strength (corresponding to λl ≤0.776 ) resulted from partial yielding of the cross-section under bending is not considered 161 

[26].The strength reduction factor for members in bending is given by 162 

when ߣ௟ ൑ 0.776     
ெ೙೗

ெ೙೐
ൌ ߩ ൌ 1               (3) 163 

when ߣ௟ ൐ 0.776     
ெ೙೗

ெ೙೐
ൌ ߩ ൌ ௟ߣ

ି଴.଼ െ ௟ߣ0.15
ିଵ.଺            (4) 164 

where λl=(Mne/Mcrl)^0.5; Mnl is the nominal local buckling moment; For a beam without distortional buckling, Mnl is equal 165 

to the nominal flexural strength (Mn); Mne is the nominal global (lateral-torsional) buckling moment; Mcrl is elastic critical 166 

local buckling moment.  167 

2.3 Calculation of nominal buckling strength and moment 168 

For Eq. (1), (2), (3) and (4), the corresponding nominal buckling strength and moment (Pne, Pcrl, Mne, and Mcrl) are 169 

determined in accordance with rules that are applicable to stainless steels, as follows: 170 

(1) The nominal global buckling strength Pne, given by Eq. (5) and (6), is determined in accordance with [28]. 171 

When ߣ௖ ൑ 1.2    ௡ܲ௘ ൌ 0.5ఒ೎
మ

௬ܲ                (5) 172 

When ߣ௖ ൐ 1.2    ௡ܲ௘ ൌ 0.531 ௘ܲ ൌ
଴.ହଷଵ

ఒ೎
మ ௬ܲ              (6) 173 

where λc is member slenderness; λc=(Py/Pe)^0.5; Py is full cross-section yield strength; Py=Afy ; fy is 0.2% proof stress; A is 174 
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gross section area; Pe=(π2 EI)/(Kl)2 ; E is Young’s Modulus, I moment of inertia, K effective length factor, l length of the 175 

member.   176 

(2) The elastic critical local buckling strength Pcrl is given by  177 

௖ܲ௥௟ ൌ ௖݂௥௟178 (7)                    ܣ 

where fcrl is the elastic critical local buckling stress. fcrl can be determined by Eq. (8) or determined by appropriate Software 179 

(such as CUFSM recommended by AISI S100-16 [26]). 180 

௖݂௥௟ ൌ
௞್గ

మா௧మ

ଵଶሺଵିఔሻమ௕మ
                   (8) 181 

where t is plate thickness, ν Poisson's ratio, b width of the slender element, Kb the buckling factor. 182 

(3) The nominal global (lateral-torsional) buckling moment Mne is determined based on [28]. According to [28], hollow 183 

box sections with height to width ratio less than 3 are not susceptible to lateral-torsional buckling (LTB). Since all the 184 

studied hollow sections in the present paper are within this limit, Mne is taken as Mp (moment at full cross-section yielding) 185 

for beams with non-compact sections while Mne is taken as My (moment at yielding of the extreme fiber) for beams with 186 

slender sections. 187 

(4) The elastic critical local buckling moment Mcrl is given by  188 

௖௥௟ܯ ൌ ௘ܹ௟ ௖݂௥௟                    (9)   189 

where Wel is elastic gross section modulus; the elastic critical local buckling stress fcrl can be determined by the software 190 

CUFSM, or determined by Eq.(8). 191 

It should be pointed out that, for stainless steel members with RHS and SHS, initial localized imperfection (ω) considered 192 

in the ρ factor is a random variable. In the current paper, the value of ω considered in the ρ factor is conservatively taken 193 

as the mean value of the maximum localized imperfection (ωmax) collected from reported tests. Statistical analysis of ωmax 194 

of a total of 161 cold-formed stainless steel RHS and SHS members has already been provided in [29, 36]. The study of 195 

Shen [36] showed that the mean value of ωmax of the collected samples is 0.185. A brief summary of the samples is shown 196 

in Table A.1 of Appendix. 197 

3. Numerical modelling 198 

The in-plane structural behavior of stainless steel elements susceptible to local buckling is studied using finite element (FE) 199 

software Abaqus 6.13 [37].  200 

3.1 Elements, material properties and residual stresses 201 

Two types of elements are employed: one-dimensional beam element with in-plane behavior (B21) and three-dimensional 202 

shell element (S4R). When conducting GNA coupled with flexural stiffness reduction, beam elements are employed, while 203 

both beam and shell elements are employed when implementing Geometrically and Materially Non-linear Analysis with 204 
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Imperfections (GMNIA). The cross-section (without rounder corner) is defined as box section for beam element. To make 205 

the results determined by beam element and those determined by shell element comparable, the same box section is used 206 

for shell element.  207 

The nonlinear two-stage stress-strain curve, provide in [31], is adopted for material modelling. It is given by Eq. (10) and 208 

(11), and shown in Fig. 3. The expression of the curve involves three basic parameters for σ ≤ fy: Young’s Modulus (E), 209 

0.2% proof stress (fy), and the first stage strain hardening exponent (n), and three additional parameters for σ > fy: the 210 

ultimate strain(εu ), the ultimate stress (fu), and the second stage strain hardening exponent (m). The additional parameters 211 

can be determined in terms with the basic parameters [38]. 212 

ε ൌ
ఙ

ா
൅ 0.002 ൬

ఙ

௙೤
൰
௡

                             for ߪ ൑ ௬݂          (10) 213 

ε ൌ 0.002൅
௙೤
ா
൅

ఙି௙೤
ா೤

൅ ௨ሺߝ
ఙି௙೤
௙ೠି௙೤

ሻ௠                for ௬݂ ൏ ߪ ൑ ௨݂         (11) 214 

where Ey is the tangent modulus at the 0.2% proof stress; Ey=E/(1+0.002nE/fy). 215 

To take the enhanced material properties of the corner regions (including the extended area) of the cold-formed cross 216 

sections into consideration, the weighted material property method proposed by Hradil and Talja [39] is adopted. The 217 

accuracy of the weighted average material property method for cold-formed stainless steel RHS and SHS members has 218 

been extensively verified against experimental results by Arrayago [40], in which results demonstrated that FE models 219 

with weighted average material properties provided excellent results for both compression and combined loading 220 

conditions.  221 

Longitudinal bending residual stresses are considered in this paper. They are accounted for by modifying the stress-strain 222 

curve used for FE models, in which the assumption that the material properties of stainless steel satisfy von Mises yield 223 

criterion and Prandtl-Reuss flow rules is made. The adopted amplitude of longitudinal residual stresses is based on the 224 

pattern suggested by Gardner and Cruise [41]. Detailed procedures of modifying the stress-strain curve for cold-formed 225 

stainless steel RHS and SHS are provided in [36]. 226 

3.2 Initial geometric imperfections 227 

For sway-restrained members, out-of-straightness (δ/L) and localized imperfection (ω) are considered and modelled 228 

directly. Out-of-straightness and localized imperfection are combined together by means of linear superposition of relevant 229 

modes (local and global buckling modes). These modes are obtained from preliminary Buckle Analysis through Abaqus. 230 

The deterministic value for out-of-straightness is taken as 0.001. The deterministic value for localized imperfection, is 231 

taken as the mean value of the maximum ω (ωmax) collected from the reported tests results. According to [36], the mean 232 

value of ωmax for a total of 161 cold-formed stainless steel RHS and SHS members is 0.185. For linear superposition, the 233 
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global buckling mode is multiplied by 0.001, while local buckling mode is multiplied by the 0.185. 234 

For sway-permitted members, out-of-plumbness (∆/h), out-of-straightness (δ/L) and localized imperfection (ω) are 235 

considered. Localized imperfection is directly modelled through local buckling mode times the mean value of ωmax. Out-236 

of-plumbness is taken as 0.002 and out-of-straightness is 0.001. Out-of-straightness is taken into consideration by applying 237 

a concentrated load at the mid-height of the member, while out-of-plumbness is modelled by applying a concentrated 238 

notional load at cantilever end in the direction of sway deformation. All notional loads are applied to the directions that 239 

produce most destabilizing effects. To avoid additional shear force at the member base due to notional loads, corresponding 240 

horizontal reaction forces, equal and opposite in direction to the sum of all notional loads, are applied. It should be noted 241 

that modelling of initial geometric imperfections presented here is not applicable to probabilistic studies. 242 

3.3 FE model validation 243 

A validation of the developed FE models against experimental results reported in [5] is shown in Fig.4. For the validation 244 

study, the full stage Ramberg-Osgood curve was adopted. The longitudinal bending residual stresses were not modelled, 245 

since they are implicitly included in the tested material parameters. In Fig. 4, the FE model using beam element was 246 

validated against the beam-column with compact cross-section (S1-EC1), while the FE model using shell element was 247 

validated against the beam-column prone to local buckling reduction (S4-EC1). It is seen that the numerical results are in 248 

very close agreement with experimental results.  249 

4. Flexural stiffness reduction accounting for local buckling effects and initial localized imperfection 250 

In this section, flexural stiffness reduction formulations, presented in [10], are extended to account for local buckling effects 251 

and initial localized imperfection (ω) by means of incorporating the strength reduction factor (ρ) to reduce the resistance 252 

of the gross section. Verification studies for GNA with extended flexural stiffness reduction factor are then carried out 253 

numerically. Predicted results by GNA with extended flexural stiffness reduction (using beam element) factor are compared 254 

against those determined by GMNIA using shell element. To evaluate local buckling effects and influence of initial 255 

localized imperfection (ω), predicted results by GMNIA using shell element are compared against those obtained from 256 

GMNIA using beam element.  257 

4.1 Extension of column flexural stiffness reduction factor  258 

Column flexural stiffness reduction factor (τN) developed in [10] was derived from AISC-based stainless column strength 259 

curve provide in [28]. To account for stiffness reduction caused by local buckling and initial localized imperfection (ω), 260 

the resistance of the gross section is reduced through incorporating the strength reduction factor ρ (ρ≤1) determined by 261 

DSM. The extended column flexural stiffness reduction factor (τN-ρ) formulation is given by  262 

߬ேି஡ ൌ 1                    for 
௉ೝభ
஡௉೤

൑ 0.37             (12) 263 
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߬ேି஡ ൌ െ2.717
௉ೝభ
஡௉೤

݈݊
௉ೝభ
஡௉೤

        for 
௉ೝభ
஡௉೤

൐ 0.37             (13) 264 

where Pr1 is maximum internal first order axial force within the member. 265 

A plot of the extended column flexural stiffness reduction factor (τN-ρ) against Pr1/ρPy is shown in Fig.5 (a). Regardless of 266 

the strength reduction factor ρ, the curve of τN-ρ versus Pr1/ρPy (non-compact and slender sections) is same to the curve of 267 

τN versus Pr1/Py (compact sections). In order to show the influence of ρ on τN-ρ, cross-section slenderness (λl ) is assumed 268 

to be varied from 0 to 2 , as shown in Fig.5 (b). In the figure, the curve with λl ≤0.776 (ρ=1) represents flexural stiffness 269 

reduction for columns with compact cross-sections. 270 

4.2 Verification of the extended column flexural stiffness reduction factor  271 

The accuracy of the extended column flexural stiffness reduction factor (τN-ρ) for stainless steel members susceptible to 272 

local buckling effects subjected to axial load is assessed in this section. Simply supported columns with cross-section 273 

120x80x2.5 (basic material parameters: E=200GPa, fy=350MPa, n=6) subjected to axial loads are studied. The length of 274 

the columns varies from 100mm to 7000 mm. The applied axial load is factored load. For each column, GMNIA using 275 

shell element (denoted by GMNIA-shell), GMNIA using beam element (denoted by GMNIA-beam), and GNA with τN-ρ 276 

(denoted by GNA-τN-ρ) using beam element are conducted. 277 

Verification study for the studied beam-columns are conducted through the following steps, as illustrated in Fig.6. 278 

(1) Perform GMNIA-shell and GMNIA-beam analysis to obtain the ultimate axial load (Pu) of the columns.  279 

The introduced out-of-straightness is 0.001. The adopted amplitude of maximum localized imperfection (ωmax) is 280 

0.185 when conducting GMNIA-shell. Pu predicted by GMNIA-beam is denoted by Pu-GMNIA-B, while Pu predicted by 281 

GMNIA-shell is denoted by Pu-GMNIA-S.  282 

(2) Perform Linear Elastic Analysis (using beam element) to obtain maximum first order axial force. 283 

The applied load is Pu-GMNIA-S. Maximum first order axial force obtained from Linear Elastic Analysis (LA) is referred 284 

to as Pr1. For all the studied simply supported columns, Pr1 is equal to Pu-GMNIA-S.  285 

(3) Calculate the ρ factor and the extended column flexural stiffness reduction factor τN-ρ. 286 

The ρ factor is calculated according to Eq. (1) and (2). τN-ρ is determined according to Eq.(12) and (13).  287 

(4) Perform GNA-τN-ρ (using beam element) analysis to predict the ultimate axial load of the columns.  288 

Ultimate axial load predicted by GNA-τN-ρ is denoted by Pu-τN-ρ.  289 

Note that even though out-of-straightness of 0.001 is included in τN-ρ, an imperfection value much smaller than 0.001is 290 

introduced into the columns to ensure that these columns can buckle in GNA (columns without any imperfection would 291 

not buckle in GNA). If the extended τN-ρ expression is “perfect”, the ultimate axial load determined by GNA-τN-ρ should be 292 

equal to the ultimate axial load determined by GMNIA-shell. The discrepancy between them shows the quality of τN-ρ.  293 
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As expected, the ultimate load (Pu) of the simply supported columns predicted by GNA-τN-ρ matches the bifurcation load 294 

(or elastic critical buckling load) Pe-τNρ determined by the reduced flexural stiffness (τN-ρ times EI), as shown in Fig.7. Pe-295 

τNρ is given by  296 

௘ܲିத୒஡ ൌ
గమሺఛಿషഐாூሻ

ሺ௅ሻమ
                   (14) 297 

where EI is initial flexural stiffness; L is unbraced length of the column. 298 

Comparison of the results determined by GNA-τN-ρ, GMNIA-shell and GMNIA-beam is shown in Fig.8, where the ultimate 299 

axial load (Pu) predicted by different method is normalized by full cross-section yield strength (Py). The difference between 300 

the curve of GMNIA-beam and the curve of GMNIA-shell is mainly resulted from local buckling effects. It is observed 301 

that the smaller the column slenderness (λc) is, the more significant the difference is. This can be explained as follows: For 302 

a given cross-section, since elastic critical local buckling strength (Pcrl) is constant, the cross-sectional slenderness λl 303 

(λl=(Pne/Pcrl)^0.5) is governed by Pne. According to Eq. (5) and (6), Pne increases with λc decreasing. It means that for a 304 

given cross-section, the smaller λc is, the larger λl . As a consequence, the difference between the two curves due to the 305 

influence of local buckling becomes more considerable. 306 

It is observed that the ultimate axial loads predicted by GNA-τN-ρ using beam element are in very close agreement with 307 

those predicted by GMNIA-shell. For columns with low λc, GNA-τN-ρ slightly overestimates the ultimate axial load. One 308 

possible explanation is that the incorporated strength reduction factor ρ somewhat underestimates local buckling effects, 309 

which results in τN-ρ higher than the actual flexural stiffness reduction factor. Since the ultimate load predicted by GNA-310 

τN-ρ is equal to the bifurcation load determined by Eq.(14), in which the bifurcation load is directly proportional to τN-ρ, a 311 

higher τN-ρ leads to overestimate the ultimate axial load. Note that the discrepancy between the predicted results of GNA-312 

τN-ρ and those determined by GMNIA may also be caused by the deterministically introduced initial localized imperfection. 313 

4.3 Extension of beam flexural stiffness reduction factor 314 

In [10], beam flexural stiffness reduction factor (τM) formulation for members with compact sections under bending was 315 

developed from moment-curvature relationship for stainless steel RHS and SHS members. In the current paper, local 316 

buckling effects and the influence of initial localized imperfection are accounted for by means of incorporating the strength 317 

reduction factor (ρ) to reduce the resistance of the gross section (My for slender section, Mp for non-compact section).  318 

The extended beam flexural stiffness reduction factor (τM-ρ) formulation for slender section is given by: 319 

When 0 <Mr1≤ ρMy                 ߬ெିఘ ൌ ቈ1 ൅ ሺ݊ െ 1ሻ
଴.଴଴ଵா

௙೤
൬
ெೝభ

஡ெ೤
൰
௡ିଶ

቉
ିଵ

        (15) 320 

The extended beam flexural stiffness reduction factor (τM-ρ) formulation for non-compact section is given by: 321 
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When 0 <Mr1≤ ρMy                 ߬ெିఘ ൌ ቈ1 ൅ ሺ݊ െ 1ሻ
଴.଴଴ଵா

௙೤
൬
ெೝభ
஡ெ೛

ௐ೛೗

௪೐೗
൰
௡ିଶ

቉
ିଵ

        (16) 322 

When ρMy <Mr1≤ ρMp               ߬ெିఘ ൌ ൥൬1െ
ெೝభ

஡ெ೛
൰

ଵ

ଵି
ೈ೐೗
ೈ೛೗

൩

଴.ଽ

൤1 ൅ ሺ݊ െ 1ሻ
଴.଴଴ଵா

௙೤
൨
ିଵ

      (17) 323 

where Mr1 is the maximum internal first order moment within a member; My is moment at yielding of the extreme fiber; 324 

My=Welfy; Wel is elastic gross section modulus; Mp is full plastic bending moment; Mp=Wplfy; Wpl is plastic gross section 325 

modulus. 326 

As an example for a non-compact cross-section (basic parameters: fy = 430MPa, E=200GPa, and n=6, Wel/Wpl=0.82), a 327 

plot of the extended beam flexural stiffness reduction determined by Eq.(16) and (17) against Mr1/ρMy is shown in Fig.9 328 

(a). In order to show the influence of ρ on beam flexural stiffness reduction, cross-section slenderness (λl) for this cross-329 

section is assumed to be varied from 0 to 1.1. A plot of τM-ρ with different λl or ρ is shown in Fig.9 (b), in which τM-ρ 330 

decreases as the assumed λl increases.  331 

4.4 Verification of the extended beam flexural stiffness reduction factor 332 

The ability of τM-ρ capturing the effects of local buckling and spread of plasticity through cross-section and along member 333 

length is verified in this section. It should be noted that, due to the non-linear stress-strain behavior (beyond proportional 334 

limit) of stainless steel, the cross-section already undergoes plastic straining before internal moment reaches My. 335 

Simply supported beams with slender cross-section 120x80x2 (E=200GPa, fy=350MPa, n=7, My=9.53kN*m, =0.97, Mu 336 

=9.24kN*m, Mu is the maximum bending moment predicted by GMNIA-shell) and non-compact cross-section 250x150x5 337 

(E=190GPa, fy=450MPa, n=7,Wpl/Wel=1.204, Mp=147.49 kN*m, =0.95, Mu =9.24kN*m) are studied. The beam with 338 

slender cross-section is subjected to a pair of identical end moments, while the beam with non-compact cross-section is 339 

subjected to uniformly distributed loads. GMNIA-shell and GMNIA-beam are conducted to obtain M-k curves, where the 340 

introduced out-of-straightness is 0.001 and the amplitude of the maximum localized imperfection (ωmax) is 0.185 in 341 

implementing GMNIA-shell. 342 

τM-ρ determined by Eq. (15), (16) and (17) are compared against flexural stiffness reduction factors derived from M-k curves 343 

provided by GMNIA-shell. Flexural stiffness reduction factor derived from M-k curve of GMNIA-shell is denoted by τM-344 

shell, and that derived from M-k curve of GMNIA-beam is denoted by τM-beam. 345 

The derivation of flexural stiffness reduction factor is based on  346 

߬ெି௦௛௘௟௟ሺݎ݋	 ߬ெି௕௘௔௠ሻ ൌ
ሺாூሻ೟
ாூ

ൌ
೏ಾೝభ
೏ഉ

ாூ
               (18)         347 

where (dMr1)/dκ is the slope of the tangent at a given point on the M-k curve. The procedure of calculating tangent slope 348 

is conducted through MATLAB 2017b [42].   349 
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Comparison of τM-ρ against τM-shell and τM-beam is shown in Fig.10. In the figure, the difference between τM-beam and τM-shell is 350 

mainly attributed to the influence of local buckling. Compared to the curve of τM-beam , the curve of τM-shell decreases at a 351 

higher rate after local buckling occurs in the inelastic range. It is observed that the τM- curves generally agree well with 352 

τM-shell curves. The difference between τM-ρ and τM-shell may be attributed to the incorporated strength reduction factor  or 353 

the introduced initial localized imperfection. It should be pointed out that, besides the influence of the factor  and initial 354 

localized imperfection, the difference between τM-ρ and τM-shell also relies on the accuracy of the beam flexural stiffness 355 

reduction factor formulations applicable to compact sections to capture the spread of plasticity of the beams. 356 

4.5 Extension of beam-column flexural stiffness reduction factor 357 

Similar to the above approach, local buckling effects and the influence of initial localized imperfection on beam-columns 358 

are taken into consideration by reducing the resistance of the gross section through the strength reduction factor ρ. The 359 

extended τMN-ρ formulation is given by  360 

߬ெேିఘ ൌ Ωெ߬ேିఘ߬ெିఘߛ ൥1െ ൬
௉ೝభ
ఘ௉೤

൰
଴.ଽ

൬ܥ௠
ெೝభ

ఘெ೛
൰

ೈ೐೗
ೈ೛೗൩            (19) 361 

0.8 ൑ ߛ ൌ 2ሺܤଶିா െ 0.6ሻ ൏ 1  for 1≤ B2-E <1.1             (20) 362 

ߛ ൌ 1	                       for 1.1 ≤ B2-E             (21)  363 

Ωெ ൌ 1                     for 0 ൑
ெೝభ

ఘெ೛
൏ 0.4            (22) 364 

Ωெ ൌ ൬0.6൅
ெೝభ

ఘெ೛
൰
ଵ.ସ

          for 0.4 ൑
ெೝభ

ఘெ೛
൑ 1            (23) 365 

τN-ρ and τM-ρ that included in Eq.(19) are calculated based on strength reduction factor for compression (ρ-column) and 366 

strength reduction factor for bending (ρ-beam), respectively. . ρ-column is determined by Eq. (1) and (2), while ρ-beam is 367 

determined by Eq. (3) and (4). Since flexural stiffness reduction for beam-columns was expected to be the combination of 368 

flexural stiffness reduction under compression and that under bending, ρ-column and ρ-beam ought to be used to reduce 369 

axial compression resistances and bending moment, respectively. Nevertheless, preliminary finite element analysis of some 370 

beam-columns showed that, the adoption of the min {ρ-column, ρ-beam} to reduce resistance of the gross section gave 371 

more accurate results, compared to those using corresponding ρ-column and ρ-beam. One explanation is the accuracy of 372 

the adopted strength reduction factor depends heavily on the accuracy of the adopted flexural stiffness reduction 373 

formulation for composite sections. For the flexural stiffness reduction formulation, the influence of local buckling 374 

reduction and the interaction of axial compression and bending may be more accurately captured by adopting minimum of 375 

strength reduction factors to reduce resistance of the gross section. For a series of beam-columns, comparison of the 376 

predicted results determined by min {ρ-column, ρ-beam} against those determined by corresponding strength reduction 377 
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factor is presented in Section 4.6 of this paper. 378 

For Eq.(20) and (21), the factor B2-E evaluates P-∆ effects and together with P-δ effects on sway-permitted elastic beam-379 

columns. For sway-restrained beam-columns, B2-E is equal to 1. For sway-permitted isolated beam-column, B2-E is given 380 

by 381 

ଶିாܤ ൌ
ଵ

ଵି
ುೝభ

బ.ఴఱ	 ು೐ೞ

൒ 1                  (24) 382 

where the factor 0.85 accounts for the influence of P-δ effects on the global behavior of a sway-permitted member; Pes=(FH 383 

L)/Δ; FH is first order shear force; Δ is relative drift between member ends due to FH; L is length of the member. In addition, 384 

for beam-columns with slender sections, plastic bending moment (Mp) is replaced by extreme fiber yielding moment (My).  385 

4.6 Verification of the extended beam-column flexural stiffness reduction factor 386 

The accuracy of the extended beam-column flexural stiffness reduction factor τMN-ρ (in conjunction with GNA) for in-plane 387 

stainless steel beam-columns with non-compact and slender sections are evaluated. Simply supported beam-columns and 388 

cantilever beam-columns are studied. Simply supported beam-columns, with different cross-sections and material 389 

properties (shown in Table.2), are subjected to combined axial load (P) and varied moments (M1, M2) at the member ends. 390 

The applied P is factored load, M2=e*P; e ranges from 1 to 150 ( e= [0,10,30,50,80,100,150]) and the unit of e is mm; 391 

|M2|≥|M1|. The applied end moments are varied for different cross-sections: a pair of equal but opposite end moments for 392 

cross-section 120x80x2, one end moment for cross-section 200x100x3, and a pair of identical end moments for cross-393 

section 250x150x5. Cantilever beam-columns, with different cross-sections and material properties (shown in Table.2), are 394 

subjected to combined axial load (P) and horizontal load (iP) at the cantilever end, where the applied load P is factored 395 

load, and i=[0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3]. 396 

Table.2 Basic material parameters and cross-sections of the studied beam-columns 397 

Beam-column Cross-section L(mm) E(GPa) fy(MPa) n Wpl/Wel 

Simply supported 

a 120x80x2 2000 200 350 6 1.19 

b 200x100x3 2500 175 400 8 1.22 

c 250x150x5 3000 190 450 7 1.20 

Cantilever 
a 120x80x1.5 2000 200 350 6 1.19 

b 200x200x3 2500 175 300 7 1.14 

4.6.1 Steps for verification 398 

Verification study for the studied beam-columns are conducted through the following steps, as illustrated in Fig.11.  399 

(1) Perform GMNIA-shell and GMNIA-beam to obtain the ultimate axial load and moment (Pu and Mu) of the beam-400 

columns.  401 

The introduced maximum localized imperfection (ωmax) is 0.185 when conducting GMNIA-shell. Out-of-straightness 402 

of 0.001 is introduced to simply supported beam-columns, while out-of-straightness of 0.001 and out-of plumbness of 403 
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0.002 are introduced to cantilever beam-columns. For simply supported beam-columns, Mu is the end moment M2, 404 

and it is equal to e*Pu. For cantilever beam-columns, Mu is equal to horizontal load (iPu) multiplied by member length 405 

(L). Pu and Mu determined by GMNIA-beam are denoted by Pu-GMNIA-B and Mu-GMNIA-B, respectively, while Pu and Mu 406 

determined by GMNIA-shell are denoted by Pu-GMNIA-S and Mu-GMNIA-B, respectively. For GMNIA-shell analysis, 407 

maximum internal second order moment (denoted by Mr2-GMNIA-S) within the beam-column, corresponding to Pu-GMNIA-408 

S and Mu-GMNIA-S, are obtained.  409 

(2) Perform Linear Elastic Analysis (using beam element) to obtain maximum first order internal axial force (Pr1) and 410 

moment (Mr1) 411 

The applied axial load and end moment are Pu-GMNIA-S and Mu-GMNIA-S, respectively. For cantilever beam-columns, the    412 

applied horizontal load multiplied by member length is equal to end moment. The factor B2-E is calculated according  413 

to Eq. (24). 414 

(3) Calculate the strength reduction factor and the extended beam-column flexural stiffness reduction factor 415 

ρ-column is calculated according to Eq. (1) and (2), while and ρ-beam is calculated according to Eq. (3) and (4). For 416 

the calculation of the ρ factor, the nominal local buckling strength (Pnl) is taken as Pu-GMNIA-S for the column case, while 417 

the nominal local buckling moment (Mnl) is taken as Mu-GMNIA-S for the beam case. Two types of flexural stiffness 418 

reduction factors, τMN-ρ and τMN-ρmem, are considered, in which τMN-ρ denotes that the adopted flexural stiffness reduction 419 

factor is min {ρ-column and ρ-beam}, while τMN-ρmem represents that corresponding ρ-column and ρ-beam are used in 420 

Eq. (19). 421 

(4) Perform GNA-τMN-ρ and GNA-τMN-ρmem (using beam element) to predict the maximum internal second order moment 422 

(Mr2) 423 

Mr2 determined by GNA-τMN-ρ and GNA-τMN-ρmem are denoted by Mr2-τMN-ρ and Mr2-τMN-ρmem, respectively. For both 424 

GNA-τMN-ρ and GNA-τMN-ρmem, the ultimate axil load (Pu-τMN-ρ or Pu-τMN-ρmem) and end moment (Mu-τMN-ρ or Mu-τMN-ρmem) 425 

of the beam-columns are achieved when Mr2-τMN-ρ (Mr2-τMN-ρmem) is equal to Mr2-GMNIA-S. 426 

4.6.2 Comparison of γ determined by different methods 427 

In order to facilitate the comparison of results determined by different methods, a parameter γ determined by Eq. (25) is 428 

used. 429 

ߛ ൌ ටቀ
௉ೠ
௉೙
ቁ
ଶ
൅ ቀ

ெೠ

ெ೙
ቁ
ଶ
                   (25) 430 

where Pu and Mu are the ultimate axial load and moment, respectively; Pn and Mn are the nominal compressive strength 431 

and nominal flexural strength, respectively. γ determined by GMNIA-shell, GMNIA-beam, GNA-τMN-ρ , and GNA-τMN-432 

ρmem are denoted by γS, γB, γρ, γρm, respectively. 433 
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Predicted results for simply supported beam-columns and cantilever beam-columns are shown in Table 3 and 4, 434 

respectively.  , COV, Max and Min denote mean value, coefficient of variation, maximum value and minimum value, 435 

respectively. γS determined by GMNIA-shell are taken as “exact” results. γB, γρ and γρm are compared against γS.  436 

Table 3. Predicted results of simply supported beam-columns 437 

 120x80x2 200x100x3 250x150x5 

e 

(mm) 
γS γρ /γS γρm/γS γB/γS γS γρ /γS γρm/γS γB/γS γS γρ/γS γρm/γS γB/γS 

10 0.85 1.04 1.05 1.43 0.95 1.00 1.09 1.47 0.99 1.00 1.04 1.24 

30 0.74 0.91 0.94 1.18 0.87 1.01 0.91 1.47 0.97 1.03 1.09 1.26 

50 0.72 0.95 1.02 1.35 0.83 1.03 0.89 1.38 0.95 1.09 0.93 1.18 

80 0.74 0.97 1.09 1.10 0.81 1.06 1.07 1.35 0.94 1.07 1.11 1.16 

100 0.76 0.95 1.12 1.04 0.82 1.09 1.11 1.29 0.95 0.90 0.91 1.10 

150 0.82 1.01 0.87 1.08 0.83 1.07 0.88 1.26 0.96 0.97 1.08 1.08 

  0.97 1.02 1.20  1.04 0.99 1.37  1.01 1.03 1.17 

COV  0.05 0.09 0.13  0.03 0.11 0.06  0.07 0.08 0.06 

Max  1.04 1.12 1.43  1.09 1.11 1.47  1.08 1.11 1.26 

Min  0.91 0.87 1.02  1.00 0.88 1.26  0.90 0.91 1.08 

 438 

Table 4. Predicted results of cantilever beam-columns 439 

 120x80x1.5 200x200x3 

i γS γρ /γS γρm /γS γB/γS γS γρ /γS γρm /γS γB/γS 

0.05 0.70 0.99 1.01 1.19 0.68 1.02 0.97 1.08 

0.10 0.75 0.92 0.79 1.23 0.71 1.09 1.13 1.12 

0.15 0.81 0.81 0.94 1.24 0.79 1.03 1.15 1.08 

0.20 0.85 0.88 0.74 1.25 0.83 0.96 0.87 1.11 

0.25 0.90 0.91 0.82 1.21 0.86 1.00 1.07 1.07 

0.30 0.97 1.03 0.93 1.16 0.86 1.01 1.09 1.09 

  0.92 0.87 1.21  1.02 1.05 1.10 

COV  0.09 0.12 0.03  0.04 0.10 0.02 

Max  1.03 1.01 1.25  1.09 1.15 1.12 

Min  0.81 0.74 1.16  0.96 0.87 1.07 

 440 

It is observed that, the range of mean values and COVs for γρ /γS are 0.92-1.02, and 0.03-0.09, respectively, while the range 441 

of mean values and COVs for γρm /γS are 0.87-1.05 and 0.08-0.12, respectively. It indicates that predicted results of both 442 

GNA-τMN-ρ and GNA-τMN-ρmem are in close agreement with those determined by GMNIA-shell. With the mean value of 443 

γB/γS ranging from 1.10 to 1.37, GMNIA-beam overestimates the ultimate strength of all the studied beam-columns. This 444 

is because the influence of local buckling reduction and initial localized imperfection is not considered in it. 445 
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The maximum errors of overestimation vary from 3% to 9% for GNA-τMN-ρ , and 1% to 15% for GNA-τMN-ρmem , while the 446 

maximum errors of underestimation vary from 4% to 19% for GNA-τMN-ρ , and 9% to 26% for GNA-τMN-ρmem. It 447 

demonstrates that, GNA-τMN-ρ whose flexural stiffness reduction factors adopting min{ρ-column, ρ-beam}provide more 448 

accurate results, compared to GNA-τMN-ρmem in which corresponding ρ-column and ρ-beam are used in the calculation of 449 

beam-column flexural stiffness reduction factor. This is probably because the accuracy of the adopted strength reduction 450 

factor depends heavily on the accuracy of the adopted flexural stiffness reduction formulation for composite sections, 451 

where the influence of local buckling reduction and the interaction of axial compression and bending can be more 452 

accurately captured by using minimum of strength reduction factors to reduce resistance of the gross section.  453 

4.6.3 Comparison of strength curves determined by different methods 454 

The predicted strength curves for simply supported beam-columns and cantilever beam-columns are shown in Fig.12 and 455 

13, respectively. The strength curves determined by GNA-τMN-ρ are compared against those determined by GMNIA-shell, 456 

to evaluate the accuracy of the adopted τMN-ρ, while the strength curves determined by GMNIA-beam are compared against 457 

those determined by GMNIA-shell, to evaluate local buckling effects and the influence of initial localized imperfection 458 

(ω). In the two figures, Pn and Mn are the nominal compressive strength of the column and nominal flexural strength of the 459 

beam, respectively; Pn and Mn determined by relevant equations provided in the above Section 2 are very close to Pu (column 460 

case) and Mu (beam case) determined by GMNIA-shell, respectively; Pu and Mu predicted by different methods are 461 

normalized by Pn and Mn, respectively. It should be mentioned that for all the beam cases, Mu-τMN-ρ is taken as the ultimate 462 

end moment determined by GMNIA-shell. 463 

For the studied beam-columns, the considerable difference between the curve of GMNIA-beam and the curve of GMNIA-464 

shell is attributed to local buckling effects and the influence of initial localized imperfection (ω). It is observed that the 465 

results predicted by GNA-τMN-ρ are in close agreement with those determined by GMNIA-shell. For most of the studied 466 

beam-columns, the difference between the predicted results of GNA-τMN-ρ and those determined by GMNIA-shell mainly 467 

occurs in the intermediate part of the interaction curves (Pu/Pn versus Mu/Mn). It may result from either the incorporated 468 

strength reduction factor or the amplitude of introduced maximum initial localized imperfection (ωmax) in implementing 469 

GMNIA-shell analysis. From Fig.12 and Fig.13, it is concluded that, besides capturing the influence of spread of plasticity, 470 

the extended flexural stiffness reduction factor τMN-ρ can well capture local buckling effects. 471 

For member-based ultimate limit design checks using internal axial forces and moments determined by GNA-τMN-ρ or 472 

GMNIA-shell conducted in this paper, only cross-section strength check is needed and member buckling strength check is 473 

eliminated. This is because second order effects (P-∆ and P-δ) and all initial geometric imperfections (out-of-plumbness, 474 

out-of-straightness, and localized imperfection) are considered. In addition, for the design check of non-compact and 475 
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slender cross-sections, full cross-section resistance has to be reduced to account for local buckling effects. 476 

5. Probabilistic studies 477 

Since the capacity of members with non-compact and slender sections may be susceptible to initial localized imperfection 478 

(ω), it is necessary to investigate the influence of uncertainty in ω on the accuracy of τMN-ρ (in conjunction with GNA). 479 

The investigation is conducted through probabilistic studies based on 3D models with random ω proposed in [29, 36].  480 

5.1 Generation of 3D models with random ω and FE analysis 481 

The Fourier series-based 3D model with random localized imperfection (ω), proposed in [29, 36], is used for probabilistic 482 

study. Localized imperfection of a generated surface comprises two components: transverse variation and longitudinal 483 

variation, as shown in Fig 14 (a), in which f1(xi) and f2(xi) are two functions that are decomposed into Fourier series with 484 

random coefficients.  485 

The procedures of generating of 3D models with random ω for beam-columns are similar to that presented in [29]. A 486 

MATLAB script is written to generate random coefficient of Fourier series terms of function f1(x) and f2(x).The distribution 487 

of the generated random ωmax followed a log-normal distribution derived from experimental data of ωmax. Models with ωmax 488 

higher than the allowable value are automatically found by MATLAB script and are discarded. The allowable value 489 

specified in EN-10219-2:2006 [43] is adopted. It is min{0.008b, 0.5}, where b is the side (straight side of the cross-section) 490 

length. There is slight difference between simply supported beam-columns and cantilever beam-columns. For simply 491 

supported beam-columns, Fourier series expansion of function f1(x) generated half-sine-wave (representing out-of-492 

straightness) with amplitude of 0.001, as shown in Fig. 14(b). For cantilever beam-columns, Fourier series expansion of 493 

function f1(x) generated straight lines, as shown in Fig. 14(c), since the effects of out-of-straightness and out-of-plumbness 494 

are considered by applying notional loads (equivalent horizontal loads). 495 

The developed Matlab program automatically created a Python script associated with an Input file operated in Abaqus. In 496 

conducting FE analysis through Abaqus, material properties and residual stresses were modelled as those presented in 497 

Section 3.  498 

5.2 Beam-columns for probabilistic studies 499 

The studied beam-columns are the same beam-columns presented in Section 4.6, but only one combined loading case is 500 

considered for each beam-column. All the studied beam-columns, shown in Fig.15, are susceptible to local buckling. The 501 

applied axial load (P) is factored load. For simply supported beam-columns, the applied end moment M2 is equal to e*P; 502 

e=50mm (constant). For cantilever beam-columns, the applied horizontal load at the cantilever end is equal to 0.1P. Details 503 

of conducted analysis are shown in Table 5. For each beam-column, 100 models with random ω are produced. For each 504 

model, GMNIA-shell (with random ω) analysis is carried out to determine the ultimate axial load and ultimate end moment 505 
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(referred to as Mu-rand). Thus, each beam-column has 100 Mu-rand in all. 506 

Table 5. Details of the conducted analysis  507 

Method Element 
Localized imperfection (ω) 

Shape Amplitude(mm) 

GMNIA Shell Idealized ωmax=0.185 

GNA-τMN-ρ beam (Implicitly considered in τMN-ρ) 

GMNIA Shell Random 0< ωmax ≤min{0.008b, 0.5} 

5.3 Effect of uncertainty in ω on the accuracy of GNA-τMN-ρ 508 

The predicted results are shown in Table 6. Since the ultimate end moment (Mu) is directly proportional to the ultimate 509 

axial load (Pu), where Mu=e*Pu for the simply supported beam-columns and Mu=0.1Pu*L for the cantilever beam-columns, 510 

only Mu determined by different methods is shown in the table. In the table, Mu-GMNIA-S is determined by GMNIA-shell 511 

with idealized ω (the lowest local buckling mode), and Mu-τMN-ρ is determined by GNA-τMN-ρ. The mean value of the Mu-512 

rand is denoted by (Mu-rand). 513 

Table 6. Statistical characteristics of the predicted ultimate end moments  514 

Mu(kN*m) 
Simply supported Cantilever 

a b c a b 

Mu-GMNIA-S 6.0 21.9 76.8 4.75 30.83 

Mu-τMN-ρ 5.2 23.5 77 4.03 32.15 

(Mu-rand) 5.9 22.2 79.6 4.66 29.90 

COV(Mu-rand) 0.07 0.05 0.12 0.09 0.17 

 (Mu-rand)/ Mu-GMNIA-S 0.98 1.01 1.04 0.98 0.97 

 (Mu-rand) / Mu-τMN-ρ 1.13 0.94 1.03 1.15 0.91 

From the table, COVs (Coefficients of Variation) for the case c (simply supported beam-column) is 0.12, and COVs for the 515 

case b (cantilever beam-column) is 0.17. The two COVs demonstrate a relatively large extent of variability in relation to 516 

(Mu-rand). One possible explanation is that the localized imperfection (ω) amplitude of the generated models is largely 517 

scattered. The mean-to-nominal ratios,  (Mu-rand)/ Mu-GMNIA-S, for all the beam-columns are about 0.98-1.04, which 518 

indicates that for the studied beam-columns, localized imperfection can be statistically modelled as idealized shape times 519 

the deterministic value 0.185 (the mean value of the maximum ω).  520 

The ratios of  (Mu-rand) / Mu-τMN-ρ, for all the beam-columns are all about 0.91-1.15. It shows that prediction errors for 521 

GNA-τMN-ρ caused by uncertainty in ω are in an acceptable range for the studied beam-columns. This is because the results 522 

provided by GNA-τMN-ρ are generally close to those provide by GMNIA with idealized ω times the deterministic value 523 

0.185 (detailed results are shown in Section 4.6), where the ultimate external moment of GMNIA with idealized ω times 524 

0.185 can statistically represent the ultimate external moment of the studied beam-columns with random ω. It should be 525 



20 
 

mentioned that, the prediction errors for GNA coupled with flexural stiffness reduction may be significant for some beam-526 

column cases, in which the deterministic value of ω considered in the flexural stiffness reduction factor is not capable of 527 

statistically capturing the influence random ω on the ultimate capacity of these beam-columns. 528 

6. Conclusion  529 

For the accurate and safe in-plane stability design of cold-formed elements with non-compact and slender hollow sections 530 

(RHS and SHS), the flexural stiffness reduction formulations provide by Shen and Chacon [10], are extended to take local 531 

buckling effects and initial localized imperfection (ω) into consideration. For the determination of the flexural stiffness 532 

reduction factor of columns, beams and beam-columns, strength reduction factors, which depend on cross-sectional 533 

slenderness, are used to reduce the resistance of a gross section due to local buckling reduction. The accuracy of GNA with 534 

the extended flexural stiffness reduction factor for stainless steel elements (columns, beams and beam-columns) with non-535 

compact and slender sections are verified. Predicted results by GNA with the extended flexural stiffness reduction factor 536 

using beam element are in close agreement with those determined by GMNIA using shell element. 537 

Based on the 3D models with random ω, probabilistic studies on simply supported and cantilever beam-columns are 538 

conducted to evaluate the sensitivity of the extended flexural stiffness reduction factor (in conjunction with GNA) to 539 

random ω. It is found that, based on the studied beam-columns, uncertainty in ω result in prediction errors for GNA coupled 540 

with flexural stiffness reduction to some extent, but ignoring uncertainty in ω won’t lead to significant errors for GNA 541 

coupled with flexural stiffness reduction. One possible explanation is the deterministic value of ω considered in the adopted 542 

flexural stiffness reduction factor is capable of statistically capturing the influence random ω on the ultimate capacity of 543 

these beam-columns. 544 

In addition, the accuracy of the extended flexural stiffness reduction factor in conjunction with GNA for frame systems 545 

should be assessed. The applicability of the extended flexural stiffness reduction factor for slender open sections that are 546 

susceptible to lateral-torsional buckling should be studied further. 547 
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Appendix  556 

Table A.1. A brief summary of the collected samples 557 

Reference No. of samples Stainless steel groups Grade 

B. Young and W.M. Lui, 2005 [44] 5 Duplex EN1.4162 

B.F. Zheng et al., 2016 [45] 4 Austenitic EN1.4301 

I. Arrayago. et al., 2016 [5] 12 Ferritic EN1.4003 

M.Theofanous and L.Gardner, 2009[46] 8 Duplex EN1.4162 

W.M. Lui et al., 2014 [47] 10 Duplex EN1.4462 

Y. Huang and B.Young, 2013 [48] 22 Duplex EN1.4162 

M. Bock et al., 2015 [49] 8 Ferritic EN1.4003 

I. Arrayago and E. Real, 2015 [50] 26 Ferritic EN1.4003 

O. Zhao et al.,2016[51] 24 Ferritic EN1.4003 

S.Afshan and L.Gardner,2013 52] 
6 Ferritic EN1.4003 

2 Ferritic EN1.4509 

O. Zhao et al.,2015 [53] 

10 Austenitic EN1.4301 

6 Austenitic EN1.4571 

6 Austenitic EN1.4307 

6 Austenitic EN1.4404 

6 Duplex EN1.4162 
 Total :161   
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