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Abstract

For a numerical semigroup, we encode the set of primitive elements that are
larger than its Frobenius number and show how to produce in a fast way
the corresponding sets for its children in the semigroup tree. This allows
us to present an efficient algorithm for exploring the tree up to a given
genus. The algorithm exploits the second nonzero element of a numerical
semigroup and the particular pseudo-ordinary case in which this element
is the conductor.

1 Introduction

Let Λ be a numerical semigroup, that is, an additive submonoid with finite com-
plement in the ordered set N0 of nonnegative integers. The gaps of Λ are the
elements in the set N0 \Λ, and so the elements of Λ are also called nongaps. The
number g of gaps is the genus of Λ. We assume g 6= 0, which amounts to saying
that Λ is not the trivial semigroup N0.

Let c denote the conductor of Λ, namely the least upper bound in Λ of the
set of gaps. Thus, c − 1 is the largest gap of the semigroup, which is known as
its Frobenius number. We refer to the nonzero nongaps that are smaller than the
Frobenius number as left elements.

The lowest nonzero nongap m is the multiplicity of Λ. We say that Λ is ordi-
nary whenever all its gaps are smaller than m, that is, whenever c = m. This is
also equivalent to asking the genus and the Frobenius number of Λ to be equal.
In other words, Λ is ordinary if and only if it has no left elements. Otherwise,
the set of left elements of Λ is

Λ ∩ {m, m+ 1, . . . , c− 2}

and, in particular, it always contains the multiplicity m.

A primitive element of Λ is a nongap σ such that Λ\{σ} is still a semigroup,
that is, a nonzero nongap that is not the sum of two nonzero nongaps. Primitive
elements constitute precisely the minimal generating set of the semigroup. We
use the term right generators to refer to those primitive elements that are not
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left elements. As it comes rightaway from the definitions, Λ has at most m right
generators, since they must lie in the set

{c, c+ 1, . . . , c+m− 1}.
The lowest primitive element of Λ is m. It is a right generator if and only if Λ is
ordinary; in this case, Λ has exactly m right generators.

Any numerical semigroup of genus g ≥ 2 can be uniquely obtained from a
semigroup of genus g − 1 by removing a right generator. This idea gives rise to
the construction of the semigroup tree, which was first introduced in [13], [14] and
also considered in [3], [4], [5]. The nodes of this tree at level g are all numerical
semigroups of genus g. The children, if any, of a given node arise through the
removals of each of its right generators. The first levels are shown in Figure 1,
where each semigroup is represented by its set of gaps, as in [9].

Figure 1

Lemma 1.1. Let Λ̃ be the child obtained by removing a right generator σ from Λ.
Then, the primitive elements of Λ that become right generators of Λ̃ are those
which are larger than σ.

Proof. Since σ ≥ c, the semigroup Λ̃ has Frobenius number σ. Moreover, any
primitive element of Λ other than σ is clearly a primitive element of Λ̃ too.

If follows from Lemma 1.1 that, when successively removing the right gene-
rators of Λ in increasing order, one obtains a numerical semigroup at each step.
This leads to the main concept around which this paper is built.

Definition 1.2. The right-generators descendant (RGD) of Λ is the numerical
semigroup D(Λ) obtained by removing from Λ all its right generators.
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Notice that D(Λ) is just Λ precisely when Λ does not have any right generators.
Otherwise, it is a descendant of Λ in the semigroup tree at some level.

In the next section we show how to compute efficiently from D(Λ) the RGD of
the children of Λ. To this end, we restate here a special case of Lemma 2.1 in [6],
where right generators correspond to order-zero seeds. The result complements
Lemma 1.1 by dealing with new right generators, that is, with the right generators
of a child that are not primitive elements of its parent. The key point goes back
to Lemma 3 in [4]. We provide a short proof whose content is partially needed
later on.

Lemma 1.3. Let Λ̃ be the child obtained by removing a right generator σ from Λ.
The semigroup Λ̃ is ordinary if and only if Λ is ordinary and σ = m. Otherwise,
the only possible new right generator of Λ̃ could be σ +m.

Proof. The conductor of Λ̃ is σ + 1. If σ = m, which can only occur when Λ is
ordinary, then Λ̃ has multiplicity m+ 1 and it is also ordinary. If σ 6= m, then Λ̃
has still multiplicity m so it cannot be ordinary. Moreover, new right generators
of Λ̃ must be of the form σ + λ for some λ ≥ m, so the result follows from the
fact that any primitive element must be smaller than the sum of the conductor
and the multiplicity.

Corollary 1.4. The semigroup Λ is ordinary if and only if D(Λ) is ordinary. In
this case, the conductor of D(Λ) is twice the conductor of Λ.

Proof. If σ1, . . . , σk are the right generators of Λ in increasing order, then Lem-
ma 1.1 allows us to construct D(Λ) through the chain of semigroups

Λ0 = Λ ⊃ Λ1 ⊃ · · · · · · ⊃ Λk = D(Λ),

where Λj is obtained by removing σj from Λj−1 for j = 1, . . . , k. By Lemma 1.3,
Λj is ordinary if and only if Λj−1 is ordinary, since σj is the lowest right generator
of Λj−1. This implies the first part of the statement. The second part follows
from the fact that c, c+ 1, . . . , 2c− 1 are the primitive elements of the ordinary
semigroup with conductor c.

The main goal of this article is an algorithm to explore the semigroup tree
which is based on a binary encoding of the RGD. A preliminary version is given
in Section 2, and then the algorithm is presented in full form in Section 4. An
important role is played by what we call the jump of a numerical semigroup,
which is the difference between its first two nonzero elements. This parameter is
exploited in Section 3 for our purposes, leading to a structure of the algorithm
for which the subtrees of semigroups with the same multiplicity and jump can
be explored in parallel. In Section 5, we test the efficiency of the algorithm by
applying it to the computational problem of counting numerical semigroups by
their genus. Our running times are shorter than those required by the best known
algorithms.

2 Binary encoding of the RGD

Let us fix a numerical semigroup Λ with multiplicity m and conductor c. We
associate with Λ the binary string

D(Λ) = D0D1 · · · Dj · · ·
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encoding its RGD as follows: for j ≥ 0,

Dj :=

{
0 if m+ j ∈ D(Λ),

1 otherwise.

The left elements of Λ can be read from the first c−m bits of D(Λ). Indeed,
for 0 ≤ j < c − m, one has Dj = 0 if and only if m + j is not a gap of Λ.
In particular, this piece of the string D(Λ), together with the multiplicity m,
determines uniquely the semigroup Λ.

As for the rest of the string, only the first m bits may take the value 1, depend-
ing on whether they correspond to right generators of Λ or not: for j ≥ c−m,
one has Dj = 1 if and only if m + j is a primitive element of Λ. In particular,
Λ is ordinary if and only if D0 = 1. In this case, Dj = 1 for j < m.

Since Dj = 0 for j ≥ c, we can identify D(Λ) with the chain consisting of its
first c bits:

D(Λ) = D0D1 · · · Dc−1.

The binary chains D(Λ), for Λ running over the first levels of the semigroup
tree, are displayed in Figure 2, where the bits encoding right generators are
highlighted in grey. The vertical dashed line at each chain lies just before the
entry corresponding to the conductor of the semigroup. The number of bits after
that line is equal to the multiplicity.

Figure 2

Lemma 2.1. If Λ is ordinary, then it has exactly m children, namely

Λ̃s = Λ \ {m+ s} for 0 ≤ s < m.

The child Λ̃0 is the ordinary semigroup of multiplicity m + 1, which means that
the bit chain associated with this child is

D(Λ̃0) = 1 1 · · · · · · 1︸ ︷︷ ︸
m+1

.
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The other children have multiplicity m, and only Λ̃1 has a new right generator,
namely 2m+1. More precisely, the bit chains associated with them are as follows:

D(Λ̃1) = 0 1 1 · · · 1︸ ︷︷ ︸
m−2

0 1 ,

whereas, assuming m > 2,

D(Λ̃s) = 0 · · · 0︸ ︷︷ ︸
s

1 1 · · · 1︸ ︷︷ ︸
m−s−1

0 · · · 0︸ ︷︷ ︸
s+1

for 2 ≤ s ≤ m− 1.

Proof. The right generators of Λ are m, m+1, . . . , 2m−1. By Lemma 1.3, Λ̃s is
not ordinary if and only if s 6= 0, and then the only possible new right generator
of Λ̃ could be 2m + s. Since Λ̃1 has multiplicity m and conductor m + 2, the
integer 2m+ 1 is a primitive element of this child. By contrast, 2m+ s is not a
primitive element of Λ̃s if s > 1, because m+ 1 and m+ s− 1 are both nongaps
of this child. The result follows then from Lemma 1.1 and the definition of the
bit chain encoding the RGD of a numerical semigroup.

The children Λ̃1, . . . , Λ̃m−1 in Lemma 2.1 are the numerical semigroups of
multiplicity m having genus m. We refer to them as quasi-ordinary semigroups.

Let us go back to the general case and consider a child Λ̃, which is obtained by
removing a right generator σ from Λ. The index s corresponding to σ in the bit
chain D(Λ), namely s = σ−m, satisfies c−m ≤ s < c. The condition Ds = 1 is
equivalent to σ being a right generator of Λ. Notice that the Frobenius number
of Λ̃ is m+ s.

Lemma 2.2. Let D(Λ̃) = D̃0 D̃1 · · · D̃m+s be the bit chain associated with Λ̃.
Then,

D̃j =



Dj for 0 ≤ j < c − m,

0 for c − m ≤ j < s,

Dj for s ≤ j < c,

0 for c ≤ j < m+ s.

Furthermore, D̃m+s = 0 if and only if there is a positive integer ` ≤ bs/2c such
that D̃` = D̃s−` = 0. This amounts to saying that Λ̃ does not have a new right
generator.

Proof. The statements hold if Λ is ordinary, as can be checked from Lemma 2.1.
So we can assume c 6= m, hence s 6= 0 and Λ̃ has multiplicity m. The result
comes from the definitions of D(Λ) and D(Λ̃) along with the following remarks.
The left elements of Λ̃ are those of Λ together with the integers λ such that
c ≤ λ < m + s, which yields the values of D̃j for j < s, whereas D̃s = 1 = Ds

because m + s is a gap of Λ̃. As for the right generators of Λ̃, according to
Lemma 1.1 and Lemma 1.3, they are those which are inherited from Λ, hence
above m+ s and below c+m, and maybe also 2m+ s. This candidate to new
right generator is not a primitive element of Λ̃ if and only if there is a positive
integer ` such that m+` and m+s−` are nongaps of Λ̃. Since the midpoint of
these two values is m+s/2, such an integer can be assumed to satisfy ` ≤ bs/2c.
Notice that m + ` and m + s − ` are below the Frobenius number m + s, so
they lie in Λ̃ if and only if D̃` = D̃s−` = 0.
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Lemma 2.2 leads to a procedure to explore the semigroup tree using the RGD
binary encoding. More precisely, the following recursive function visits the de-
scendants of the semigroup Λ up to a fixed genus γ. The first input item stands
for the binary string associated with Λ, and g stands for the genus. If Λ is not
ordinary, line 7 can be deleted, and then m̃ should be replaced with m at line 12.
An implementation of this procedure runs on the website [1].

RGD− offspringγ(D, m, c, g)

1. if g < γ then

2. D̃ := D

3. g̃ := g + 1

4. for s from c−m to c− 1 do

5. if D̃s 6= 0 then

6. Frob := m+ s

7. if s = 0 then m̃ := m+ 1 else m̃ := m

8. ` := 1

9. mid := bs/2c
10. while ` ≤ mid and

(
D̃` 6= 0 or D̃s−` 6= 0

)
do ` := `+ 1

11. if ` > mid then D̃Frob := 1

12. RGD− offspringγ
(
D̃, m̃, Frob + 1, g̃

)
13. D̃Frob := 0

14. D̃s := 0

When running this function, the most expensive computation for each descen-
dant is at worst the checking loop at line 10. The number of steps in the loop is
bounded by half the conductor of the node, hence by the genus. And each step
carries out at most five basic operations, which are constant or logarithmic on
the genus. This gives the following estimate for the time complexity.

Proposition 2.3. The number of bit operations to explore the semigroup tree up
to genus γ using the RGD− offspringγ function is

O

(
γ log γ

∑
g≤ γ

ng

)
,

where ng stands for the number of numerical semigroups of genus g.

3 Pseudo-ordinary semigroups

As in the previous section, let us fix an integer m ≥ 2, and let Λ stand for a
numerical semigroup with multiplicity m. Let then m+u be the second nonzero
element of Λ, that is, its first nongap above m. We refer to the positive integer u
as the jump of Λ. Obviously, it cannot be larger than m, and the conductor c
of Λ is at least m+ u unless Λ is ordinary, in which case u = 1.

Let us first exploit the jump to improve Lemma 1.3. According to the nomen-
clature introduced in [5] for the nonordinary case, we say that a right generator σ
of Λ is a strong generator if σ + m is a primitive element of the child Λ \ {σ}.
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The next result gives a threshold for strong generators. The ordinary case was
already treated separately in Lemma 2.1.

Lemma 3.1. Let Λ̃ be the child obtained by removing a right generator σ from Λ.
If Λ is not ordinary and σ ≥ c+ u, then σ satisfies the following:

· It is not a strong generator of Λ.

· The only strong generator of Λ̃ could be σ + u, in which case 2u < m.

Proof. For an integer λ ≥ σ other than σ+u, both λ−u and m+u are nonzero
elements of the set Λ̃ \ {λ} because u is positive and

m+ u ≤ c ≤ σ − u ≤ λ− u 6= σ.

Since λ + m is the sum of λ − u and m + u, it cannot be a primitive element
of Λ̃ \ {λ} whenever this set is a numerical semigroup. The case λ = σ amounts
to the first item of the statement. As for the second, what remains to be proved
is the inequality. So let us assume that σ + u is a primitive element of Λ̃. By
the first item and Lemma 1.3, it is then necessarily a right generator of Λ and,
in particular, below c+m. The hypothesis σ ≥ c+ u implies then 2u < m.

Definition 3.2. We say that Λ is pseudo-ordinary whenever m+ u is precisely
the conductor c, that is, whenever c − 2 is the genus of Λ. This condition
amounts to asking m to be the only left element of Λ. In this case, the jump u
is at least 2.

For an integer u with 2 ≤ u ≤ m, let us use the notation Λu for the pseudo-
ordinary semigroup of multiplicity m and jump u. The conductor of Λu is m+u.
The set of right generators of Λu is then

{m+ u, m+ u+ 1, . . . . . . , 2m+ u− 1} \ {2m}.

In other words, the bit chain associated with Λu is

D(Λu) = 0 1 · · · 1︸ ︷︷ ︸
u−1

1 · · · 1︸ ︷︷ ︸
m−u

0 1 · · · 1︸ ︷︷ ︸
u−1

.

Notice that Λ2 is the only pseudo-ordinary semigroup of multiplicity m that
is also quasi-ordinary, that is, a nonordinary child of an ordinary semigroup.
Specifically, it is the child Λ̃1 in Lemma 2.1.

The next result complements Lemma 3.1 for pseudo-ordinary semigroups by
showing that the first u or u− 1 right generators of Λu, depending on whether
2u ≤ m or not, are strong.

Lemma 3.3. Let s 6= m be an integer satisfying u ≤ s < 2u. Then, m+ s is a
strong generator of the pseudo-ordinary semigroup Λu.

Proof. Let Λ̃u, s be the child of Λu obtained by removing the right generator m+s.
Take a nongap of Λ̃u, s above m, that is, an integer λ such that

m+ u ≤ λ 6= m+ s.

Then,
m 6= 2m+ s− λ ≤ s+m− u < m+ u,

hence 2m+ s− λ cannot be a nonzero element of Λu. So 2m+ s is a primitive
element of Λ̃u, s above the Frobenius number m+ s.

7



Notice that, with the notation in the proof of Lemma 3.3, one has

Λ̃u, u = Λu+1 for 2 ≤ u ≤ m− 1.

In particular, the pseudo-ordinary semigroups of multiplicity m are the nodes of
a path in the semigroup tree starting at level m and ending at level 2m− 2 :

Λ2 Λ3 · · · · · · Λm

We now go back again to the general case in order to characterize pseudo-
ordinary descendants in the semigroup tree in terms of the monotony of the jump.
Let ũ denote the jump of a child Λ̃ of Λ. As shown in Lemma 1.3, Λ̃ inherits the
same multiplicity m if and only if it is not ordinary, and then the jump ũ is at
most m. If Λ̃, hence also Λ, is ordinary, then ũ = u = 1.

Proposition 3.4. Let Λ̃ be the child obtained by removing a right generator σ
from Λ. Then, Λ̃ is not pseudo-ordinary if and only if ũ = u. More precisely,
Λ̃ is pseudo-ordinary, and then ũ = u+ 1, exactly in one of these two cases:

· If Λ is ordinary and σ = m+ 1.

· If Λ is pseudo-ordinary and σ = m+ u. In this case, 2 ≤ u < m.

With the above notation, Λ̃ = Λ2 in the first item, whereas Λ = Λu and Λ̃ = Λu+1

in the second one.

Proof. We can assume that Λ̃ has multiplicity m. Its second nonzero element is
then m+ ũ. The parent Λ is obtained from Λ̃ by putting the Frobenius number σ
back. Thus, if m+ ũ is a left element of Λ̃, then it is necessarily equal to m+ u
because σ is larger. Conversely, assume that m+ ũ is the conductor of Λ̃, which
implies σ = m+ ũ− 1 and ũ ≥ 2. If ũ = 2, then σ is the only gap of Λ̃ larger
than m, hence Λ is ordinary. If ũ > 2, then m is still the only left element of Λ
and σ is its conductor, hence σ = m+ u and the result follows.

Corollary 3.5. The second nonzero element of Λ is m + 1 if and only if Λ is
not pseudo-ordinary nor a descendant of a pseudo-ordinary semigroup.

4 The RGD algorithm

In this section we produce an algorithm to explore the semigroup tree. This is
done by putting together the contents that have been developed so far.

Let us start by exploiting the first item of Lemma 3.1 to present a refined
version of the recursive procedure below Lemma 2.2. The input corresponds now
to a numerical semigroup that is not ordinary nor pseudo-ordinary. In order
to shorten the checking loop at line 10 of the RGD− offspringγ function, as
well as the main loop, and hence reduce the number of times that the former is
executed, it incorporates as input parameters both the jump u and the number r
of right generators. The semigroup is handled in a concrete prescribed way: the
corresponding parameters may be printed, for instance, or a certain property may
be checked. This is the purpose of the handle function at the first line.

8



RGDγ(D, m, u, c, g, r)

1. handle (D, m, c)

2. if g < γ then

3. D̃ := D

4. r̃ := r

5. for s from c−m to c−m+ u− 1 do

6. if D̃s 6= 0 then

7. Frob := m+ s

8. ` := u

9. mid := bs/2c

10. while ` ≤ mid and
(
D̃` 6= 0 or D̃s−` 6= 0

)
do ` := `+ 1

11. if ` > mid then

12. D̃Frob := 1

13. RGDγ

(
D̃, m, u, Frob + 1, g + 1, r̃

)
14. r̃ := r̃ − 1

15. D̃Frob := 0

16. else then

17. r̃ := r̃ − 1

18. RGDγ

(
D̃, m, u, Frob + 1, g + 1, r̃

)
19. D̃s := 0

20. while r̃ > 0 do

21. s := s+ 1

22. if D̃s 6= 0 then

23. r̃ := r̃ − 1

24. RGDγ

(
D̃, m, u, m+ s+ 1, g + 1, r̃

)
25. D̃s := 0

For an integer m ≥ 2, let Tm be the subtree of numerical semigroups with
multiplicity m, which is rooted at an ordinary semigroup. We present here an
algorithm that sequentially explores T2, . . . ,Tγ+1 up to a fixed level γ as detailed
in the pseudocode below. The first six lines perform the walk through the path T2.
Then, for 3 ≤ m ≤ γ, each subtree Tm is explored by depth first search. The
children of every node are visited by lexicographical order of their gaps. Finally,
the last three lines of the pseudocode deal with the ordinary semigroup of genus γ.

The binary string at line 8 corresponds to the ordinary semigroup of multipli-
city m. The loop at line 12 runs along the path consisting of the pseudo-ordinary
semigroups of multiplicity m whose genus is at most γ, except for the last node
of the path, which is treated separately at lines 17 to 20.

The loop at line 23 runs over the quasi-ordinary semigroups of multiplicity m,
except for the pseudo-ordinary one. Specifically, the RGDγ function is applied to
the children Λ̃2, . . . , Λ̃m−2 in Lemma 2.1. The binary string associated with Λ̃2 is

9



introduced at line 21. The variable r in the loop stores the number of right gen-
erators of the sibling at each step. The child Λ̃m−1 does not have any descendants
and it is handled at line 27.

RGD algorithm

Input: level γ ≥ 2

1. D := 1 1 0 0 · · ·

2. handle (D, 2, 2)

3. D0 := 0

4. for g from 2 to γ do

5. D2g−1 := 1

6. handle (D, 2, 2g)

7. for m from 3 to γ do

8. D := 1 · · · 1︸ ︷︷ ︸
m

0 0 · · ·

9. handle (D, m, m)

10. D0 := 0

11. path end := min (m, γ + 2−m)

12. for u from 2 to path end− 1 do

13. c := m+ u

14. Dc−1 := 1

15. handle (D, m, c)

16. pseudoγ(D, m, u, c, m− 2)

17. c := m + path end

18. Dc−1 := 1

19. handle (D, m, c)

20. if path end < γ + 2−m then pseudoγ(D, m, m, c, m− 1)

21. D := 0 0 1 · · · 1︸ ︷︷ ︸
m−2

0 0 · · ·

22. r := m− 3

23. for s from 2 to m− 2 do

24. RGDγ(D, m, 1, m+ s+ 1, m, r)

25. r := r − 1

26. Ds := 0

27. handle (D, m, 2m)

28. m := γ + 1

29. D := 1 · · · 1︸ ︷︷ ︸
m

0 0 · · ·

30. handle (D, m, m)

The pseudoγ function computes the children of a given pseudo-ordinary semi-
group Λ that are not pseudo-ordinary, that is, not fulfilling the second item of

10



Proposition 3.4, and it launches the exploration of their descendants in the tree.
The input parameters of Λ include the jump u, which is just the difference c−m
in this case. The variable r̃ stores the number of right generators of the siblings.
The loop at line 3, which is a rightaway application of Lemma 3.3, runs over the
strong generators of Λ, that is, over the children of Λ having a new right genera-
tor. By contrast, the loop at line 11 makes use of the first item in Lemma 3.1 to
deal with the rest of siblings.

pseudoγ(D, m, u, c, r̃)

1. D̃ := D

2. D̃u := 0

3. for s from u+ 1 to 2u− 1 do

4. if s 6= m then

5. Frob := m+ s

6. D̃Frob := 1

7. RGDγ

(
D̃, m, u, Frob + 1, c− 1, r̃

)
8. r̃ := r̃ − 1

9. D̃Frob := 0

10. D̃s := 0

11. for s from 2u to c− 1 do

12. if s 6= m then

13. r̃ := r̃ − 1

14. RGDγ

(
D̃, m, u, m+ s+ 1, c− 1, r̃

)
15. D̃s := 0

5 Counting the numerical semigroups of a given genus

Let ng stand for the number of numerical semigroups of genus g. It was conjec-
tured in [3] to satisfy ng+2 ≥ ng+1 + ng and to behave asymptotically like the
Fibonacci sequence. The latter was settled in [16]. The inequality has been proved
in [9] for the large subset of semigroups whose conductor is not over three times
the multiplicity. The weaker conjecture ng+1 ≥ ng, stated in [2], remains also
open for the general case. The development of fast algorithms for computing ng
is motivated to a great extent by these conjectures. See [12] for a nice survey on
related results.

We applied the RGD algorithm to the computation of nγ for a given γ ≥ 4
through an implementation in C. The code is available at [7]. Although it follows
the pseudocode in the previous section quite faithfully, some due modifications
have been made.

To begin with, the handle function is now pointless and must be ignored
throughout, because we are not interested in the semigroups themselves but in
the amount of them at level γ. In particular, the first six and the last three lines
of the pseudocode are omitted: obviously, the subtrees T2 and Tγ+1 have both
only one node at that level. Also, it follows from Lemma 2.1 that the number of

11



semigroups of genus γ in the subtrees Tγ and Tγ−1 is, respectively,

γ − 1 and γ − 2 +

γ−4∑
k=1

k.

Thus, the last two steps of the loop at line 7 can be skipped by initializing the
counter nγ properly. Moreover, for each multiplicity 3 ≤ m < γ − 1, there is
only need to explore the subtree Tm up to level γ−2 instead of γ, and then add
to nγ the number of right generators of the children of the nodes at that level. Of
course, this remark concerns the implementation of the RGDγ function too. In
regard to this point, let us also mention the following adjustments and shortcuts
in the code:

· In order to reduce the number of comparisons, lines 11 to 20 are rearranged
into two possible blocks depending on whether 2m < γ or not. In the first
case, the structure of the block is essentially the same as in the pseudocode:
the loop runs up to u = m − 1, and then the pseudoγ function is called
with the parameters at line 20 for c = 2m. In the second case, the loop
runs up to u = γ−m−1, and then we apply the counting that is explained
in the next item.

· As a consequence of Lemma 3.1 and Lemma 3.3, the number of grandchil-
dren, say gc(Λu), of the pseudo-ordinary semigroup of jump u in Tm can
be easily computed. Indeed, the m−1 children of Λu split into two groups:
the first u or u − 1 siblings, depending on whether 2u ≤ m or not, do
have a new right generator, whereas the others do not. Thus,

gc(Λu) =

{
gc∗(m) + u if 2u ≤ m,

gc∗(m) + u− 1 otherwise,

where gc∗(m) is the sum of the number of right generators of the children
of Λu that are inherited from their parent, namely

gc∗(m) = (m− 2) + (m− 3) + · · · · · · + 1 =
(m− 1)(m− 2)

2
·

This formula is used in the code for u = γ −m whenever this difference is
at most m.

· We drop both γ and g as input parameters in the RGDγ function through-
out the recursion, and the difference γ−2−g is stored and updated instead.

· The last iteration of the loop at line 20 of RGDγ can be skipped.

The code in C showed that the algorithm turns out to perform faster when
the checking loop in the RGDγ function is implemented in descending order.
Thus, lines 8 to 11 are replaced with the following:

` := bs/2c

while ` ≥ u and
(
D̃` 6= 0 or D̃s−` 6= 0

)
do ` := `− 1

if ` < u then
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Lastly, we should add that the loops in the pseudoγ function are rearranged
in the implementation to avoid multiple repetitions of the check at lines 4 and 12.
Thus, depending on whether 2u ≤ m or not, one of two possible blocks of three
loops is performed instead. The resulting code is less compact but quite more
efficient.

The RGD algorithm is based on a much simpler concept than the seeds al-
gorithm in [6]. Although the pseudocode is not so short and concise, it is more
suitable to implement in any programming language, since it does not require any
bitwise operations through long integer data types. Most importantly, it turns
out to be computationally much faster. The following table displays the running
times in seconds to compute nγ for 35 ≤ γ ≤ 45. For the new algorithm, they
are more than five times shorter than those which we obtain through a recur-
sive implementation in C of the seeds algorithm, and this improvement grows
with the genus. The computations were made on a machine equipped with an
Intel R© CoreTM i7-920 CPU running at 2.67GHz.

γ 35 36 37 38 39 40 41 42 43 44 45

seeds 9.4 15.6 25.9 42.9 71.1 118.1 195.7 323 536 886 1465

RGD 1.7 2.8 4.5 7.2 11.9 19.1 30.8 50 81 131 211

The computational problem of exploring the semigroup tree to produce the
sequence of integers ng is tackled in [11] in a most efficient way. The authors
present a depth first search algorithm that is based on the decomposition num-
bers of a numerical semigroup, and then they optimize it at a highly technical
level by using SIMD methods, parallel branch exploration of the tree, and some
implementation tricks, such as a partial derecursivation by means of a stack. The
source code, which is available at [10], is written in Cilk++ [15], an extension to
the C++ language that is designed for multithreaded parallel computing.

We adapted our code to Cilk++ [8] in order to parallelize the exploration
of the semigroup tree. This is performed at a double level that is induced by
the very structure of the RGD algorithm. The first level corresponds to the
trees Tm for m ≥ 3. The second one, to the subtrees of Tm that are rooted
at the pseudo-ordinary semigroups, when removing the edges of the path joining
these nodes. The implementation in C of the algorithm is adjusted so as to
apply the cilk for command to the loops corresponding to lines 7 and 12 of
the pseudocode. The following table displays the seconds that were needed to
compute nγ for 45 ≤ γ ≤ 55 on the same machine as above, but with the eight
cores of its CPU running one thread each simultaneously. Notice that the entry
for γ = 45 is now more than four times smaller.

γ 45 46 47 48 49 50 51 52 53 54 55

RGD8 t 48.0 75.4 126.7 209.6 333.3 564.1 910.6 1441 2320 3876 6481

Finally, we modified the Cilk++ code of the RGD algorithm so that it pro-
duces the same output as the code in [10], namely the list of all integers ng for
genus g up to γ. Then we executed both of them for 45 ≤ γ ≤ 55 and on eight
threads, still on the same machine. The running times in seconds are displayed
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in the table below. The figures seem to indicate that the improvement grows
asymptotically with the genus.

γ 45 46 47 48 49 50 51 52 53 54 55

F-H8 t 69.0 112.1 183.0 296.9 483.5 822.5 1339 2175 3536 5755 9948

RGDall

8 t 56.1 93.2 151.1 249.2 400.3 655.2 1076 1690 2728 4620 7266

Let us complete this section with a computational result that has been ob-
tained by executing the RGD algorithm on a shared server equipped with an AMD

Ryzen 1700X CPU running at 3.40GHz on sixteen threads. It goes one step beyond
the data compiled at [10].

Theorem 5.1. There are exactly 2604033182682582 numerical semigroups of
genus 71.

Acknowledgements
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