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Abstract 

 
This study attempts to assess the forecasting accuracy of Support Vector 
Regression (SVR) with regard to other Artificial Intelligence techniques based on 
statistical learning. We use two different neural networks and three SVR models 
that differ by the type of kernel used. We focus on international tourism demand 
to all seventeen regions of Spain. The SVR with a Gaussian kernel shows the 
best forecasting performance. The best predictions are obtained for longer 
forecast horizons, which suggest the suitability of machine learning techniques 
for medium and long term forecasting. 
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1. Introduction 
 

In recent years, Artificial Intelligence (AI) techniques based on machine learning have 

attracted increasing attention for time series prediction (Hastie et al., 2009). Statistical 

learning methods can be divided into five categories: fuzzy time series, decision tree 

techniques, Artificial Neural Networks (ANNs) and support vector machines (SVMs). 

The SVM technique was first developed for classification and pattern recognition 

(Burges, 1988). This idea has been extended to regression by using the support vectors 

for local approximation, allowing for nonlinear regression estimation in the form of 

Support Vector Regressions (SVRs). 

SVRs have been widely used for forecasting purposes in finance (Tay and Cao, 2001, 

2002; Kim, 2003; Cao, 2003; Pai and Lin, 2005a; Huang, Nakamori and Wang, 2005; 

Chen, Shih and Wu, 2006, Radovi , Stankovi  and Stankovi , 2015) and other fields 

(Sansom, Downs and Saha, 2003; Wu, Ho and Lee, 2004; Pai and Lin, 2005b, Guajardo, 

Weber and Miranda, 2006; Pai and Hong, 2007; Guo et al., 2008; Wu, 2009; Elattar, 

Goulermas and Wu, 2010; Hong, 2011; Zhang et al., 2012; Sujjaviriyasup and Pitiruek, 

2014). Nevertheless, very few attempts have been made for tourism demand forecasting 

(Chen and Wang, 2007; Hong et al., 2011; Wu, Law and Xu, 2012). 

The main aim of this study is to cover this deficit and to compare the forecasting 

accuracy of SVRs to that of several ANNs. In order to do so we focus on international 

tourism demand to all seventeen regions of Spain. We use different forecasting horizons 

and different lengths of the input context, introducing a varying number of previous 

observations. In addition we try different topologies of each forecasting algorithm. This 

thorough comparison allows us to shed some light on the most accurate technique to 

forecast tourism demand. 

Spain is the third most important destination of the world after France and the United 

States. Spain received 60 million tourist arrivals in 2013. By region, the Canary Islands, 

Catalonia and Andalusia were the autonomous communities that recorded a greater 

increase in the number of visitors, with increases above 10%. The constant growth of 

the tourism industry in Spain highlights the importance of correctly anticipating tourism 

demand. 

The study proceeds as follows. The next section reviews the literature on tourism 

demand forecasting with statistical learning techniques. In section 3, the different 



forecasting methods are presented. Data is analyzed in the following section. In section 

4, the experimental settings are described. In the fifth section, results of the out-of-

sample forecasting competition are discussed. Finally, the last section provides a 

summary of the implications and potential lines for future research. 

 

2. Literature review 
 

A growing body of literature has focused on tourism demand forecasting, but most 

research efforts apply conventional forecasting methods, either casual econometric 

models (Cortés-Jiménez and Blake, 2011; Page, Song and Wu, 2012; Tsui et al., 2014) 

or time series models (Claveria and Datzira, 2010; Assaf, Barros and Gil-Alana, 2011; 

Gounopoulos et al., 2012). See Li, Song and Witt (2005) and Song and Li (2008) for a 

thorough review of tourism demand forecasting studies. 

Nevertheless, the need for more accurate forecasts has led to an increasing use of 

statistical learning techniques to obtain more refined predictions of tourist arrivals at the 

destination level. Yu and Schwartz (2006) and Tsaur and Kuo (2011) use fuzzy time 

series models in predicting tourism demand in Taiwan. Goh, Law and Mok (2008) 

apply a rough sets algorithm to forecast U.S. and U.K. tourism demand for Hong Kong. 

The SVM technique was originally introduced as a classification method following 

the idea of using support vectors to represent the class boundaries in the classification 

problem (Cristianini and Shawhe-Taylor, 2000). Xu, Law and Wu (2009) use SVMs to 

improve tourist expenditure classification for visitors to Hong Kong. The original idea 

has recently been extended to regression analysis by using support vectors as points in a 

local approximation by means of a Euclidean plane. 

SVMs are a statistical learning technique which is less prone to overfitting than other 

algorithms. Overfitting is related to the fact that a priori the number of parameters 

needed for the solving of the problem with a certain structure is unknown. With ANNs 

this is solved by using regularization or cross-validation techniques. In the case of 

SVMs, the problem of overfitting the training data is tackled by using a theoretical tool 

developed by Vapnik et al. (1998) based on the structural risk minimization principle, 

which seeks to minimize an upper bound of the generalization error, as opposed to 

ANNs, which minimize the empirical error implemented, and indirectly controls the 

overfitting either by regularization or cross-validation. The idea behind the structural 

risk minimization lies in introducing restrictions in the smoothness of the input-output 



functions, so as to avoid fitting the noise or the peculiarities of the data. Thus, SVMs 

achieve an optimum structure by striking the right balance between the empirical error 

and the degrees of freedom of the approximation function. 

SVMs are first applied to tourism demand forecasting by Pai and Hong (2005), Pai et 

al. (2006) and Hong (2006), who use a SVM models to forecast tourist arrivals to 

Barbados, obtaining better forecasting results that with ANNs. Velásquez et al. (2010) 

also obtain better forecasts with SVMs than with MLP and ARIMA models for different 

five series, including monthly totals of international airline passengers (Box and Jenkins, 

1970). 

The introduction of the Vapnik’s insensitive loss function together with the use of 

genetic algorithms (GAs) for parameter selection have recently led to increased use of 

SVRs (Bao, Xiong and Hu, 2014). The GA is a technique for determining parameters in 

optimization problems. In this case GAs are used to adjust the hyperparameters 

controlling the estimation of the weights in SVRs. 

Chen and Wang (2007) incorporate a genetic algorithm in a SVR and compare it to 

Back Propagation NN and ARIMA models to predict quarterly tourist arrivals to China, 

finding evidence in favour of SVRs. Hong et al. (2011) compare a SVR with a chaotic 

algorithm to forecast tourist arrivals to Barbados, and obtain more accurate forecasts 

than with ARIMA models. 

Chen (2011) combines linear and nonlinear models to forecast Taiwanese outbound 

tourism demand, obtaining the best forecasting accuracy with SVR combination models. 

Wu, Law and Xu (2012) use a sparse Gaussian process regression (GPR) model to 

predict tourism demand to Hong Kong and find that its forecasting capability 

outperforms those of the ARMA and SVM models. Note that GPR and SVR are related 

by the fact that they are based on the idea of using a kernel for modelling similarities 

between the training points. 

With respect to ANNs, many different models have been developed since the 1980s. 

In feed-forward networks the information runs only in one direction, while in recurrent 

networks there are bidirectional data flows. The most widely used feed-forward 

topology in tourism demand forecasting is the multi-layer perceptron (MLP) network 

(Pattie and Snyder, 1996; Uysal and El Roubi, 1999; Law, 1998, 2000, 2001; Law and 

Au, 1999, Burger et al., 2001; Tsaur et al., 2002; Kon and Turner, 2005; Palmer, 

Montaño and Sesé, 2006; Padhi and Aggarwal, 2011; Lin, Chen, and Lee, 2011; 

Claveria and Torra, 2014; Teixeira and Fernandes, 2014; Molinet et al., 2015). 



A special class of multi-layer feed-forward architecture with two layers of processing 

is the radial basis function (RBF) network. The first attempt to use RBF ANNs in 

tourism demand forecasting is that of Cang (2013), who generates RBF, MLP and SVM 

forecasts of UK inbound tourist arrivals and combines them in non-linear models. 

Çuhadar, Cogurcu and Kukrer (2014) compare the forecasting accuracy of RBF 

networks to that of MLP ANNs to predict cruise tourist demand to Izmir (Turkey). 

Recurrent networks such as Elman ANNs allow for temporal feedback connections 

from outer layers to lower layers of neurons. Teixeira and Fernandes (2012) compare 

the forecasting performance of feed-forward, cascade-forward and recurrent networks to 

predict tourism demand to Portugal, not finding significant differences between the 

different architectures. As opposed to Cho (2003), Claveria, Monte and Torra (2014, 

2016) find that RBF networks outperform MLP and Elman architectures. 

Although there have been several studies on tourism in Spain at regional level 

published in recent years (Aguiló and Rosselló 2005; Roselló, Aguiló, and Riera 2005; 

Garín-Muñoz and Montero-Marín 2007; Bardolet and Sheldon 2008; Santana-Jiménez 

and Hernández 2011; Nawijn and Mitas 2012; Andrades-Caldito, Sánchez-Rivero, and 

Pulido-Fernández 2013; Cirer-Costa, 2014), only a few focus on tourism demand 

forecasting. 

Medeiros et al. (2008) develop a NN-GARCH model to estimate demand for 

international tourism also in the Balearic Islands. Bermúdez, Corberán-Vallet and 

Vercher (2009) calculate prediction intervals for hotel occupancy in three provinces in 

Spain by means of a multivariate exponential smoothing. Claveria and Datzira (2009, 

2010) use consumer expectations derived from tendency surveys to forecast tourism 

demand in Catalonia. Guizzardi and Stacchini (2015) also make use of business 

sentiment indicators form tendency surveys for real-time forecasting of hotel arrivals at 

a regional level, improving the forecasting accuracy of structural time series models. 

The first attempt to use statistical learning process for tourism demand forecasting in 

Spain is that of Palmer, Montaño and Sesé (2006), who design a MLP neural network to 

forecast tourism expenditure in the Balearic Islands. More recently, Molinet et al. 

(2015) propose using different periodicities as input variables in ANN models for 

tourism demand forecasting, obtaining more precise forecasts. Claveria, Monte and 

Torra (2016) design a multiple-input multiple-output neural network framework to 

forecast tourism demand in Catalonia. 

 



3. Forecasting models 
 

3.1. Support Vector Regression 
 

The SVR mechanism can be regarded as an extension of SVMs. The original SVM 

algorithm was developed by Vapnik (1995) and Cortes and Vapnik (1995). For a 

comprehensive introduction see Cristianini and Shawhe-Taylor (2000). From the 

implementation point of view, training SVMs is equivalent to solving a linearly 

constrained quadratic programming with the number of variables twice as that of the 

training data points. The sequential minimal optimization algorithm proposed by 

Schölkopf and Smola (2002) is reported to be very effective in training SVMs for 

solving the regression problem. 

Drucker et al. (1997) proposed a version of SVMs to solve a regression problem, 

which has been since referred to as SVR. The idea behind the technique of SVR is to 

define an approximation of the regression function within a ‘tube’ of radius or margin  

by means of a set of support vectors that belong to the training data set. By using a 

selected subset of the training data, a local approximation of the regression function is 

achieved by means of the ‘tube’ generated by the set of support vectors. This means that 

by using a selected subset of the training data, we produce a local approximation of the 

regression function that guarantees the performance on unseen data. This is known as 

the generalization performance. 

In order to be able to control the generalization performance, SVR formulation 

follows the principle of structural risk minimization, which consists in minimizing an 

upper bound of the generalization error rather than the prediction error on the training 

set (referred to as empirical risk minimization). This is done by introducing restrictions 

on the structure or curvature of the set of functions over which the estimation is done. 

This can be achieved by limiting the flexibility of the set of functions used as building 

blocks of the approximation system. Detailed descriptions of SVR can be found in 

Vapnik (1995), Vapnik et al. (1997) and Schölkopf and Smola (2002). 

In this study we use three different methods for the estimation of the regression by 

means of SVR. These methods differ by the kernel, which is the function that gives a 

measure of similarity between points in the feature space. We use a linear kernel, a 

polynomial kernel and a Gaussian RBF kernel. We do not use a sigmoid as a nonlinear 



function in order to define the kernel, because sigmoid-based based kernels are not 

positive semi definite and therefore the optimization problem might not be convex. 

In the design of the SVR there is a trade-off of between the radius or margin of the 

tube and the number of support vectors. This dichotomy between the sparseness of the 

representation and closeness to the data is captured by . On the one hand, if the 

selected value of the margin  is too low, most of the vectors of the training database 

will be support vectors and the resulting regression function would follow the noisy 

patterns of the training data set. On the other hand, if the selected radius is too large, 

there would be a small number of support vectors and the result would be a smooth 

regression function that is not capable of extracting the underlying shape of the input-

output relationship to be estimated. In practice this is solved by using a validation 

database different from the training database and also representative of the input-output 

relationship. This procedure gives SVRs a greater potential to generalize the input-

output relationship learnt during the training phase to refine forecasts for new input data. 

Formally the regression approximation estimates empirically a function that relates 

the input tx  at time t  to a desired output td . Our objective is to infer a function txf  

such that its output is as near as possible to the corresponding td . The set of training 

data is denoted by the set of tuples G: 
n
ttt dxG 1,   (1) 

where tx  is the input vector of dimension p , where p  corresponds to the number of 

time lags or past values of the series, also known as context; td  denotes the desired 

target value; and n  denotes the total number of data samples. 

SVR modelling aims to identify a regression function tt xfy  in a transformed 

feature space F  that accurately predicts the outputs corresponding to a new set of input-

output tuples. The nonlinear transformation tx  can be regarded as the mapping from 

the input space to a representation in a new space of different dimension: 

bxxf tt  nR: , FF ,  (2) 

where  is a weight vector and b  is a constant which relates to the offset of the 

function. The parameters are estimated by minimizing a cost function that takes into 

account both, the empirical error and the structural error. The structural error penalizes 

an excessive flexibility of the approximated function txf . As is shown in Schölkopf 

and Smola (2002), this structural error can be controlled by the norm of the set of 

weights . 



SVR performs linear regression in the high-dimensional feature space by -

insensitive loss, which can be regarded as a cost function that does not take into account 

the errors within a tube or margin of size  of the desired function. Therefore the cost 

function consists of two terms. The first term takes into account the errors outside of a 

tube of radius epsilon. The second one involves the norm of the weight 22 , and will 

be referred to as the regularization term which takes into account the structural risk or 

loss: 
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RR  represents the regression risk and ER the empirical risk, 22  denotes the 

Euclidean norm, and C  denotes a trade-off between the empirical risk and the 

regularization term. RR  and ER  are also termed test set error and training set error 

respectively. 

In the regularized risk function (3), the regression risk RR  is the possible error 

committed by the function f  in predicting the output corresponding to a new input 

vector. The first term tt ydLnC ,1  denotes the training set error, which is 

estimated by the -insensitive loss function in tt ydL ,  . Note that this term is scaled 

by a constant, which gives the trade-off that allows for controlling the smoothness of the 

resulting function. 

The regularized constant C  calculates the penalty when an error occurs, by 

determining the trade-off between the empirical risk and the regularization term, which 

represents the ability of prediction for regression. Raising the value of C  increases the 

significance of the empirical risk relative to the regularization term. The penalty is 

acceptable only if the fitting error is larger than . The -insensitive loss function is 

employed to stabilize estimation. In other words, the -insensitive loss function can 

reduce the noise. Thus  can be viewed as a tube size equivalent to the approximation 

accuracy in training data. In the empirical analysis, C  and  are the hyparameters to be 

selected. The selection is done by means of cross-validation on the validation set. 

The above formulation assumes that we are able to fit all the points within the tube of 

radius epsilon. In order to allow outliers, we introduce the positive variables t  and *
t . 

This allows for the formulation of the SVR as a minimization of: 
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where t  and *
t  denote the flexible variables that measure the error at the upper and the 

lower sides of the tube respectively. The above formulae indicate that increasing , 

decreases the corresponding t  and *
t  in the same constructed function txf , thereby 

reducing the error resulting from the corresponding data points. Therefore, the SVR fits 

txf  to the data such that the training error is minimized by optimizing the flexible 

variables, and 22  is minimized to raise the smoothness of txf  or to penalize 

excessively complex fitting functions. 

Finally, we can rewrite the decision function given by (2) by introducing Lagrange 

multipliers 
i
 and *

i : 

bxxxf i
n

i
iiii ,,,

1

**   (5) 

Note that the variables in (5) do not have a temporal dependency. We emphasize this 

fact by using as index ‘ i ’ instead of ‘ t ’. As stated above, the temporal information is 

included in the ‘ p ’ elements of the vector x , which consist of the values of the time 

series from time t  to pt . The Lagrange multipliers satisfy the Karush-Kuhn-Tucker 

(KTT) equalities 0*
ii aa , 0ia  and 0*

ia , and can be obtained by maximizing: 
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with the constraints 
n

i
ii

1

* 0 , Cai0 , and Cai
*0 , where ni ,,1 . 

Based on the KTT conditions of quadratic programming, only a certain number of 

coefficients in (5) will assume non-zero values (Hanson, 1999). This set of training 

points defines the support vectors of the regression. Therefore support vectors have 

approximation errors equal to or larger than  and lie on or outside the bound of the 

decision function. 

ji xxK ,  is defined as the kernel function. The value of the kernel is equal to the inner 

product of two vectors iX  and jX  in the feature space ix  and jx , that is 

jiji xxxxK *, . One of the advantages of using the kernel function is that one can 

deal with feature spaces of arbitrary dimensionality without having to compute the map 



x  explicitly. Any function satisfying Mercer’s condition (Vapnik, 1995) can be used 

as the kernel function. 

Some of the most used kernel functions are the linear (7), the polynomial (8) and the 

Gaussian Kernel (9) respectively: 

21 *),( ayxayxK   (7) 

hayxayxK 21 *),(   (8) 

2
2

1exp),( yxyxK   (9) 

where 1a   and 2a  are constants; h  is the degree of the polynomial kernel; and 2  is the 

bandwidth of the Gaussian RBF kernel. If the value of  is very large, function (9) 

approximates the use of a linear kernel, which can be regarded as a polynomial with an 

order of one. 

Note that the function of the kernel is to compute a similarity measure between two 

vectors. In particular, the linear kernel consists of the dot product between two elements 

plus an offset, and thus the similarity measure between vectors comes from the 

geometrical properties of the dot. The polynomial kernel consists of a linear kernel plus 

an offset raised to the power h , which is selected either by performance or by the prior 

knowledge of the problem. Finally, the Gaussian kernel consists of the exponential of 

the difference between the feature vectors, scaled by a constant factor, common to all 

the elements of the kernel matrix. 

In spite of the difficulty of determining the type of kernel functions for specific data 

patterns (Amari and Wu, 1999), the Gaussian RBF kernel is easier to implement and 

capable to non-linearly map the training data into an infinite dimensional space, and 

thus specially suitable to deal with non-linear data sets. 

 

3.2. Artificial Neural Networks 
 

ANNs emulate the processing of human neurological system to identify related spatial 

and temporal patterns from historical data. ANNs learn from experience and are able to 

capture functional relationships among the data when the underlying process is 

unknown. The data generating process of tourist arrivals is too complex to be specified 

by a single linear algorithm, which explains the great interest that ANNs have aroused 

for tourism demand forecasting. A complete summary on the use of ANNs with 

forecasting purposes can be found in Zhang, Putuwo and Hu (1998). 



As opposed to the traditional model-based methods, ANNs do not depend on a set of 

a priori assumptions, so to obtain a reliable network the parameters of the model are 

iteratively estimated by means of different algorithms. Most of the algorithms used in 

training artificial neural networks employ some form of gradient descent. One of the 

most commonly used algorithms is the back-propagation (Haviluddin and Rayner, 

2014). 

The main learning paradigms are supervised learning and non-supervised learning. In 

supervised learning weights are adjusted to approximate the network output to a target 

value for each pattern of entry, while in non-supervised learning the subjacent structure 

of data patterns is explored so as to organize such patterns according to their distances. 

The combination of both learning methods implies that part of the weights is determined 

by a supervised process while the rest are determined by non-supervised learning. This 

is known as hybrid learning. An example of hybrid model is the RBF network. 

RBF networks consist of a linear combination of radial basis functions centred at a 

set of centroids with a given spread that controls the volume of the input space 

represented by a neuron (Bishop, 1995). RBF ANNs typically include three layers: an 

input layer; a hidden layer, which consists of a set of neurons, each of them computing a 

symmetric radial function; and an output layer that consists of a set of neurons, one for 

each given output, linearly combining the outputs of the hidden layer. The input can be 

modelled as a feature vector of real numbers, and the hidden layer is formed by a set of 

radial functions centred each at a centroid j . The output of the network is a scalar 

function of the output vector of the hidden layer. 

ANNs can also be classified into feed-forward networks and recurrent networks 

depending on the connecting patterns of the different layers of neurons. In feed-forward 

networks the information runs only in one direction, whilst in recurrent networks there 

are feedback connections from outer layers of neurons to lower layers of neurons. Feed-

forward networks were the first ANNs devised. The MLP network is the most widely 

used feed-forward topology in tourism demand forecasting. 

MLP networks consist of multiple layers of computational units interconnected in a 

feed-forward way. MLP networks are supervised neural networks that use as a building 

block a simple perceptron model. The topology consists of layers of parallel perceptrons, 

with connections between layers that include optimal connections. The number of 

neurons in the hidden layer determines the MLP network’s capacity to approximate a 



given function. In order to solve the problem of overfitting, the number of neurons was 

estimated by cross-validation. We use two ANN models: 
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Where ty  is the output vector of the network at time t . For the case of the input, the 

notation changes slightly with respect to the notation of the SVR. Given a vector tx , its 

components will be the values of the last ‘ p ’ samples, therefore itx  is the input value 

at time it , where i  stands for the memory (the number of lags that are used to 

introduce the context of the actual observation.). We denote q  as the number of neurons 

in the hidden layer; g  is the nonlinear function of the neurons in the hidden layer, and 

j  are the weights connecting the output of the neuron j  at the hidden layer with the 

output neuron. In the MLP specification (10), ijw  stand for the weights of neuron j  

connecting the input with the hidden layer. In the RBF specification (11), jg  is the 

activation function, which usually has a Gaussian shape; j  is the centroid vector for 

neuron j ; and the spread j  is a scalar that measures the width over the input space of 

the Gaussian function and it can be defined as the area of influence of neuron j  in the 

space of the inputs. 



Once the topology of the neural network (i.e. the number of layers, etc.) is specified, 

the parameters of the network can be estimated by means of different algorithms, which 

are either based on gradient search, line search or quasi Newton search. A summary of 

the different algorithms can be found in Bishop (1995). In order to assure a correct 

performance of RBF ANNs, the number of centroids and the spread of each centroid 

have to be selected before the training phase. There are different methods for the 

estimation of the number of centroids and the spread of the network. In this study the 

hyperparameters are determined by cross-validation. A complete summary can be found 

in Haykin (1999). 

 

4. Experimental settings 
 

In this study we follow an iterated multi-step-ahead time series prediction strategy. We 

divide the collected data into three sets: training, validation and test. The validation set 

is used to determine the optimal stopping time for the training, and the test set is used to 

estimate the performance of the network on unseen data (Bishop, 1995; Ripley, 1996). 

The partition between train and test sets is done sequentially: as the prediction advances, 

forecasts are incorporated to the training database, successively increasing its size. This 

strategy allows to improve the training of the network as the prediction advances and to 

refine the performance at the end of the test phase. Based on these considerations, the 

first ninety-six monthly observations (from January 1999 to December 2006) are 

selected as the initial training set, the next sixty (from January 2007 to December 2011) 

as the validation set and the last 15% as the test set. 

The forecasting accuracy of a SVR model also depends on a good setting of 

hyperparameters C , , and the kernel parameters. Thus, the determination of this set of 

parameters is an important issue. The estimation of the hyperparameters can be done by 

means of genetic algorithms or by exhaustive enumeration of all possible combinations. 

When the number of possible values that the hyperparameters can take is limited, the 

exhaustive enumeration method is much more efficient than the use of a GA. GAs 

require a population and a number of generations of reasonable size. In our case, given 

the size of the problem, and in order to reduce the computational load, we use the 

exhaustive enumeration method after an exploratory data analysis to determine a rough 

interval for values of the hyperparameters. 



For the training of the linear kernel, the only hyperparameter to adjust is C , which 

controls the soft margin of the regressor. We explore values ranging from 0.1 to 2, with 

steps of 0.1. The optimal value is determined by the performance of the validation 

database. Note that the extreme of the range is selected so that the best value lies inside 

the margin. 

For the training of the polynomial kernel, both C  and the degree of the polynomial 

have to be adjusted. As the polynomial kernel allows for a greater flexibility in the 

approximation of the regression function in comparison to the linear kernel, we use a 

greater margin, ranging from 0.001 to 4, with non uniform intermediate steps (0.001, 

0.01, 0.1, 1, 2 and 4). For each value of the soft margin parameter, we explore different 

values of the exponent of the polynomial kernel (2, 3, 4, 5 and 6). As the selection 

criterion, we use the performance on the validation database. We find the best 

performance for the lowest values of the degree of the polynomial. 

For the training of the Gaussian RBF kernel, both C  and the value of the spread of 

the Gaussian have to be adjusted. As with the polynomial kernel, for each value of the 

soft margin parameter, we test the performance on different values of the spread of the 

Gaussian, selecting the spread with the best performance on the validation database. 

Note that the spread is common to all support vectors considered. The range of values 

for C  is the same that for the polynomial kernel. The margin for the spread of the 

Gaussian is taken from 0.1 to 10. The range is taken to be wide enough so as to contain 

the best value for the spread. 

Regarding the ANN models, we use two different kinds of architectures: MLP and 

RBF networks. The estimation of the weights of the neural networks can be done by 

means of different algorithms, which are either based on gradient search, line search or 

quasi Newton search. In this paper for the case of the MLP we use a variant of the quasi 

Newton search called Levenberg-Marquardt, and for the RBF we compute a regularized 

pseudo inverse for the estimation of the weights that connect the hidden units and the 

output.. The regularization parameter was taken as the 10% of the diagonal of the matrix 

to be inverted for the estimation of the weights that connect the hidden with the output 

units. In preliminary study, we determined that a more accurate estimation of the 

regularization parameter from the validation dataset did not give improved performance. 

Another aspect to be taken into account is the fact that the training is done by 

iteratively estimating the value of the parameters by local improvements of the cost 

function. To avoid the possibility that the search for the optimum value of the 



parameters finishes in a local minimum, we use a multi-starting technique that 

initializes the neural networks several times for different initial random values, trains 

the network and chooses the one with the best result on a validation database. 

The number of neurons in the hidden layer ranges from 5 to 30 for all the neural 

networks. Note that the complexity of the search space is low, so we chose an 

enumeration strategy which finds the best combination. The specific values of these 

parameters depend on the forecasting horizon and the algorithm. As the forecasting 

horizon increases, the number of neurons required in the hidden layer raises and varies 

between 10 and 20. 

To assure a correct performance of RBF networks, the number of centroids and the 

spread of each centroid have to be selected before the training phase. In this study the 

training is done by adding the centroids iteratively with the spread parameter fixed. 

Then a regularized linear regression is estimated to compute the connections between 

the hidden and the output layers. Finally, the performance of the network is assessed on 

the validation data set. This process is repeated until the performance on the validation 

database ceases to decrease. 

In the case of the RBF, the spread of each radial basis is determined by the 

performance of the network on the validation database. The hyperparameter sigma is 

selected before determining the topology of the network and is tuned outside the 

training phase. The optimal value depends on the Euclidean distance that is computed 

inside each neuron. The margin for the spread in the case of  the radial basis varies from 

0.1 to 2 with increments of 0.2 depending on the experiment, and are also dependent on 

the horizon of the forecast, possibly due to the uncertainty that arises when the forecast 

horizon increases to 6 months. All models are implemented using Python. 

 

5. Data 
 

Data on international tourist arrivals to Spain at a regional level are provided by the 

Spanish Statistical Office (National Statistics Institute – INE – www.ine.es). Data 

include the monthly number of tourists arriving to each region (Autonomous 

Community) over the time period 1999:01 to 2014:03. Table 1 shows a descriptive 

analysis of the data. 

 



 
Table 1. Descriptive analysis of foreign tourist arrivals (1999:01-2014:03) 

Region Minimum Maximum Mean Standard 
deviation 

Variation 
Coefficient 

Andalusia 182848 770987 453843.7 160241.8 35.3% 

Aragon 7901 59194 25868.9 11384.5 44.0% 

Asturias 2029 33714 11783.5 7546.5 64.0% 

Balearic Islands 23446 1387491 509102.3 423971.4 83.3% 

Canary Islands 212470 619311 359724.3 93466.4 26.0% 

Cantabria 2030 32070 13750.8 8552.5 62.2% 

Castilla Leon 18128 134683 62450.4 30444.4 48.7% 

Castilla La Mancha 11483 39308 25856.1 8378.2 32.4% 

Catalonia 157103 1442017 625334.3 306900.6 49.1% 

Valencia 80377 322857 171155.0 52886.8 30.9% 

Extremadura 4618 31558 12443.7 4502.2 36.2% 

Galicia 8395 126066 51043.9 29595.0 58.0% 

Madrid 135249 469760 279640.7 78578.3 28.1% 

Murcia 4897 24845 14138.4 3999.6 28.3% 

Navarra 2592 35152 12748.8 7444.7 58.4% 

Basque Country 14388 142644 51169.5 25532.1 49.9% 

La Rioja 983 15657 6224.5 3534.6 56.8% 

Total 1047264 5283691 2686278.8 1087326.8 40.5% 
Source: Compiled by the author, using data from the Spanish Statistical Office (INE). 
 

Table 1 shows that the main destinations are Catalonia, the Balearic islands and 

Andalusia. Catalonia and the Balearic islands are the two Autonomous Communities 

with the highest peaks. Balearic Islands is by far the region that shows the highest 

dispersion in the arrival of tourists. At the opposite extreme are the Canary Islands, with 

the lowest percentage of relative dispersion (variation coefficient). This result may in 

part be explained by weather conditions, as in the Canary Islands the climate is mild and 

temperatures remain virtually constant throughout the year (see Figure 1a). In Figures1a 

and 1b we show the evolution of tourist arrivals in each Spanish region from 1999 to 

2014. All regions except the Canary Islands display a strong seasonal pattern. 

When analyzing the distribution of the frequency of tourist arrivals to Spanish 

regions (Table 2), we observe that the main three destinations (Catalonia, the Balearic 

islands and Andalusia) account for more than half (59%) of the total number of tourist 

arrivals to Spain. The first six destinations account for almost 90% of the total number 

of tourist arrivals, which shows that tourism demand is highly concentrated in very few 

regions. 

 



 
Table 2. Distribution of the frequency of tourist arrivals to Spanish regions 

Year 2013 Tourist 
arrivals % % 

cumulated 

Catalonia  10281308 24.95% 24.95% 

Balearic Islands  7384863 17.92% 42.87% 

Andalusia  6330745 15.36% 58.23% 

Canary Islands  6044595 14.67% 72.90% 

Madrid  4054804 9.84% 82.73% 

Valencia  2701118 6.55% 89.29% 

Basque Country 915076 2.22% 91.51% 

Castilla Leon 883526 2.14% 93.65% 

Galicia  826443 2.01% 95.66% 

Aragon  400521 0.97% 96.63% 

Castilla La Mancha 306395 0.74% 97.37% 

Navarra 226060 0.55% 97.92% 

Cantabria 201297 0.49% 98.41% 

Murcia  196098 0.48% 98.89% 

Asturias  189320 0.46% 99.35% 

Extremadura 181200 0.44% 99.78% 

La Rioja 88621 0.22% 100.00% 
Source: Compiled by the author, using data from the Spanish Statistical Office (INE). 
 



 
Figure 1a. International tourism demand to Spain for each CCAA 
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Figure 1b. International tourism demand to Spain for each CCAA 
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6. Empirical results 
 

We carry out an out-of-sample forecasting competition between three different SVR 

models (linear, polynomial and Gaussian) and two ANN architectures (MLP and RBF). 

To summarize the results and rank the methods according to their forecasting 

performance for different forecast horizons (1, 2, 3, 6 and 12 months), we compute the 

Mean Absolute Percentage Error (MAPE) statistic for forecast accuracy (Tables 3a and 

3b). 



When comparing the forecasting performance of the different models, we find that in 

most cases the SVR with a Gaussian RBF kernel (SVR_3) outperforms the rest of the 

SVRs and ANNs. When expanding the memory up to three lags, the lowest MAE 

values are obtained with the SVR_3 in eight regions, and with MLP ANN in other 

seven. This results show that MLP ANNs improve their forecasting performance when 

increasing the memory, especially for one-year-ahead predictions. 

In general, we obtain the lowest MAPE values for longer forecasting horizons (6 and 

12 months). These results confirm previous research by Teräsvirta et al. (2005), who 

obtain more accurate forecasts with ANN models at long forecast horizons, and are 

indicative that SVRs and ANNs are particularly suitable for medium and long term 

forecasting. In Figure 2 we graph the evolution of the mean of the MAPE statistic for all 

models and regions for the different forecasting horizons. It can be seen how the overall 

forecasting performance improves for longer forecast horizons. 

 
Figure 2. Mean MAPE for all models and regions for each forecasting horizon 
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When analyzing the results by regions, we obtain the highest MAPE values for the 

Balearic Islands. This result can somehow be explained by the high levels of dispersion 

in tourist arrivals to the Balearic Islands (Table 1a). Nevertheless, when increasing the 

memory values, we find a higher relative improvement in the Balearic islands than in 

the rest of the regions for all models. This result indicates that the number of previous 

observations used for concatenation has a different effect on the forecasting 

performance for different regions. The best forecasting results are usually obtained in 

Andalucia, Castilla La Mancha, Extremadura and Murcia. 



Table 3a. Forecast accuracy. MAPE (2013:03-2014:01) 
 Support Vector Regressions Artificial Neural Networks 
 

Linear kernel Polynomial 
kernel 

Gaussian RBF 
kernel RBF MLP 

SVR_1 SVR_2 SVR_3 ANN_1 ANN_2 
Andalucia    
1 month 0.376 0.516 0.373 0.374 0.384 
2 months 0.425 0.311 0.486 0.396 0.412 
3 months 0.379 0.398 0.439 0.398 0.365 
6 months 0.287 0.375 0.323 0.364 0.317 
12 months 0.145 0.265  0.144* 0.250 0.186 
Aragon    
1 month 0.424 0.370 0.370 0.342 0.345 
2 months 0.463 0.478 0.393 0.368 0.405 
3 months 0.363 0.299 0.266 0.351 0.385 
6 months 0.318 0.337 0.309 0.307   0.258* 
12 months 0.311 0.353 0.306 0.306 0.273 
Asturias    
1 month 0.902 0.983 0.872 0.714 0.678 
2 months 1.057 0.961 0.851 0.734 0.840 
3 months 0.613 0.424 0.454 0.656 0.705 
6 months 0.428 0.590 0.375 0.440 0.384 
12 months   0.295* 0.427 0.312 0.434 0.350 
Balearic Islands   
1 month 5.705 8.474 6.440 4.031 3.753 
2 months 7.231 9.756 6.562 5.066 5.148 
3 months 4.609 3.173 4.713 5.019 4.669 
6 months 1.004 2.419  0.943* 2.587 1.178 
12 months 1.510 2.682 1.424 2.241 1.454 
Canary Islands   
1 month 0.471 0.547 0.456 0.420 0.420 
2 months 0.439 0.458 0.420 0.414 0.414 
3 months 0.449 0.469 0.444 0.416 0.426 
6 months 0.413 0.430 0.415 0.412   0.411* 
12 months 0.476 0.531 0.473 0.414 0.431 
Cantabria    
1 month 1.206 1.477 1.109 0.899 1.103 
2 months 1.308 1.612 1.007 0.874 0.984 
3 months 0.896 0.499 0.403 0.854 0.851 
6 months 0.364 0.597  0.249* 0.434 0.344 
12 months 0.311 0.448 0.323 0.483 0.315 
Castilla y Leon   
1 month 0.635 0.731 0.632 0.544 0.518 
2 months 0.701 0.772 0.638 0.562 0.606 
3 months 0.561 0.294 0.503 0.542 0.540 
6 months 0.281 0.416 0.220 0.342 0.230 
12 months 0.192 0.364  0.188* 0.286 0.243 
Castilla La Mancha   
1 month 0.324 0.356 0.343 0.264 0.265 
2 months 0.332 0.369 0.294 0.280 0.301 
3 months 0.297 0.431 0.256 0.289 0.288 
6 months 0.218 0.258 0.182 0.213 0.183 
12 months 0.092 0.183  0.075* 0.157 0.127 
Catalonia    
1 month 0.450 0.511 0.446 0.416 0.427 
2 months 0.562 0.558 0.486 0.438 0.483 
3 months 0.442 0.312 0.332 0.410 0.410 
6 months 0.382 0.370 0.397 0.341 0.331 
12 months 0.335 0.344 0.329 0.328   0.291* 
Notes: * Model with the lowest MAPE. 



Table 3b. Forecast accuracy. MAPE (2013:03-2014:01) 
 Support Vector Regressions Artificial Neural Networks 
 

Linear kernel Polynomial 
kernel 

Gaussian RBF 
kernel RBF MLP 

 SVR_1 SVR_2 SVR_3 ANN_1 ANN_2 
Valencia    
1 month 0.328 0.478 0.335 0.341 0.309 
2 months 0.396 0.371 0.401 0.359 0.363 
3 months 0.363 0.315 0.363 0.362 0.363 
6 months 0.362   0.221* 0.357 0.357 0.357 
12 months 0.309 0.508 0.297 0.317 0.276 
Extremadura   
1 month 0.333 0.344 0.339 0.346 0.332 
2 months 0.380 0.361 0.368 0.355 0.354 
3 months 0.328 0.397 0.461 0.351 0.319 
6 months 0.316 0.365 0.277 0.332 0.306 
12 months 0.212 0.311  0.196* 0.270 0.212 
Galicia    
1 month 0.929 1.066 0.902 0.731 0.732 
2 months 1.054 1.130 0.648 0.795 0.860 
3 months 0.705 0.483 0.593 0.751 0.776 
6 months 0.491 0.638 0.388 0.537 0.423 
12 months 0.357 0.842 0.355 0.453 0.356 
Madrid (Community)   
1 month 0.261 0.344 0.255 0.291 0.258 
2 months 0.283 0.318 0.273 0.283 0.256 
3 months 0.296   0.183* 0.299 0.285 0.268 
6 months 0.297 0.288 0.296 0.288 0.269 
12 months 0.233 0.440 0.240 0.281 0.256 
Murcia (Region)   
1 month 0.250 0.251 0.244 0.238 0.243 
2 months 0.301 0.287 0.263 0.265 0.289 
3 months 0.260 0.229 0.251 0.282 0.297 
6 months 0.249 0.210 0.250 0.276 0.291 
12 months 0.211 0.279 0.197 0.201   0.180* 
Navarra    
1 month 0.682 0.779 0.660 0.590 0.587 
2 months 0.766 0.917 0.704 0.604 0.665 
3 months 0.597 0.499 0.522 0.565 0.573 
6 months 0.418 0.548 0.339 0.452 0.365 
12 months 0.331 0.469  0.328* 0.396 0.351 
Basque Country   
1 month 0.444 0.457 0.432 0.432 0.495 
2 months 0.529 0.493 0.466 0.440 0.483 
3 months 0.429 0.387 0.378 0.420 0.430 
6 months 0.420   0.355* 0.459 0.387 0.386 
12 months 0.388 0.436 0.380 0.411 0.381 
La Rioja    
1 month 0.586 0.662 0.527 0.499 0.501 
2 months 0.642 0.395 0.408 0.544 0.581 
3 months 0.598 0.454 0.347 0.553 0.543 
6 months 0.367 0.482 0.255 0.338 0.278 
12 months 0.202 0.349  0.181* 0.337 0.227 
Total    
1 month 0.431 0.530 0.388 0.369 0.382 
2 months 0.468 0.574 0.447 0.391 0.417 
3 months 0.383 0.271 0.330 0.370 0.355 
6 months 0.313 0.322 0.305 0.295 0.254 
12 months 0.261 0.326  0.241* 0.265 0.279 
Notes: * Model with the lowest MAPE. 
 



In order to attain a more comprehensive forecasting evaluation, we also compute the 

percentage of Periods with Lower Absolute Error (PLAE) statistic proposed by Claveria, 

Monte and Torra (2016). The PLAE is a dimensionless measure based on the CJ 

statistic for testing market efficiency (Cowles and Jones, 1937). This accuracy measure 

allows us to compare the forecasting performance between two competing models 

(Table 4a and 4b). 

The statistic consists on a ratio that calculates the proportion of periods in which the 

model under evaluation obtains a lower absolute forecasting error than the benchmark 

model. In this study we use the no-change model as a benchmark. Let us denote ty  as 

actual value and tŷ  as forecast at period nt ,,1 . Forecast errors can then be defined 

as ttt yye ˆ . Given two competing models A  and B , where A  refers to the 

forecasting model under evaluation and B  stands for benchmark model, we can then 

obtain the proposed statistic as follows: 

n
PLAE

n
t t1  where 

otherwise   0

 if   1 ,, BtAt
t

ee
  (12) 

Finally, we repeat the experiment assuming different topologies regarding the 

memory values. These values represent the number of lags introduced when running the 

models, denoting the number of previous months used for concatenation. The number of 

lags used in the different experiments ranged from one to three months for all the 

models. Results of the forecasting competition expanding the memory up to three lags 

are shown in Tables 5a and 5b and Tables 6a and 6b. 

When the forecasts are obtained incorporating additional lags of the time series 

(Table 5a, 5b, 6a and 6b), we obtain better forecasting results in most cases. Unlike 

Claveria, Monte and Torra (2014), who did not obtained significant differences when 

additional lags are incorporated in the feature vector, we find that increasing the 

dimensionality of the input may help improve the forecast accuracy of SVRs and ANNs. 

The reason for this discrepancy can be due to the length of the time series used in the 

analysis, as longer time series favour the learning process of the models. 

 

 



Table 4a. Forecast accuracy. PLAE (2013:03-2014:01) 
 Support Vector Regressions Artificial Neural Networks 
 

Linear kernel Polynomial 
kernel 

Gaussian RBF 
kernel RBF MLP 

SVR_1 SVR_2 SVR_3 ANN_1 ANN_2 
Andalucia    
1 month 27.3 9.1 36.4 18.2 18.2 
2 months 54.5 45.5 54.5 45.5 45.5 
3 months 63.6 63.6 63.6 54.5 63.6 
6 months 72.7 72.7 72.7 72.7 81.8 
12 months 18.2 9.1 18.2 0.0 9.1 
Aragon    
1 month 18.2 36.4 9.1 36.4 27.3 
2 months 36.4 45.5 45.5 45.5 45.5 
3 months 63.6 81.8 81.8 63.6 63.6 
6 months 81.8 72.7 72.7 81.8 100.0 
12 months 18.2 27.3 18.2 36.4 27.3 
Asturias    
1 month 18.2 9.1 18.2 27.3 18.2 
2 months 36.4 45.5 63.6 54.5 45.5 
3 months 72.7 81.8 81.8 72.7 72.7 
6 months 100.0 90.9 81.8 100.0 90.9 
12 months 0.0 0.0 0.0 9.1 0.0 
Balearic Islands   
1 month 27.3 27.3 45.5 36.4 27.3 
2 months 54.5 45.5 54.5 54.5 54.5 
3 months 72.7 72.7 63.6 72.7 72.7 
6 months 100.0 100.0 100.0 100.0 100.0 
12 months 18.2 0.0 18.2 0.0 9.1 
Canary Islands   
1 month 0.0 0.0 0.0 0.0 9.1 
2 months 9.1 9.1 9.1 9.1 9.1 
3 months 9.1 0.0 9.1 9.1 9.1 
6 months 0.0 0.0 0.0 0.0 0.0 
12 months 0.0 0.0 0.0 0.0 0.0 
Cantabria    
1 month 18.2 18.2 36.4 36.4 18.2 
2 months 54.5 36.4 63.6 54.5 54.5 
3 months 72.7 72.7 72.7 63.6 63.6 
6 months 90.9 100.0 90.9 100.0 90.9 
12 months 9.1 0.0 9.1 9.1 27.3 
Castilla y Leon   
1 month 36.4 27.3 36.4 36.4 36.4 
2 months 45.5 45.5 63.6 54.5 54.5 
3 months 54.5 63.6 72.7 63.6 63.6 
6 months 81.8 90.9 90.9 81.8 90.9 
12 months 0.0 9.1 0.0 9.1 9.1 
Castilla La Mancha   
1 month 36.4 36.4 36.4 45.5 54.5 
2 months 54.5 54.5 54.5 63.6 63.6 
3 months 72.7 63.6 72.7 63.6 63.6 
6 months 81.8 81.8 81.8 81.8 81.8 
12 months 45.5 36.4 63.6 45.5 36.4 
Catalonia    
1 month 18.2 27.3 18.2 18.2 18.2 
2 months 36.4 36.4 45.5 45.5 45.5 
3 months 63.6 63.6 72.7 63.6 54.5 
6 months 81.8 63.6 81.8 81.8 81.8 
12 months 0.0 0.0 0.0 18.2 18.2 
Notes: Percentage of PLAE values in parentheses. The PLAE ratio measures the number of out-of-sample periods with 

lower absolute errors than the benchmark model (No-change model). 



Table 4b. Forecast accuracy. PLAE (2013:03-2014:01) 
 Support Vector Regressions Artificial Neural Networks 
 

Linear kernel Polynomial 
kernel 

Gaussian RBF 
kernel RBF MLP 

SVR_1 SVR_2 SVR_3 ANN_1 ANN_2 
Valencia    
1 month 9.1 18.2 9.1 27.3 18.2 
2 months 36.4 36.4 36.4 45.5 36.4 
3 months 54.5 54.5 54.5 54.5 54.5 
6 months 63.6 81.8 63.6 63.6 63.6 
12 months 0.0 0.0 0.0 9.1 9.1 
Extremadura   
1 month 36.4 27.3 27.3 27.3 36.4 
2 months 54.5 45.5 45.5 45.5 45.5 
3 months 54.5 54.5 54.5 54.5 54.5 
6 months 72.7 63.6 72.7 63.6 72.7 
12 months 27.3 18.2 27.3 9.1 9.1 
Galicia    
1 month 18.2 9.1 27.3 27.3 27.3 
2 months 45.5 45.5 63.6 54.5 54.5 
3 months 63.6 90.9 54.5 63.6 63.6 
6 months 81.8 90.9 81.8 81.8 90.9 
12 months 0.0 0.0 0.0 9.1 9.1 
Madrid (Community)   
1 month 27.3 9.1 27.3 18.2 27.3 
2 months 36.4 27.3 36.4 36.4 36.4 
3 months 18.2 54.5 18.2 27.3 27.3 
6 months 36.4 45.5 36.4 45.5 36.4 
12 months 0.0 0.0 0.0 0.0 0.0 
Murcia (Region)   
1 month 27.3 45.5 27.3 18.2 27.3 
2 months 27.3 27.3 27.3 27.3 27.3 
3 months 54.5 54.5 54.5 54.5 45.5 
6 months 72.7 72.7 72.7 72.7 72.7 
12 months 27.3 18.2 18.2 27.3 27.3 
Navarra    
1 month 9.1 9.1 9.1 27.3 27.3 
2 months 45.5 36.4 45.5 45.5 45.5 
3 months 72.7 72.7 72.7 72.7 72.7 
6 months 81.8 81.8 81.8 81.8 90.9 
12 months 9.1 18.2 18.2 0.0 18.2 
Basque Country   
1 month 27.3 27.3 27.3 9.1 18.2 
2 months 27.3 36.4 27.3 45.5 36.4 
3 months 63.6 63.6 63.6 63.6 63.6 
6 months 72.7 72.7 72.7 72.7 72.7 
12 months 0.0 0.0 0.0 0.0 0.0 
La Rioja    
1 month 36.4 18.2 36.4 45.5 36.4 
2 months 63.6 63.6 63.6 63.6 63.6 
3 months 63.6 72.7 63.6 72.7 63.6 
6 months 81.8 81.8 81.8 81.8 81.8 
12 months 18.2 27.3 18.2 9.1 27.3 
Total    
1 month 9.1 0.0 9.1 18.2 27.3 
2 months 45.5 45.5 54.5 45.5 45.5 
3 months 63.6 63.6 63.6 54.5 63.6 
6 months 81.8 81.8 81.8 81.8 90.9 
12 months 0.0 0.0 0.0 18.2 9.1 
Notes: Percentage of PLAE values in parentheses. The PLAE ratio measures the number of out-of-sample periods with 

lower absolute errors than the benchmark model (No-change model). 



Table 5a. Forecast accuracy. MAPE (2013:03-2014:01) – Expanded memory up to three lags 
 Support Vector Regressions Artificial Neural Networks 
 

Linear kernel Polynomial 
kernel 

Gaussian RBF 
kernel RBF MLP 

SVR_1 SVR_2 SVR_3 ANN_1 ANN_2 
Andalucia    
1 month 0.255 0.303 0.273 0.386 0.301 
2 months 0.343 0.359 0.331 0.396 0.314 
3 months 0.400 0.391 0.441 0.387 0.443 
6 months 0.267 0.345 0.222 0.389 0.333 
12 months 0.143 0.213  0.132* 0.356 0.141 
Aragon    
1 month 0.441 0.492 0.377 0.354 0.317 
2 months 0.403 0.433 0.353 0.348 0.350 
3 months 0.363 0.289  0.266* 0.342 0.325 
6 months 0.320 0.347 0.356 0.350 0.294 
12 months 0.304 0.297 0.303 0.350 0.339 
Asturias    
1 month 0.678 0.736 0.551 0.647 0.604 
2 months 0.687 0.682 0.587 0.678 0.672 
3 months 0.476 0.751 0.434 0.652 0.557 
6 months 0.418 0.760 0.301 0.587 0.378 
12 months 0.305 0.363 0.292 0.585   0.287* 
Balearic Islands   
1 month 3.271 9.987 5.016 4.821 4.852 
2 months 4.594 12.723 5.906 5.024 3.736 
3 months 3.874 3.804 3.913 4.401 4.530 
6 months 1.698 2.796 1.519 3.749 1.079 
12 months 1.436 2.611 1.457 3.643   0.980* 
Canary Islands   
1 month 0.478 0.564 0.464 0.396 0.429 
2 months 0.455 0.647 0.406 0.401 0.449 
3 months 0.452 0.525 0.437 0.400 0.459 
6 months 0.430 0.468 0.419 0.400 0.406 
12 months 0.458 0.499 0.441  0.394* 0.457 
Cantabria    
1 month 0.902 1.127 0.558 0.822 0.599 
2 months 0.854 1.296 0.779 0.823 0.958 
3 months 0.625 0.953 0.806 0.783 0.805 
6 months 0.362 0.603  0.220* 0.678 0.233 
12 months 0.348 0.496 0.346 0.698 0.275 
Castilla y Leon   
1 month 0.484 0.554 0.343 0.524 0.495 
2 months 0.447 0.505 0.337 0.510 0.414 
3 months 0.399 0.277 0.274 0.489 0.411 
6 months 0.291 0.374 0.173 0.453 0.221 
12 months 0.191 0.324 0.178 0.484   0.165* 
Castilla La Mancha   
1 month 0.248 0.300 0.213 0.277 0.269 
2 months 0.272 0.288 0.174 0.286 0.234 
3 months 0.204 0.160 0.132 0.290 0.193 
6 months 0.210 0.225 0.207 0.253 0.250 
12 months 0.097 0.164 0.088 0.236   0.084* 
Catalonia    
1 month 0.346 0.382 0.364 0.420 0.333 
2 months 0.365 0.405 0.373 0.405 0.398 
3 months 0.356 0.342  0.291* 0.400 0.362 
6 months 0.375 0.343 0.349 0.383 0.367 
12 months 0.323 0.392 0.331 0.374 0.357 
Notes: * Model with the lowest MAPE. 
 



Table 5b. Forecast accuracy. MAPE (2013:03-2014:01) – Expanded memory up to three lags 
 Support Vector Regressions Artificial Neural Networks 
 

Linear kernel Polynomial 
kernel 

Gaussian RBF 
kernel RBF MLP 

SVR_1 SVR_2 SVR_3 ANN_1 ANN_2 
Valencia    
1 month 0.301 0.343 0.300 0.353 0.299 
2 months 0.311 0.339 0.365 0.359 0.349 
3 months 0.325   0.192* 0.461 0.359 0.412 
6 months 0.364 0.338 0.253 0.354 0.347 
12 months 0.295 0.506 0.287 0.349 0.232 
Extremadura   
1 month 0.284 0.309 0.254 0.350 0.295 
2 months 0.303 0.406 0.322 0.344 0.284 
3 months 0.296 0.283 0.304 0.351 0.290 
6 months 0.285 0.349 0.335 0.346 0.311 
12 months 0.204 0.337  0.197* 0.339 0.205 
Galicia    
1 month 0.759 0.960 0.636 0.727 0.662 
2 months 0.844 0.944 0.723 0.732 0.714 
3 months 0.727 0.633 0.487 0.711 0.755 
6 months 0.469 0.665 0.403 0.628 0.358 
12 months 0.362 0.585 0.357 0.659   0.347* 
Madrid (Community)   
1 month 0.274 0.327 0.261 0.288 0.242 
2 months 0.261 0.312 0.292 0.287 0.269 
3 months 0.299 0.287 0.280 0.288 0.296 
6 months 0.291 0.236 0.204 0.291 0.251 
12 months 0.224 0.360 0.212 0.276   0.195* 
Murcia (Region)   
1 month 0.246 0.307 0.230 0.262 0.229 
2 months 0.272 0.283 0.263 0.262 0.262 
3 months 0.251 0.266 0.256 0.265 0.321 
6 months 0.243 0.218 0.230 0.257 0.326 
12 months 0.198 0.213 0.198 0.245   0.165* 
Navarra    
1 month 0.564 0.617 0.555 0.550 0.440 
2 months 0.540 0.625 0.416 0.558 0.525 
3 months 0.416 0.615 0.375 0.534 0.468 
6 months 0.367 0.513 0.345 0.512 0.413 
12 months   0.338* 0.456 0.343 0.514 0.348 
Basque Country   
1 month 0.382 0.407 0.433 0.421 0.409 
2 months 0.375 0.374 0.334 0.421 0.424 
3 months 0.378 0.395  0.325* 0.410 0.375 
6 months 0.443 0.448 0.351 0.395 0.372 
12 months 0.389 0.454 0.374 0.395 0.432 
La Rioja    
1 month 0.528 0.952 0.405 0.548 0.547 
2 months 0.578 0.739 0.370 0.549 0.468 
3 months 0.367 0.817 0.340 0.541 0.405 
6 months 0.319 0.382 0.222 0.466 0.280 
12 months 0.196 0.277  0.169* 0.527 0.226 
Total    
1 month 0.315 0.396 0.301 0.366 0.302 
2 months 0.332 0.441 0.399 0.361 0.267 
3 months 0.298 0.359 0.434 0.359 0.275 
6 months 0.321 0.402  0.220* 0.335 0.293 
12 months 0.255 0.258 0.255 0.328 0.267 
Notes: * Model with the lowest MAPE. 
 



Table 6a. Forecast accuracy. PLAE (2013:03-2014:01) – Expanded memory up to three lags 
 Support Vector Regressions Artificial Neural Networks 
 

Linear kernel Polynomial 
kernel 

Gaussian RBF 
kernel RBF MLP 

SVR_1 SVR_2 SVR_3 ANN_1 ANN_2 
Andalucia    
1 month 45.5 63.6 36.4 27.3 0.0 
2 months 63.6 63.6 54.5 36.4 54.5 
3 months 54.5 54.5 54.5 45.5 45.5 
6 months 81.8 72.7 81.8 72.7 90.9 
12 months 18.2 0.0 18.2 0.0 9.1 
Aragon    
1 month 9.1 36.4 63.6 45.5 0.0 
2 months 63.6 45.5 54.5 45.5 45.5 
3 months 72.7 72.7 81.8 63.6 63.6 
6 months 81.8 72.7 72.7 72.7 81.8 
12 months 18.2 36.4 18.2 18.2 18.2 
Asturias    
1 month 45.5 27.3 63.6 18.2 0.0 
2 months 63.6 54.5 72.7 54.5 63.6 
3 months 81.8 81.8 81.8 72.7 81.8 
6 months 90.9 100.0 90.9 90.9 90.9 
12 months 9.1 9.1 9.1 9.1 9.1 
Balearic Islands   
1 month 45.5 36.4 63.6 36.4 0.0 
2 months 45.5 36.4 45.5 54.5 54.5 
3 months 72.7 72.7 90.9 72.7 72.7 
6 months 100.0 100.0 100.0 100.0 100.0 
12 months 18.2 9.1 18.2 18.2 0.0 
Canary Islands   
1 month 0.0 0.0 63.6 81.8 0.0 
2 months 9.1 0.0 9.1 9.1 9.1 
3 months 9.1 0.0 9.1 0.0 0.0 
6 months 0.0 0.0 0.0 0.0 0.0 
12 months 0.0 0.0 0.0 0.0 0.0 
Cantabria    
1 month 36.4 36.4 63.6 45.5 0.0 
2 months 54.5 45.5 63.6 63.6 54.5 
3 months 81.8 72.7 81.8 72.7 72.7 
6 months 90.9 81.8 100.0 100.0 100.0 
12 months 9.1 18.2 18.2 0.0 9.1 
Castilla y Leon   
1 month 45.5 36.4 54.5 18.2 0.0 
2 months 63.6 54.5 81.8 54.5 63.6 
3 months 72.7 72.7 72.7 63.6 72.7 
6 months 81.8 81.8 90.9 81.8 90.9 
12 months 0.0 9.1 0.0 0.0 0.0 
Castilla La Mancha   
1 month 27.3 45.5 72.7 36.4 0.0 
2 months 54.5 54.5 90.9 54.5 63.6 
3 months 72.7 63.6 72.7 72.7 72.7 
6 months 90.9 90.9 90.9 100.0 81.8 
12 months 45.5 45.5 36.4 36.4 72.7 
Catalonia    
1 month 27.3 27.3 63.6 27.3 0.0 
2 months 63.6 54.5 63.6 45.5 54.5 
3 months 72.7 72.7 72.7 54.5 63.6 
6 months 81.8 81.8 81.8 72.7 81.8 
12 months 0.0 0.0 0.0 0.0 0.0 
Notes: Percentage of PLAE values in parentheses. The PLAE ratio measures the number of out-of-sample periods with 

lower absolute errors than the benchmark model (No-change model). 



Table 6b. Forecast accuracy. PLAE (2013:03-2014:01) – Expanded memory up to three lags 
 Support Vector Regressions Artificial Neural Networks 
 

Linear kernel Polynomial 
kernel 

Gaussian RBF 
kernel RBF MLP 

SVR_1 SVR_2 SVR_3 ANN_1 ANN_2 
Valencia    
1 month 18.2 54.5 54.5 36.4 0.0 
2 months 45.5 45.5 54.5 45.5 45.5 
3 months 54.5 81.8 54.5 54.5 45.5 
6 months 63.6 63.6 72.7 63.6 72.7 
12 months 0.0 0.0 0.0 0.0 27.3 
Extremadura   
1 month 36.4 36.4 45.5 45.5 0.0 
2 months 72.7 54.5 54.5 45.5 63.6 
3 months 54.5 54.5 54.5 54.5 45.5 
6 months 72.7 72.7 81.8 63.6 90.9 
12 months 27.3 0.0 18.2 0.0 18.2 
Galicia    
1 month 27.3 36.4 45.5 45.5 0.0 
2 months 63.6 54.5 63.6 54.5 63.6 
3 months 72.7 72.7 72.7 63.6 63.6 
6 months 81.8 81.8 81.8 81.8 90.9 
12 months 0.0 0.0 0.0 0.0 0.0 
Madrid (Community)   
1 month 18.2 27.3 54.5 36.4 0.0 
2 months 36.4 18.2 27.3 27.3 27.3 
3 months 27.3 27.3 18.2 18.2 18.2 
6 months 36.4 54.5 54.5 36.4 45.5 
12 months 0.0 0.0 0.0 0.0 0.0 
Murcia (Region)   
1 month 18.2 36.4 45.5 63.6 0.0 
2 months 27.3 27.3 27.3 36.4 27.3 
3 months 63.6 54.5 54.5 54.5 45.5 
6 months 81.8 81.8 72.7 72.7 72.7 
12 months 18.2 27.3 9.1 27.3 27.3 
Navarra    
1 month 18.2 27.3 54.5 36.4 0.0 
2 months 63.6 63.6 72.7 54.5 54.5 
3 months 81.8 72.7 81.8 72.7 81.8 
6 months 81.8 81.8 81.8 81.8 81.8 
12 months 0.0 0.0 9.1 9.1 9.1 
Basque Country   
1 month 36.4 54.5 72.7 45.5 0.0 
2 months 45.5 54.5 54.5 54.5 36.4 
3 months 63.6 63.6 63.6 63.6 54.5 
6 months 72.7 63.6 81.8 63.6 72.7 
12 months 0.0 9.1 0.0 0.0 0.0 
La Rioja    
1 month 36.4 63.6 72.7 45.5 0.0 
2 months 63.6 63.6 63.6 54.5 54.5 
3 months 72.7 63.6 72.7 72.7 63.6 
6 months 81.8 81.8 81.8 81.8 81.8 
12 months 27.3 18.2 27.3 0.0 27.3 
Total    
1 month 9.1 18.2 45.5 27.3 0.0 
2 months 63.6 54.5 54.5 36.4 72.7 
3 months 72.7 72.7 72.7 63.6 81.8 
6 months 81.8 81.8 90.9 81.8 81.8 
12 months 0.0 18.2 0.0 0.0 9.1 
Notes: Percentage of PLAE values in parentheses. The PLAE ratio measures the number of out-of-sample periods with 

lower absolute errors than the benchmark model (No-change model). 



 

The PLAE with regard to the no-change model (Table 4a and 4b and Table 6a and 

6b), shows that the SVR_3 and ANN_1 are the models that outperform the no-change 

model in most cases for 2, 3 and 6 months-ahead forecasts. There is ample evidence in 

the literature that the no-change model generates more accurate one-period-ahead 

predictions than other more sophisticated models (Witt, Witt and Wilson, 1994). The 

only exceptions are the Canary Islands and the Community of Madrid, where no model 

outperforms the no-change model. This result can be explained by the fact that they are 

the only regions that do not show strong seasonal patterns. 

These results confirm previous research by Hong (2006) and Chen and Wang (2007), 

who obtain better forecasting results with SVMs and SVRs than with ANNs for tourist 

arrivals to Barbados and China respectively. Velásquez et al. (2010) also obtain better 

predictions with SVMs than with MLP ANNs. Nevertheless, not all SVRs show the 

same performance. While SVRs with a Gaussian RBF kernel outperform ANNs in most 

cases, MLP ANNs outperform both SVRs with linear and polynomial kernels. 

The fact that the Gaussian RBF kernel is easier to implement and especially suitable 

for non-linear data sets, suggests the potential of SVRs for non-linear time series 

forecasting. These results also show the importance of properly selecting the kind of 

kernel function. 

 

7. Summary and Conclusions 
 

As more accurate predictions are essential for effective policy planning, new forecasting 

methods provide room for improvement. Artificial intelligence techniques based on 

statistical learning such as Support Vector Regressions and Artificial Neural Networks 

have attracted increasing interest to refine the predictions. From the wide array of 

techniques, we have focused on the SVRs based on three different kernels and two 

ANN architectures that represent alternative ways of handling information. 

The main purpose of this study is to assess the forecasting accuracy of Support 

Vector Machines. First, we compare the forecasting accuracy of three different SVR 

models to two ANNs. We then compare all models with respect to a benchmark by 

means of a dimensionless forecasting accuracy measure based on the statistic for testing 

market efficiency. This statistic allows comparing the forecasting performance between 

two competing models by giving the percentage of periods in which the model under 



evaluation obtains a lower absolute forecasting error than the benchmark model. Finally, 

we repeat the experiment increasing the number of lags used for concatenation in order 

to analyze what is the effect of the memory on the forecasting results. 

The forecasting out-of-sample comparison shows that the SVR with a Gaussian RBF 

kernel outperforms the rest of the models in most cases. When comparing the 

forecasting accuracy of the different techniques, we find that MLP networks show a 

better forecasting performance than RBF ANNs and linear and polynomial SVRs. This 

result illustrates the importance of not overlooking the parameter and kernel function 

selection for SVR modelling. 

When analyzing the differences between regions, we obtain the best forecasting 

results in Castilla La Mancha. On the other hand, the Balearic Islands display the 

highest forecasting errors. This result can partly be explained by the fact that tourist 

arrivals to the Balearic Islands show high levels of dispersion. 

Regarding the forecasting horizons, we obtain the best results for six and twelve 

months ahead forecasts, suggesting the suitability of SVRs and ANNs for mid and long 

term forecasting. 

When repeating the experiment for topologies with a higher number of lags, we find 

that MLP ANNs relatively improve their forecasting performance. Apart from this 

result, we find no major differences in the forecasting accuracy when additional lags are 

incorporated in the feature vector. The fact that increasing the dimensionality of the 

input does not have a significant effect on forecast accuracy is indicative that the 

increase in the weight matrix is not compensated by the more complex specification, 

leading to overparametrization. 

This study contributes to the forecasting literature and to the tourism industry by 

highlighting the suitability of applying SVR with Gaussian RBF kernels for estimating 

future demand. The comparison of this novel statistical learning method to alternative 

artificial intelligence techniques such as the Gaussian process regression is a question to 

be addressed in further research. Another question to be considered is whether the 

combination of the forecasts of different statistical learning statistical learning 

techniques may improve the forecasting performance of practical tourism demand 

forecasting. 
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