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Abstract - Within the framework of Continuum Damage Mechanics, a new constitutive
damage model for massive concrete is presented, mainly intended for the seismic analysis
of gravity and arch dams. Consistent with thermodynamic fequirements, a strain-driven
formalism is adopted, improving the algorithmic efficiency as much as required for the
analysis of large scale problems to become feasible. Two scalar damage variables are
introduced as internal variables, as well as a plastic-strain tensor. Extension to account
for the concrete strain-rate dependency, suitable for seismic analysis, is presented at the
end. Efficiency of numerical predictions from the constitutive model is illustrated through
numerical applications. Algorithmic implementation is also detailed.

1. INTRODUCTION

Among the wide variety of problems to be solved in Structural Engineering, the
analysis of concrete massive structures (like dams) is widely recognised as rather
peculiar, mainly due to the large scale problem resulting from an appropriate volumetric
discretization, particularly if a seismic analysis is to be performed, where a refined
time-stepping scheme is usually required.

Due to this ‘scale’ problem, the structural behaviour of concrete dams only rarely is
ascertained taking into consideration its non-linear material constitutive behaviour,
particularly if 3D analyses have to be considered [1]. Most commonly, non-linear
analyses of concrete dams are performed in a posteriori fashion, for interpretation of

pathologies or during scientific investigation, and only seldom for design purposes. Some




attention must then be devoted to the appropriate selection of a constitutive model
adequate for the seismic analysis of large scale concrete structures, so that its
computational effort is kept within reasonable limits as much as possible, for the intended
analysis to become feasible.

In Section 2 an original numerical model is presented, supported by a strain-based
formalism which ensures high algorithmic efficiency. The following basic features of
concrete behaviour were selected as relevant to be modelled, so that physically realistic
predictions could be expected: (/) the rather distinct stress-strain envelopes obtained
under tension or under compression, with large differences in their peak strengths; (#7)
the stiffness recovery upon loading reversal (visible when passing from tension into
compression, or backwards); (iif) the concrete strength enhancement discernible under
2D or 3D compressive tests, when compared to the 1D compressive strength and (7v) the
plastic deformations observable upon unloading, after some compressive stress threshold
being attained. Two scalar damage variables are introduced, each of them linked to the
degradation mechanisms occurring under tensile or compressive stress conditions
(assumed as independent). Appropriate evolution laws are cast for the damage variables,
and also for a plastic strain tensor, added to the internal variables ensemble. Taking into
consideration relevant thermodynamic priﬁciples, dissipation is checked and an intuitive
constitutive law is derived. Attention is devoted to pertinent aspects concerning the
algorithmic implementation, as well as the validation of the model predictions.

Section 3 is devoted to the modelling of the rate sensitivity exhibited by concrete
during high speed straining tests, according to which dynamic peak strengths can be
significantly enhanced relatively to quasi-static strengths. This effect is attended through
a slight modification on the evolution laws for the threshold variables involved in the
constitutive model described in Section 2, conceptually similar to the viscoplastic Perzina
regularization. The overall algorithm for the inviscid constitutive model is kept
unchanged, the only modification being the procedure for the updating of the damage
thresholds. Some applications illustrate the good agreement between the model

predictions and pertinent experimental results.
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2. RATE-INDEPENDENT PLASTIC-DAMAGE MODEL

As widely recognised, Continuum Damage Mechanics provides a powerful and
general framework, based on Thermodynamics of Irreversible Processes, from which the
derivation of consistent material models is possible for many engineering fields. Firstly
introduced by Kachanov [2] for creep-related p}oblems, nowadays Damage Mechanics
has a wide range of applicability, for materials so different as steel, ceramics, rock and

concrete [3-15].

2.1. Effective Stress

Besides the concept of damage itself, corresponding to the surface density of material
defects, ranging from ‘zero’ (for the virgin material) to ‘one’ (at collapse} [6], the
effective stress concept is also of capital importance [7] for the model to be derived.
With reference to the 1D situation schematically depicted in Fig. 1, where S denotes the
overall cross sectional area and S the effective resistant section (the area S-S of the
notch symbolises the area of the material defects), distinction between the usual Cauchy
stress & and the effective stress © is quite evident. A remark is made to the fact of ©
being physically more representative than the external Cauchy stress, once the external
load is effectively applied on S, and not on S.

Strictly connected to the effective stress concept, the hypothesis of strain
equivalence is also introduced: ‘‘The strain associated with a damage state under the
applied stress o is equivalent to the strain associated with its undamaged state under the
effective stress 67 ([16], according to [17]). Now, postulating an appropriate relation
between stresses and strains for material points located in the effective area, a
constitutive law can be derived in a more comprehensive way. Let us assume the

following definition for &, a three-dimensional effective stress tensor (rank two)
o(e,e”) = D, (e —&") (1)
where D, denotes the usual fourth order isotropic linear-elastic constitutive matrix, € is

the strain tensor and €” corresponds to a plastic strain tensor (both rank two). € is an
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external (free) variable, whereas €7 is an internal one, with an evolution to be discussed
latter.

In order to clearly distinguish stress contributions due to tension or to compression,
thereafter assumed to produce independent non-linear mechanisms of degradation, a split
of the effective stress tensor G into tensile and compressive components (6, &) will

be introduced, and performed according to

6t = Z <G,> p, Qp, (2a)
i

G = o - "(“)‘"+ (Zb)
where &, denotes the /-th principal stress extracted from tensor ¢ and p; corresponds to
the unit vector for the associated principal direction. Symbols <-> are the Macaulay
brackets (ramp function), thus returning the value of the enclosed expression if positive,

and setting a zero value if negative; indices (+) and () will be extensively used hereafter,

to point out tensile and compressive entities, respectively.

2.2. Helmholtz Free Energy Potential

Continuum Damage Mechanics is based on the Thermodynamics of Irreversible
Processes [18]. For a constitutive law to be established, a free energy potential must be
introduced, in which the free and the internal variables have to be represented. Let us

postulate a Helmholtz Free Energy Potential with the form [19]
W (s, ef, d", d') = (l—d‘”) vy (g,87) + (1—a’“) v, (g,87) (3)

where v, and v, are elastic free energies, defined according to

v (5, e'”)) = —;— st D' (42)
v; (G, e7)) = % D' © (4b)




The internal variables set is constituted by the plastic strain tensor &7, as well as d" and
d~, scalar damage variablest directly linked to tensile and compressive deteriorations,
here assumed as corresponding to independent processes; strain tensor € is the single
free variable admitted. D} is the linear-elastic compliance matrix, which may assume the
following definition, taking into consideration the usual notation of £, v and & for the

Young’s modulus, the Poisson’s ratio and the ‘Kronecker delta’:

-l = ol o= =
Dy gy = Do gy 5

1 [Hu
E

(Bfk o, + 6i£6ﬂc) - v, 6k1:| (5)

Remark 2.1. In the absence of damage and plasticity (d* =d~ =0, &”=0), the free
energy potential y must equate the elastic free energy Wy, to fulfil basic thermodynamic
requirements, which according to eqns (1-4) can be demonstrated to occur in the present

situation:

- —y = g = 1
Yo = Wp + Wy = (c++c):Dﬁlzcz—2—a:D{):a (6)

1
2
Note also that being D, a definite and positive matrix it occurs that y, > 0, due to the

quadratic form of the last term in eqn (6). O

Remark 2.2. The above defined Helmholtz free energy has some similitude with the
potentials proposed (or described) in [14-15]. Yet, in these references the free energies
were expressed as functions of the Cauchy stress tensor, usually an unknown variable,
whilst in the present model eqns (3,4) only involve the effective stress tensor o, a rather

more explicit entity, particularly if € = 0 (see eqn (1)). O
In view of eqn (5), the definition of wg' given in eqn (4a) can be modified to render

+_l+vo . v —+
— G 57 tr(G) tr(c™) )

Yo = 2E
where tr () is the trace of tensor (-). Taking into consideration the stress split described

in eqns (2), owing to elemental reasonings the following properties apply:

T Although tensor-valued damage variables [20-21} could also be adopted, a ‘scalar’ representation of
damage is preferred, since it renders less complicated algorithms, with sufficient approximation.
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tr(c) = tr(c") + tr(c7) (8a)
c':6” =0 (8b)
Back to eqn (7), it is now possible to express g as

1+v _, ..
+ + oGt

VY, = - 2w - Z—UE— tr(c”) tr(c") =

— G
2E ; 2E

:%?J#E“%ﬁ%M?WGﬂ 9

Due to the quadratic form of /2 &* : D;' : 6%, which involves the definite and positive
D;! matrix, the first term in the right-hand side of eqn (9) is non-negative; the second
term is also non-negative, since tr(G*) =0 and tr(67) <0. According to these

observations, it can then be concluded that
Wi 20 (10)

By using a similar reasoning for g, it also applies that y; = 0.

Owing to the non-negativeness of Y, and g, and to the following requirements

from the intrinsic damage variable concept
0<(dd)<1 (11)

it can be put into evidence that
v=(1-a*)yi + (1-d7)wy 20 (12)
Remark 2.3. From the observation of eqn (3) it results that

ow . oy -
- = A e 13
5d" Wo ad- Yo (13)

where y§ and y can be looked as the thermodynamic forces associated to the damage
variables d* and d~, each one being the elastic strain energy release rate produced

during an unit growth of the correspondent damage variable [7]. O

2.3. Damage Criteria

In order to clearly define concepts such as ‘loading’, ‘unloading’ or ‘reloading’, a

scalar positive quantity, termed equivalent stress, will be introduced. Analogous to the



dual concept of equivalent strain established by Simo and Ju in [17], the equivalent
stress provides a suitable norm for distinct 3D stress tensors, through which a mapping
onto a single equivalent 1D stress test is then possible, thus enabling their quantitative
comparison,

As a consequence of the stress split adopted throughout the present constitutive
model, a tensile equivalent stress T and a compressive equivalent stress T~ will be

considered. In the present work the following forms will be assumed [17,19]:

(14a)

d|
Il

T = V3 (K Ty +To) (14b)

oct

In the last equation G, and 7, are the octahedral normal stress and the octahedral
shear stress obtained from ¢~ . X is a material property, devised so that predicted 2D and
1D compressive strengths could match the usual 1.16-1.2 ratios reported for concrete in
experimental tests [22].

With the already referred definitions for the equivalent stresses, and inspired in Ref.

[17], two separated damage criteria g* and g~ will be introduced, the former for tension

and the latter for compression:
g, M) =3"-r" <0 (15a)
g, r)y=1-r <0 (15b)
Variables r* and 7~ are current damage thresholds, which control the size of the

expanding damage surfaces. According to eqn (15a), previously to the application of any

loading the r* damage threshold must be set to #,, assumed a material property, which

bounds the linear-elastic domain. Following eqn (15b), a similar reasoning apply for
compression, and therefore the onset of damage in compression will occur at T° = 7.

From eqns (14a) and (15a) it results that within octant (G,,G,,5,) = 0 the 3D

effective stresses corresponding to the same norm T* define a quarter of an ellipsoid



centered at the origin in the space of principal effective stresses. Quadrant (6,,6,) = 0
in Fig. 2 provides a 2D representation for this surface, when 5, =0 and T° = 75"

According to eqns (14b) and (15b), the bounding surface associated to the principal
effective compressive stresses ((6,,0,,5,) < 0) resembles the Drucker-Pragger cone.
As depicted in quadrant (G, 6,) < 0 (G, =0) from Fig. 2, under 2D compression the
elastic domain T~ =1#, is bounded by stresses which are greater than the 1D elastic
compressive stress f, . Calibration of the model to reconstitute this phenomenon is
performed through parameter X in eqn (14b).

Fig. 2 shows also the experimental results from Kupfer ef al. [22], which are plotted
against the numerical predictions from the present model, for comparison. The overall
agreement seems to be acceptable, either in pure tension or in pure compression, or even

in tension-compression.

Remark 2.4. Defining as f,5 and f; the stresses beyond which non-linearity

becomes visible under 1D tests (tension and compression, respectively), according to

eqns (14) the elastic thresholds #;” and 7, can be established as (note that for 1D tests

G ot :1/3f0— and Toer :_'\[2-‘/3.]’0‘):

W= A A (160
= \/i} (K-2) /5 (16b)

Remark 2.5. For the determination of parameter K appearing in eqn (14b),
information from two distinct compressive tests is required. Let us consider a 1D test
such that (g,=0, 6,=0, 0, 5 0), and a 2D experiment where (c,=0, 6,=0; < 0),
both driven until the maximum stress level compatible with linear-elasticity. Denoting by

fo and fy ,p the extreme values obtained for o, during those tests, it becomes evident
that Egctlb = 1/3f0— » Ez;ct‘lD == "/5/3.)(0_ ’ 85«::2[) :2/3f0—2D and ;E;crzn :_ﬁ/sf()‘z]) .
Since both tests correspond to the same limit situation, the onset of non-linearity, they

are characterised by the same elastic threshold #; , which according to eqn (14b) leads to



Kfo = N2 /5 = 2K fip = V2 foap (17)
and consequently

_ foﬁzn "”fom
= ﬁ zfo—zn _fO_ (198

2.4. Evolution Law’§ for the Internal Variables

2.4.1. Damage variables

For the kinematics of the damage variables the following rate equations will be

assumed {exemplifying solely for tension):

I+ 3+ 5G+(f‘+)
d =8 —a}‘;}'_‘"""”“'“ (19&)
£ =8 (20) (15b)

G*, and identically G~ for compression, are monotonically increasing functionst,
selected in accordance with experimental observation. $* and §~ are damage
consistency parameters,
In compacted form, loading or unloading can be expressed through the Kuhn-Tucker
relations:
§* >0 g" <o $tgt=0 (20)

Interpretation of these relations is meaningful {17];

o g <0 states that no further damage is occurring, as it is clearly expressed by last

equation in (20), imposing that $* = 0 (hence d* = 0, owing to eqn (19a)).

e With $* > 0 damage is increasing. In this situation 8" g* = 0 determines that

g" =0, and so it is possible to define $* from the damage consistency condition:
s ) =0 = F=t=8" $*20 (1)

From the last condition it is possible to conclude that for a generic instant £

T That is, first order derivatives 4G*()/a() and 3G ()/3() are non-negative.
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1t = max {r{, max (E:)} (22)

sef0,1)
Introducing eqn (19b) into eqn (19a), during loading the evolution law for the tensile
damage variable is expressible as

_ 96T ¢

d+
ort

F* =G0ty 2 0 S@3)

For compression analogous kinematics will obviously result, that is:

d = a—c;mj»(_"—_lr'“ =G ()20 (24)
or

2.4.2. Plastic strain tensor

For the plastic strain tensor &” the following evolution law is proposed [19]

gf = BEH(J“)@»;—) Dt & (25)

where, besides the Young’s modulus E, a material parameter B>0 is introduced, in order
to control the rate intensity of plastic deformation. H (d™) denotes the Heaviside step

function, computed for the compressive damage rate. Macaulay brackets enable to set a

non-negative value for the product o : &, an essential thermodynamic requirement for

ensuring a non-negative dissipation, as it will be demonstrated latter.

Through the definition
1y = 26)
G.0
eqn (25) may assume the compacted form
&7 = BEH(d ) (15 :€) D5 L5 (27)

Remark 2.6. The basic idea underlying the rate equation (25) is that plastic strain
evolution is assumed to have the ‘direction’ of the elastic strain tensor Dy '@, which
seems a reasonable assumption (although obviously simplified), in the sense that
plasticity is then essentially driven by the effective stress tensor G, an entity with physical

background. Furthermore, connecting through factor H(d™) the two mechanisms of
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non-linearity, damage and plasticity, avoids evolution of plastic strains during damage
unloading or before the compressive damage threshold being attained (for instance,

during the initial elastic branch or during a partial reloading), situations in which

H(d™)=0.0

2.5. Clausius-Duhem Inequality

During any loading process energy dissipation is always non-negative, which implies
that entropy will tend to grow, hence leading to an irreversible process, according to the
Second Principle of Thermodynamics. This condition from Thermodynamics of
Trreversible Processes is commonly expressed by the Clausius-Duhem inequality [18,23],
whose reduced form is:

y=-y +o0:&€ 20 (28)
From eqns (3,4) it is possible to express that

. oy . oy ., oW oy oy -
OV . OV e OV g OV 29
V= e % T ek od” od- 29

result whose substitution into eqn (28), together with eqns (13), allows to obtain another

expression for dissipation:

R G 17 VS [V
y—(c—g).s+w0d + y, d —@.e (30)

2.6. Constitutive Law
Since ¢ is a free variable, for the equation of dissipation to maintain its generality the

expression within parenthesis in eqn (30) must cancel [18]. Hence

oy
= 2t 31
o == (31)

which constitutes one of the Coleman’s relations, essential for the assessment of the

constitutive law.

-11-




Splitting the strain tensor € into &° and &”, the elastic and plastic contributions, the
effective stress tensor may be expressed as
G(e°) = D,:(e-€”) = Dy:&° (32)

and consequently the elastic free energies defined by eqns (4) may assume the forms:

yi(e®) = =06 :g° (33a)

B | —

Wy (e°) :% G :gf (33b)

Invoking the chain rule, and keeping in mind that €°=¢ —&”, eqn (31) can be

transformed into

_ oy Loe _ oy (34)
get de  Og°
and consequently, from eqn (3),
dvy _\ Ay
= (1-d%) =L + (1-d7) =2 35
o = (1-a7) 5 + (=) 5, G3)

Due to the linear dependency between & and &° (see eqn (32)), and taking into

consideration the stress split expressed in eqns (2), it becomes clear that

ot(me®) = mo(g°) (36)

for any arbitrary scalar 7. This relation, and a similar one that can be verified for 6, put

into evidence that both 6 and &~ are first degree homogeneous functions of €°, and

consequently, according to Euler’s Theorem, it occurs that

—t e
o5 i o (%) = o9 g° 37N

o (g%) = : :
&) og’ og®

In order to clarify the constitutive equation (35), eqn (33a) has to be derived with

respect to €°:

+ —t
aWO — }_ ac :88 + _1_—0,—+ (38)
oe® 2 0sf 2
Calling for eqn (37) it results: |
+
Q‘H_g_ =gt (39)
oe




For compression obviously it would be
No _ 5 (40)
oe

It is then possible to obtain a final form for the constitutive law (35), leading to a

rather clear and intuitive expression for the o Cauchy stress tensor:

o = (1-a*)5* + (1-d7) 5" (41)

2.7. Dissipation

In the expression of dissipation, eqn (30), in view of eqn (31) now reduced to
. + g+ - 3 oy . P
Yy=wed +vyod —_— € (42)
oe’

first and second contributions are non-negative, since ¢ and v are non-negative (see
eqn (10)), and (d*,d™) = 0 due to the evolution laws adopted for the damage variables
(eqns (23,24)). So, condition y=0 will become demonstrated once proved the
non-negativeness of the last contribution on dissipation in eqn (42). Demonstration will

be performed keeping in mind that

aw:(ﬁ\u:as m_axy 43)
e’ de® Og” de’
Moreover, in compacted form eqn (25) reduces to
g = bD;' O (44)
with b being the non-negative scalar
. {(5:€)
G.0

Taking into consideration eqns (43,44), as well as eqns (34,41), it can be concluded

that

—g—\iiép _ b [(1—d+)"6+ DT+ (1_d‘)6‘ . Dyt :6] (46)
€
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Insight on the expression enclosed within the straight brackets, and comparison with

eqns (3,4), shows that this result may be expressed more concisely as

oy | .p
———gf =290 47
e v (47

therefore a non-negative quantity since (w,b) =0, which ensures that the

Clausius-Duhem dissipation inequality applies:

v=wyidt +y;d +2by 20 (48)

2.8. Numerical Computation of the Internal Variables

Owing to the strain-driven formalism of the proposed constitutive model, and to the
fact of € being fully determined at the beginning of each step of a displacement-based
finite element analysis, the updating of the internal variables becomes possible via

effictent and almost direct algorithms, as it will be illustrated next.

2.8.1. Plastic strain tensor

Performing a temporal derivative of eqn (1), where eqn (25) is also taken into

account, it results:

& =Dy:é - BEH() (5 : ) ;"&“ (49)

A temporal discretization based on a ‘backward-Euler’ scheme may then be adopted,

where (), and (),,; denote entities referred to consecutive time steps, and Ag refers to

the associated increment in &:

_,_u_g__c'!_“i:i____ (50)

Gpy = 6, + Dy:Ae — BEH(d;,) (G, : A€)

n+l - 0-.‘r1+1
Defining
ord =G, + D,:Ae (51)

I5] = Jo:5 (52)

eqn (50) may assume the form
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— — n+1
S| 5]

{HEMHQ + BEH (ci’;+1) <6n+} : AE)} O it = gl (53)

Introducing the normalised tensor 1 defined in eqn (26), as well as the auxiliary

variable
(D = "En-!-iu + BEH(dn_H) (15»»1 IAE) (54)
eqn (53) is equivalent to
®ls,, = 5o (55)

mal
n+1

. This result is useful to rewrite eqn (55) as

and consequently @ =

Gl g = @ Lym (56)

()
m—l

(D IG,M -

which leads to the conclusion that 15 = 1w, and so eqn (54) may be transformed into

mrrral
n+i

_ BEH( H)(l_m Aa) (57)

Gl =

Owing to these results, the effective stress tensor can be updated according to

Cpp = ”Em” 13{3;;! = A Eifi‘il (58)
where
A =1 - ?, EH(d:) (1m,,,u, : Aa> (59)
n+l

Note that Ae, G13 and 1.« are known in terms of the strains in step -+ /. From eqn
nl

(58) it becomes clear that a ‘radial return’ procedure can be set up for the updating of

—trial

G, tensor Gy can be looked as a prediction, through which the effective stress tensor

can be obtained once evaluated the scale factor A, the unique entity to be determined.
Due to the 0/1 discontinuity introduced in eqn (59) by the Heaviside function, a double

iterative algorithm may be required, which is illustrated in Box 1.

trial
n+1

It must be remarked that from eqn (57) the inequality |&, +1(| <| applies. As

—trial

according to eqn (58) tensors G,,, and ooy, are proportional, in view of the stress split
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expressed in eqns (2) their compressive components are also affected by the same scale

factor, that is, (G,,)” =X (679)", with 0<XA <1 Consequently, denoting by

Ot

"f”(('o"'ﬁ,’f{‘ _) the equivalent stress associated to the negative component (G7%), it

becomes clear that T,,, <%~ ((Ej,’f{’ ‘). This means that if f’((&ff’f ') <r, it occurs

that T, <7, , that is, d-,, =0, and consequently no plastic evolution takes place; in
this situation A=1 (see eqn (59), with H(d,,)=0), which explains the EXIT appearing

in step (#ii) of Box 1.

Box 1. Algorithm for the determination of @,

() Compute 7% = 5, + D, : Ae

i) sp=0 2
YES: No plasticity. Set &,,, = oy EXIT.
NO: GO TO (i),

(i) Split 674 into (G74)* and (G7)". Evaluate f‘((E:ﬁ[ ") with eqn (14b).
s e (@) <y 2
YES: No evolution for d~ and 7. Set G,,, = 6o, EXIT.
NO : GO TO ().

—trial
O+t

trza[

?’H-l and ]mr-.lnaf -

uk

mal
n+1 / |

(iv) Compute

<1_,,,a, Ae) 507

J'H‘[

YES: Plastic evolution is possible. Admitting H(d,,)=1, compute A with eqn (59)
and G = A 5" GOTO®).

ntl -

NO : No plastic evolution. Set &,,, = 675, EXIT.
(v) Split G into 6* and &~ Evaluate % “(&-) withegn(14b). Is T (g~) <r, 7
YES: No evolution for d~ and &”. Set &,,; = Opy. EXIT.

n+1

NO : Evolution of d~ and €7 exists. Set G, = 0. EXIT.

2.8.2. Damage variables

Performing a trivial integration, the rate eqns (23,24) lead to the following

expressions
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d* = G*(r) d~ =G () (60a)

with
0 G () <1 0 G (r) <l (60b)
G =20 G (r)z0 (60c)
G'(r)y=20 G (r,)=0 (60d)

It can be inferred that once the strain tensor is known the damage variables can be
easily computed, since #* and r~ depend on €. Note that condition (11) is introduced in
eqns (60b). Eqns (60c) state the positive evolutions for the damage variables expressed
in eqns (23,24), ensuring G*(-) and G™(-) to be monotonically increasing functions.
Finally, eqns (60d) introduce the initial conditions of null damages.

The main concerns for the next issues are the particular forms to attribute to the
scalar functions G* and G~. In the present work the following evolution rule will be
adopted to reproduce the softening branch of a test performed under 1D tension [24]

+
I eA+ (1-r*/r}) ’
r+

dt = G¢N)=1- it "oz (61)

involving A" as unique parameter. This formula leads to a curve asymptotic to the strain
axis, and consequently parameter 4" must be fixed taking into consideration requisites -
of mesh-objectivity. If finite element analyses are to be performed, in the context of local

models a geometrical ‘characteristic length’ 7, is commonly introduced [25], depending

on the size (volume or area) of the elements adopted for the spatial discretization. By

equating G, /lch to the finite area retained under the stress-strain curve, where G,

denotes the tensile fracture energy (assumed to be a material property), parameter A'

can be set according to [24]:

(3
a4t = | —L5 - =] =0 (62)
by (fe)" 2

Under compression the evolution of damage will be simulated through the expression

underneath, which is inspired on a formula presented in [15]:

=Gy =1- qogy - s D T /) s e (63)
.
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Parameters 4~ and B~ may be defined by imposing the o-& 1D numerical curve to convey

two selected points on a curve extracted from a 1D compressive test!.

2.9. Numerical Integration of the Constitutive Law

The implementation of the plastic-damage constitutive model is illustrated by Box 2,
which shows all the operations needed for evaluating the Cauchy stress tensor. A remark
is made for the elegance and readability of the overall algorithm, as well as for the
simplicity of the involved step-by-step operations, a consequence of the adopted
strain-driven strategy, which provides an easy code implementation and contribu’tes to

improve the computational efficiency.

Box 2. Algorithm for the plastic-damage model.

Step n=0;:
() Set rf =7, ¥, =1y, d; =0 andd, =0.

Step n+I:

(if) Evaluate ¢,,,. Compute G,,; according to Box 1.
(if)) Split ©,,, into G, and O,
(iv) Compute T.., and T, , according to eqns (14).

() If T5,, >r* or T, >r, update damage thresholds: 7}, = max {r; , ?;’H}
or f#,,; = max {rn‘ , E;H}.

-+

Update damage variables =G*(r}) and d,,, = G (#,,), according to
n+l n+l a+l n+l

eqns (61) and (63).
(vi) Compute the Cauchy stress tensor

Cn+l = (1'" :+l) 6:+E + (1—d;+1) -6;+1 EXIT.

T If softening is also expected in compression, parameters A~ and B~ may also be attributed so as to
satisfy requirements of mesh-objectivity, A mesh-dependent characteristic length and a fracture energy
for compression could also be invoked, similarly as already described for tension.
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Fig. 3 depicts the typical performance of the constitutive model during a 1D
tension-compression cyclic test, performed over an idealised concrete specimen. A
complex loading scheme was imposed, comprising an incursion into tensile regimen up to
the initial elastic threshold (path O-A), and leading to damage thereafter, along path A-B.
Loading is then reversed, producing a return to point O and a subsequent incursion into
compression up to threshold C. From there until point D progressive damage and plastic
deformation is observed; at point D a new load reversal 1s enforced, originating the

broken line D-E-F-G. Between points F and G further tensile damage occurs.

It becomes visible the ability of the plastic-damage model to reproduce the softening
behaviour under tension, as well as for capturing the hardening and softening which
occurs in concrete under compression. An incursion into the tensile regimen without
previous induced compressive damage does not allow plastic strains to take place, as
evidenced during the first tensile unloading (straight line B-O). Note also the stiffness
recovery that takes place during paths B-O-C, D-E-F or G-E-D: this ‘unilateral effect’
corresponds to a peculiar feature of concrete behaviour, fully captured by the proposed
model, owing to its ‘memory’ proficiency. Moreover, the constitutive model has also the
capability of maintaining the plastic deformations induced during previous compressive
damaging, as demonstrated by the horizontal shift E-O experienced by curve E-F-G,

corresponding to an irreversible strain.

2.10. Applications

2.10.1. 1D cyclic test in compression

The plastic-damage model ability for reproducing the typical concrete behaviour
during a 1D cyclic compressive test can be checked in Fig. 4, where experimental resuits

taken from Ref [26] (according to [27]) are plotted against the numerical predictions.

The properties considered for the concrete, with a 32 MPa compressive peak strength,

were: £=26 GPa, f, =15 MPa, B=0.590. As it can be observed, predictions from the

-19 -



numerical model agree fairly well with the experimental results, namely in what concerns
to: (i) the overall non-linear behaviour evidenced by the calculated envelope curve, either
in the hardening or in the softening regimens, which is rather close to the test one; (i)
the residual plastic strain upon unloading, which is continuously increasing as further
straining takes place, in accordance with the observed experimental behaviour; (#77) the
progressive degradation of the secant modulus, expressing that continuous damage is
occurring, which reproduces rather well the ‘average’ lines from the test
unloading-reloading loops. Therefore, the evolution laws adopted for damage and
plasticity seem to be physically realistic and adequate for modelling the compressive

behaviour of a concrete specimen under a 1D cyclic test.

2.10.2. 2D test in compression

Fig. 5 refers to a set of experimental tests reported in Ref. [22], performed with

concrete specimens under 2D compression (o;=0), according to the following load
conditions: () o3/5,=—-1/0; (i) 6,/0,=-1/-1 and (#ii) 0;/c,=-1/-052. The
propertics adopted for the plastic-damage model were: L'=31GPa, v=02,
fo =10 MPa and $=0.318. As it can be noticed, model curves exhibit an acceptable
agreement with the test ones, capturing satisfactorily the overall experimental behaviour,
specially taking into consideration the purposes intended within the context of large scale
computations, and the simplifications which had been introduced for the improvement of
the computational efficiency. An important attribute of the present constitutive model,
clearly perceptible in Fig. 5, is the ability to predict the concrete strength enhancement
under 2D compression. As it can be inferred from the state-of-art included in Ref. [15],
this feature, with an evident relevance for concrete behaviour, was not captured by older
versions of similar damage models, therefore constituting a significant improvement from

the present model.
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2.10.3. 3D test in compression

As a third benchmark, Fig, 6 compares numerical predictions with the experimental
results reported in [28] for concrete under 3D compression. Tests were driven with an

increasing normal stress along the specimen vertical axis, and three different sets of

confining stresses along the horizontal directions: (/) o;=0,=00MPa; (i)
0,=0,=~6895MPa and (jii) 6,=0,=-13790MPa. The following properties were
adopted for concrete: £ =4137GPa, v=0.2, fy =10MPa and $=0. According to
Fig. 6, the overall response curves, as well as the strength and ductility enhancements
produced by the 3D confinement, are satisfactorily captured by the damage model,
whose deviations from the experimental results may be considered acceptable, within the

scope of the intended purposes of the present constitutive model.

2.10.4. Representative structural applications

As damage variables are intuitively associated with physical deterioration, the output
from the model, namely through the superposition to the concrete body of the predicted
damage patterns, provides an interesting tool for an overall interpretation of the
structural behaviour, including the identification of failure mechanisms,

An illustration of this, for the arch type Foz Cda dam designed to be built in the north
of Portugal (136 m high, 430m crest length), may be observed in Fig. 7. Here the state
of the dam after the occurrence of a 1g peak acceleration earthquake is reproduced in
terms of the final distribution for the d~ damage variable, relevant for the assessment of
the concrete performance under compression, which is vital for the safety of this kind of
structures (further details about the whole seismic analysis can be found in Ref. [29]). Tt
becomes clear that compressive damage is only visible for a restricted concrete domain
around the centre of the crest arch; close to the foundations (a relevant part for structural
stability) concrete remains practically unaffected. Concrete volumes exhibiting damage
d" are therefore very limited, and so no collapse would be eminent for Foz Cda dam due
to the selected seism. It is remarked the utility of this kind of information, linked to the

distribution of damages, through which a physically comprehensible justification for the
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well-known ability of arch dams to withstand intense earthquakes is easily and naturally
obtained.

Despite the plastic-damage model being mainly intended for the analysis of
unreinforced massive concrete, through the next example it will be demonstrated its
applicability for the anéiysis of a reinforced concrete beam, tested and reported in [30]
under the designation of A3. Following this reference, the simply supported beam A3
was submitted to an increasing point load F at mid-span, as depicted in Fig. 8a, which
also details the most relevant dimensions and steel reinforcements, as well as the 2D and
1D discretizations adopted for the concrete and the steel bars, respectively (for additional
informations concerning the overall analysis and the properties selected for the two
materials, the reader is addressed to Ref. [29]). According to Fig. 8b, which describes
the evolution of load F with the mid-span vertical displacement A, an acceptable
agreement is observed between the numerical predictions and the structural behaviour
experimentally registered for the beam; the collapse load obtained numerically was 9%
lower than the test one. Fig. 8c documents the distribution for the tensile damage
variable d* obtained at the ultimate load, and illustrates the ability from the numerical
model to predict the concrete fractured region, in accordance with the experimental

evidence.

3. EXTENSION TO STRAIN-RATE DEPENDENCY

3.1. Overview

As widely recognised, concrete exhibits strain-rate sensitivity during dynamic tests
[31-34], whose visible effects (when compared to quasi-static tests) are substantial gains
in the peak strengths, as well as decreases of the stress-strain non-linearities. This
singular behaviour is rather important under impulsive loading, like in impacts or
explosions [35], but the intuition that the phenomenon is already important under the

earthquake loading is widely generalized, as straining rates as high as
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10°5/s < ¢ <107"/s may then be expected, leading to strength enhancements up to
80% in tension and 25% in compression.

The physical relevance of this viscous phenomenon has been identified long time ago,
but its intrinsic complexity precluded it from common usage, the customary practice
being to account for rate-sensitivity through the inclusion of drastic simplifications on the
numerical models, like the a priori assumption, for dynamic purposes, of artificially
increased values for strengths and elastic modulus. First attempts to deal with
rate-dependency with theoretical consistency came from Viscoplasticity, like in Ref. {36].
More recently important experimental and theoretical contributions have been presented
in [31-34], namely through the proposal of a constitutive model based on Continuum
Damage Mechanics (CDM), with a vectorial representation for the internal damage.

According to [33], concrete rate sensitivity is mainly due to the fact of the growth of
internal microcracking being retarded at high strain-rates, reducing the macroscopic
non-linear behaviour. For the purposes intended within the context of the present work,
comprising the analysis of large scale structures, an algorithm should evolve from the
previous inviscid version, keeping its closed-form nature as much as possible, in order to
maintain the high computational efficiency indispensable for the calculations to be
feasible. Owing to the coupling between rate-sensitivity and damage, CDM provides an
appropriate environment for dealing with this viscous behaviour, herein after accounted
for by introducing a viscous regularization into the rate-independent evolution laws,

presented in Section 2.4.1 for the damage thresholds.

3.2. Viscous regularization

Adopting a procedure resembling the classic regularization suggested by Perzina in
the framework of Viscoplasticity, the evolution of the damage threshold #* described

through eqn (19b) will be replaced by (see also [19,37])

o= ut TE ) 2 0 (642)
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N
sy = i | — ) (64b)
where ¢ may be termed a viscous damage threshold flow function. ©* denotes a fluidity
parameter, while a* is a positive exponent, both assumed to be material properties,
which can be evaluated on the basis of 1D tensile tests. As for the tensile damage
variable itself, the previous evolution law expressed in eqn (23) is kept unchanged, and
consequently d* may be updated with the same efficiency as for the inviscid model,
through eqn (61) which fixes d* =G* (r").

If compression is to be considered, a set of equations similar to (64) can be
postulated, with distinct material parameters (1™, a”) and flow function ¢~ being then
attributed, permitting to attend for the different rate-sensitivity exhibited by concrete
under compressive loading, in comparison to what occurs under tension. Explicit
computation of variable d~ through the inviscid function G~ (#7), eqn (63), maintains

its validity.

Remark 3.1. For the sake of simplicity, throughout the present extension to
strain-rate dependency no plastic evolution is accounted forf. Following Section 2.7,
dissipation may be expressed through egn (42), with the last term on the right-hand side
vanishing for the present strictly viscous-damage constitutive model. The only request
from the Clausius-Duhem inequality is therefore (d*,d™) = 0, which is trivially ensured
by the kinematics for the damage variables expressed in equations like (61) and (63). As
for the constitutive law itself, eqn (41) remains valid for the present rate-dependent

model, &1

Remark 3.2. According to eqn (64a), through the setting of a null value to a fluidity

parameter the evolution of the associated damage threshold is prevented, thus enforcing

T The constitutive model is therefore strictly viscous-damage, although no important difficulties would
arise to account for viscous-plasticity if a Perzina-type regularization was also introduced into the
kinematics for the plastic strain tensor, as usnal practice in Viscoplasticity.
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a linear-elastic response to be obtained. On the other hand, as pu* and W~ approach to

infinity the rate-independent damage evolution laws are recovered, once

T—r

psw = =)0 {,_ |
T—>F

These reasonings demonstrate that the proposed viscid formulation provides a general
framework for the threshold and damage evolutions, including both the linear-elasticity

and the previous damage model. O

Remark 3.3. As for the rate-independent model, mesh-objectivity requisites under
softening responses must also be fulfilled throughout the present viscous-type extension.
For a proper localization to be obtained, and in order to ensure mesh independent time
responses, the fluidity parameter must also be defined as function of the characteristic
length [38]. For the present viscous-damage model this effect can be attended if 1w in
eqn (64a) is defined in accordance with (see {37], for details)

R i N /95
e [zch ZEGfJ =0 (69)

where 1" is assumed to be a material property. A similar strategy could be adopted for

1, if softening might also be expected in compression. [

3.3. Numerical Implementation

Integration of the Cauchy stress tensor in time requires an appropriate algorithm to
update the damage variables and thresholds, defined in accordance with the kinematic
equations, preferably with the most closed-form structure as possible.

According to eqns (64), the real numerical problem to be solved is the determination

of thresholds #* and r~. Setting a marching scheme such that (-),,; denotes entities
respecting to the actual time, (-), refers to entities already determined in a previous
instant, and A¢ designates the time step, equations like (64a) may be integrated as

follows, using a generalized mid-point rule
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Fapp = Fo T AL O(T,,7,) (66)
with

T, o= (1—a) T, + o Ty (672)
ro= (l—a)r, + Ay ( efo.5,1.0)t  (67b)

Rearranging eqn (66) taking into consideration eqns (64b) and (67), it results

FUu) = =ty + 1, + A (T, - )" =0 (68)

For a=1 this equation is non-linear, and consequently an explicit solver for #,,, only

exists when exponent ¢ is an integer not greater than 4. If greater (or real) exponents are

to be used, an clemental iterative Newton-Raphson scheme may be adopted to extract

r,., from eqn (68), and so a recursive formula like

ol =

7 — N

e

allows to obtain an (#+1)-th improved approximation for r, taking into consideration

L i S (’3:+1) (69) |

information from a previous (/)-th iteration. f' designates the first derivative of f, that is

F ) = =1 = H@E, —r,) ac At pr, (:—“32—((%awrm)/ra)“‘1 (70)

Note the presence of the Heaviside function in this equation, expressing that threshold
¥, will be updated only if T, >r,, condition which comes from eqn (64b). As
determination of #, requires the computation of #,,,, which is unknown before

completion of the iterative process itself, the sequence of approximations expressed

through eqn (69) can only be obtained on the basis of some conjecture on H(z, —7%,),

which is checked (and eventually corrected) at the end of the time step. As computation

of T, is direct, comparison of this equivalent stress with 7, provides relevant information

for this conjecture: (7) if T, < r, it also occurs that T, <7,, and so H(7, -r,)=0, the

¥ According to elementary numerical analysis, an unconditionally stable algorithm is obtained for
o = 0.5. The first order accurate backward-Euler difference scheme is reproduced for o = 1.0, whilst the
second-order accurate trapezoidal rule is obtained for o = 0.5,
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iterative scheme being then dispensable (that is, 7,,,=r,); () if T, > r, it is supposed
that H(T, -1, )=1.

For the overall comprehension on how the integration of the viscous-damage model
can be performed, Box 3 describes the basic operations to be accounted for on a

computational code.

Box 3. Algorithm for the viscous-damage model.

Step n=0:
() Set ry =71, 1, =1y, di =0 andd, =0.
Step n+I:
(#) Evaluate g,,,. Compute G,,, = D, 1 €,,,.
(7ii) Split ©,,, into &}, and &,,.

(iv) Compute T.,, and T,,, accordingto eqns (14).

(v) Compute T! and T, according to eqn (672). Is T, <#; (or T, <7, ) ?
YES: No threshold evolution. Set 7, =r, (or 7, =¥ ). GO TO (vi).
NO : Compute 7, and r,,, according to eqns (68-70), admitting H(-)=1.
Evaluate 7 and 7, according to eqn (67b). Is T, <r; (or T, <r;) ?
YES: Reset 7%, =rF (or 7,,,=r,). GO TO (vi).
NO : GO TO ().
(vi) Update damage variables df,, = G7(r),,) and d,,, = G (7).

(vii) Compute the Cauchy stress tensor

Ol = (1_ ;—H) G + (1“"”d;+1) G EXIT.

3.4. Applications

The performance of the rate-dependent model under straining rates between 107%/s

and 1/s is illustrated in Fig. 9, for a concrete specimen loaded in 1D tension. As it can be
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