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SUMMARY7

Taking the strong discontinuity approach as a framework for modelling displacement discontinuities and
strain localization phenomena, this work extends previous results in in�nitesimal strain settings to �nite9
deformation scenarios.
By means of the strong discontinuity analysis, and taking isotropic damage models as target contin-11

uum (stress–strain) constitutive equation, projected discrete (tractions–displacement jumps) constitutive
models are derived, together with the strong discontinuity conditions that restrict the stress states at the13
discontinuous regime. A variable bandwidth model, to automatically induce those strong discontinuity
conditions, and a discontinuous bifurcation procedure, to determine the initiation and propagation of15
the discontinuity, are brie�y sketched. The large strain counterpart of a non-symmetric �nite element
with embedded discontinuities, frequently considered in the strong discontinuity approach for in�nites-17
imal strains, is then presented. Finally, some numerical experiments display the theoretical issues, and
emphasize the role of the large strain kinematics in the obtained results. Copyright ? 2003 John Wiley19
& Sons, Ltd.

KEY WORDS: strong discontinuities; localization; fracture; damage; �nite strains21

1. INTRODUCTION

Modelling the onset and development of material discontinuities (fractures, cracks, slip lines,23
etc.) has been the object of intense research in solid mechanics during the last decades.
Besides the classical non-linear fracture mechanics approaches [1], one common way of mod-25
elling displacement discontinuities, from the continuum mechanics point of view, has been

∗Correspondence to: J. Oliver; E.T.S. Enginyers de Camins; Canals i Ports; Technical University of Catalonia;
Campus Nord UPC; M�odul C1; Gran Capit�an s=n; 08034 Barcelona; Spain

†E-mail: oliver@cimne.upc.es
‡E-mail: ahuespe@intec.unl.edu.ar
§CIMEC=CONICET-UNL, Argentina

Contract=grant sponsor: Spanish Ministry of Science and Technology; contract=grant number: MAT-2001-3863-C03-03.
Contract=grant sponsor: Secretaria de Estado de Educaci�on

Received 28 June 2001
Revised 7 December 2001

Copyright ? 2003 John Wiley & Sons, Ltd. Accepted 26 April 2002



UNCORRECTED P
ROOF

2 J. OLIVER ET AL.

NME607

the simulation of the strain localization phenomenon by resorting to material models equipped1
with strain-softening. This can be justi�ed not only from the physical point of view, since this
mode of deformation can be observed either in ductile materials (see, for example, Reference3
[2] and references therein and Reference [3]) or in quasibrittle materials [4], but also from
the kinematic point of view, since strain localization induces relative displacements at both5
side of the localization band that can be interpreted as displacement jumps. However, it is
nowadays well known that classical continuum inviscid dissipative models featuring strain7
softening lead to ill-posed boundary value problems. This becomes particularly evident in
numerical simulation contexts since the obtained �nite element results exhibit strong mesh9
dependence and no convergence with mesh re�nement.
Di�erent remedies for this behaviour have been presented in the literature. Basically, they11

are based on the modi�cation of the classical inviscid constitutive response, by adding, to the
stress–strain constitutive equation, higher-order deformation gradients, non-local dependence13
or rate dependence [5].
In recent years, a second group of procedures that resort to the strong discontinuity concept15

have been developed. They advocate the introduction of the strong discontinuity kinematics,
i.e. the modi�cation of the standard continuum kinematical descriptions to take into account17
the appearance of discontinuous displacement �elds through material interfaces in the solid
[6–11]. A common issue associated to these procedures is the �nite element technology, which19
should enable to capture jumps in the displacement �eld. For such purposes, new families of
elements with embedded discontinuities have been developed [12–16].21
Considering the aforementioned strong discontinuity kinematics has some interesting con-

sequences. In fact, it turns out [17] that under such a kinematics standard continuum (stress–23
strain) constitutive models induce discrete (traction–displacement jump) constitutive models
on the interface of discontinuity.¶ Those discrete models can then be regarded as projections25
of the original constitutive model on that discontinuity interface, and inherit the basic features
of the parent continuum model [17, 18]. However, they can be only induced when a particular27
stress state has been reached at the interface, which is therefore restricted by the so-called
strong discontinuity conditions [17].29
Consequently, and regarding the way that di�erent models make use of those induced

discrete models, and the format in which they are introduced into the analysis, they can be31
classi�ed into:

1. Discrete approaches [11–13, 19]: They introduce a discrete constitutive model at the33
interface that is completely independent from the continuum one. Their connection with
the strong discontinuity kinematics lies in numerical aspects, essentially in the use of35
�nite elements with embedded discontinuities.

2. Discrete-continuum approaches [8, 10, 20, 21]: They make use of the continuum induced37
discrete constitutive equation introducing it into the problem in a discrete format: i.e. the
discrete constitutive equation is analytically derived and then introduced, as a separation39
law, at the discontinuous interface regardless the ful�llment of the strong discontinuity
conditions.41

¶A crucial condition for this to happen is that the strong discontinuity kinematics is linked to the continuum
constitutive model through a constitutive regularization of the hardening=softening parameter. This allows the model
to return bounded tractions for input unbounded strains.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:000–000
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(a)

(b)

(c)

Figure 1. (a) Strong discontinuity kinematics; (b) regularized kinematics; and
(c) multiplicative decomposition.

3. Continuum approaches: A full use of the connections between the continuum and the1
induced discrete constitutive models is made. As a matter of fact the latter is never
explicitly introduced at the discontinuous interface, but it is implicitly induced from the3
former as a consequence of the activation of the strong discontinuity kinematics once the
strong discontinuity conditions are ful�lled. As a result, the whole analysis and simulation5
is kept in the continuum format.

This paper focuses on this last continuum approach that, from now on, will be termed the7
strong discontinuity approach (SDA). Its analysis and implications for in�nitesimal strains
settings have been analysed by the authors in the past [7, 14, 17, 18, 22–25], and here we9
extend them to the �nite deformation setting.
The aim of this work is then to explore the requirements and consequences of using a full11

continuum approach for modelling strong discontinuities in the large strain scenario. It is not
intended to make a comparative study between the aforementioned approaches or to state the13
possible bene�ts of the SDA in comparison with other modelling tools, but to show that the
SDA methodology and concepts, previously developed for the in�nitesimal strain case, can15
be generalized to �nite strains.
The remaining of this paper is organized as follows: Section 2 introduces the strong dis-17

continuity kinematics in the large strain context. Then, in Section 3, a strong discontinuity
analysis is done for an isotropic continuum damage model and the induced discrete constitu-19
tive model and the corresponding strong discontinuity conditions are derived. In Section 4 a
description of the �nite element technology, for the large strain kinematics case, is provided.21
Section 5 is devoted to present a set of numerical simulations in the context of the SDA.
Finally some concluding remarks close the work.23

2. STRONG DISCONTINUITY KINEMATICS

Let �∈R3 be a body undergoing a mechanical process which displays a displacement �eld25
that is discontinuous across a material surface S⊂� (see Figure 1(a)) with a jump in the
velocity �eld given by <u̇== u̇(XS+) − u̇(XS−). The velocity �eld at the material point X at27

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:000–000
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time t is described by1

u̇(X; t)= �̇u(X; t) +Hs<u̇=(X; t); Hs(X)=

{
0 ∀X∈�−

1 ∀X∈�+
(1)

�̇u(X) and <u̇= being two continuous �elds, Hs is the step function (Heaviside function) and �−,3
�+ each one of the body’s disjunct parts of � obtained from its division by the surface S.
This mode is characterized by a material velocity gradient Ḟ:5

Ḟ= u̇ ⊗∇= �̇F+ �S(<u̇= ⊗N) (2)

where �̇F is a bounded (regular) term, �S the Dirac’s delta function on S, and N a material7
(�xed) unit vector orthogonal to S. The deformation gradient F(X; t), at time t, comes from
the integration of Equation (2) along time:9

F(X; t)= )
∫ t

0

�̇F dt +
∫ t

tSD
�S(<u̇= ⊗N) dt= �F︸︷︷︸

bounded

+�S(R⊗N) (3)

where tSD(X) stands for the onset time of the strong discontinuity mode at the material point11
X, and R(X; t) is the incremental displacement jump between the current time, t, and tSD:

R= 0; t¡tSD

R= <u=t − <u=tSD ; t¿tSD
(4)

13

where <u=tSD stands for the apparent displacement jump at the end of the weak discontinuity
regime (t= tSD) described in Section 3.2. Notice that in Equation (3), the regular term �F15
remains bounded during all the process.

2.1. Multiplicative decomposition of the deformation gradient17

For the subsequent analysis it is convenient to adopt, from Equation (3), the multiplicative
decomposition of the deformation gradient (see Figure 1(c)) proposed in Reference [8]:19

F= F̃ · �F=()+ �S(R⊗ �n)) · �F; �n= �F−T ·N (5)

which introduces the concept of a regular intermediate con�guration ��; described by a R321
mapping whose gradient of deformation is regular and given by �F. Notice that, in accordance
with Equation (5) �n, the normal vector to the surface S convected by �F �= ), is not a unit23
vector.
For the sake of simplicity in the subsequent mathematical analysis, we shall regularize the25

Dirac’s delta function by de�ning a slice of the body Sh (see Figure 1(b)), of �nite thickness
h, which contains the surface S (S ⊂ Sh). Then we consider the h-sequence of regular27
functions:

�h
S=

�S

h
; �S=

{
0 ∀X =∈Sh

1 ∀X∈Sh

(6)
29

so that, in the limit, as h→ 0 then �Sh → �S.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:000–000
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Using this regularization, and after some algebraic manipulation, the following identities1
are obtained:

Ḟh = �̇F+
�S

h
(Ṙ⊗N) (7)

Fh = �F+
�S

h
(R⊗N)= ()+ �S

h (R⊗ �n))︸ ︷︷ ︸
Fh

· �F= F̃h · �F (8)

Fh−1 = �F−1 · (F̃h)−1 = �F−1 ·
(
)− �S

h+ R · �n (R⊗ �n)
)

(9)

J h =det(Fh)= det( �F)
(
1 +

�SR · �n
h

)
= �J J̃ h (10)

�J =det( �F); J̃ h= det(F̃h)=
(
1 +

�SR · �n
h

)
(11)

We also de�ne n as the normal vector N convected by the total motion,3

n=F−T ·N= F̃h−T · �n= �n
J̃ h

(12)

where Equations (8), (11) and (5) have been used.‖5

3. STRONG DISCONTINUITY ANALYSIS

In addition to the kinematics described in previous sections, the SDA lies on several as-7
sumptions and ingredients, some of them trying to match the physical aspects associated to
the formation of a displacement discontinuity and some others of more mathematical nature.9
Those assumptions and their implications will be described in the following sections.

3.1. Traction continuity: stress boundedness11

Let us consider the material con�guration of the solid, �, with boundary @�=�u ∪��, where
�u is the part of that boundary where displacements are prescribed and �� the one were13
tractions are given (see Figure 2), crossed by the discontinuity interface S that splits � into
the domains �+ and �−. The local equilibrium of the body is described by the following15
equations:

P ·∇X + �0 �B= 0 for (X; t)∈�\S× [0; T ] (a)

P ·N=Text for (X; t)∈�� × [0; T ] (b)

P�+ ·N=P�− ·N for (X; t)∈S× [0; T ] (c)

(13)

17

‖From now on superindex (·)h to indicate the h-regularized version of entity (·) will be omitted.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:000–000
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Figure 2. Strong discontinuity in a body.

where P(X; t) is the nominal (�rst Piola–Kirchho�) stress tensor (P�+ and P�− being its1
values at the domains �+ and �−, respectively), �0(X) is the density, �B(X; t) are the body
forces, Text(X; t) stands for the external forces applied at the boundary �� and [0; T ] is the3
time interval of interest.
In the context of the SDA and the regularized kinematics of Section 2.1 we extend, as an5

‘ad hoc’ hypothesis, the traction continuity equation (13c) to the interior of the discontinuity
interface Sh of Figure 1(b):7

T=P�+ ·N=P�− ·N=PS ·N (14)

where T stands for the nominal traction vector and PS=P(X; t)|X∈S is the �rst Piola–9
Kirchho� stress tensor evaluated at S. This hypothesis is sustained on the physical perception
that if there are material points in between �+ and �− the traction continuity (equilibrium)11
should be also extended to those points.
The nominal traction continuity condition (14) leads to the requirement of a bounded13

character for the Cauchy stress tensor at the interior of the discontinuity interface, �S;
and also for its time derivative �̇S: This requirements emerge from the following15
reasonings:

1. Since the deformation at �\S is determined by �F (that is bounded by de�nition,17
according to Equation (3)), and the continuum constitutive equation is supposed to re-
turn bounded stresses for bounded strains, then the Piola–Kirchho� stresses P�+( �F) and19
P�−( �F) must be bounded at any time of the analysis.

2. If P�+ and P�− are bounded, so must be the nominal traction vector T in Equation21
(14) since N is bounded (|N|=1).

3. Rewriting the last Equation (14) in terms of the Cauchy stresses �S one gets:23

T=PS ·N= J�S · n= �J�S · �n (15)

where Equations (10) and (12) have been used. Hence, since, �J and �n are bounded25
entities, if all the components of �S were bounded so would be their linear combinations
Ti= �J�ij �nj de�ning Equation (15).27

4. Similar arguments, now on rate entities, lead to require the bounded character of �̇S.
In fact, if Ṗ�+ and Ṗ�− are assumed to be bounded on the same above arguments, time29
derivation of Equation (15), considering the material character of S (Ṅ=0), leads to

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:000–000
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Figure 3. From (a) to (c): mechanism of formation of a strong discontinuity by collapse of a weak
discontinuity; and (d) variable bandwidth law.

the bounded character of Ṫ:1

Ṫ︸︷︷︸
bounded

= �̇J�S · �n+ �J �̇S · n+ �J�S · �̇n (16)

Since �̇J and �̇n (from time derivation of the last Equation (5)) are bounded entities, the3
bounded character of Ṫ is guaranteed if �̇S is also bounded.

Therefore, boundedness of �S and �̇S guarantees the boundedness of T and Ṫ that is5
demanded from a physical viewpoint. The main goal of the Strong Discontinuity Analysis,
developed in Section 3.5.1, is precisely to determine the ingredients that have to be introduced7
in a continuum constitutive model to guarantee that bounded character even in presence of
unbounded strain measures.9

3.2. Development of a strong discontinuity. Weak–strong discontinuities

The regularized kinematics proposed in Section 2.1, allows to introduce the weak discontinuity11
concept by considering the same kinematics in Equations (7)–(12) but now with a non-
null bandwidth∗∗ h �=0. Bearing these concepts in mind, we shall consider the mechanism of13
formation of a strong discontinuity as follows:

(a) at time t= tB (the bifurcation time) a local discontinuous bifurcation of the strain �eld (see15
Section 3.3) triggers a localization of the strains in the shape of a weak discontinuity (with
bandwidth h= h0), see Figure 3(a).17

(b) a subsequent evolution of the bandwidth h(t); decreasing monotonously along time, makes
that weak discontinuity collapse into a strong discontinuity (when the bandwidth reaches19
a very small regularization value h ≡ k → 0) at time tSD (see Figure 3(b)–(c)). For the

∗∗A weak discontinuity can be then characterized by continuous displacements �elds and discontinuous (but
bounded) strain �elds [25].

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:000–000
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strong discontinuity regime (t¿tSD) the bandwidth is kept constant, h ≡ k → 0, (see Figure1
3(d)).

The variable bandwidth law of Figure 3(d) is a model ingredient, whose fundamental role3
in the continuum approach (SDA) has already been explored in in�nitesimal strain settings
[18]. It is a mechanism for delaying the onset of a strong discontinuity after the bifurcation5
time tB till the stress state satis�es the, necessary, strong discontinuity conditions derived in
Section 3.5.1. From the mechanical point of view, the transition (weak discontinuity) regime7
[tB; tSD] de�nes in the tip of a propagating discontinuity a zone where the discontinuity is
processed that can be readily identi�ed with the Fracture Process Zone concept in Fracture9
Mechanics [26]. The bandwidth evolution is considered a material property de�ned in terms
of the stress-like internal variable of the continuum constitutive equation. More details can be11
found in References [18, 25].

3.3. Bifurcation condition at t= tB13

By resorting to the so-called discontinuous bifurcation analysis [27, 28] we can determine the
conditions for the bifurcation of an initially smooth deformation �eld into a weak discontinuity15
compatible, in turn, with the equilibrium of the body. Therefore, we assume that at time t= tB
a non-smooth deformation rate, described by the rate of the deformation gradient (7), begins17
developing. The equilibrium condition (14) across the discontinuity surface S requires the
jump of the rate of the nominal traction vector to be zero:19

<Ṫ= = [Ṗ(XS)− Ṗ(X�+)] ·N= 0 (17)

Assuming loading conditions in S and neutral loading in �\S,†† and after some algebraic21
manipulations, it is possible to derive from (17) the following equation [29]:

QL · <u̇== (en · ctang · en + (en · � · en)))︸ ︷︷ ︸
QL

·<u̇== 0 (18)
23

where ctang is the tangent constitutive tensor, which relates the Kirchho� stress convective rate
with the rate of deformation (Lv�= ctang : d, see the appendix for applications to a particular25
model). The criterion to determine bifurcation is based on the detection of the singularity of
the localization tensor QL, this allowing a non-trivial solution for the velocity jump (<u̇= �= 0)27
in Equation (18):

det(QL(en;Hcrit))=0 for t= tB (19)29

where Hcrit is the maximum (critical) value of the softening modulus compatible with Equa-
tion (19). The �rst time that this equation is ful�lled for a given material point,31

††A preliminary analysis shows that this scenario determines the �rst (and, therefore, the most unfavourable)
possible bifurcation.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:000–000
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determines the bifurcation time tB for that point, and allows to obtain the normal en, which1
in turn determines the direction of propagation of the discontinuity interface S. For further
details on this particular procedure the reader is referred, for instance, to References [28–30].3

3.4. The continuum and discrete free energies

There is a broad set of continuum constitutive models founded on thermodynamic basis that5
can be used in �nite strain settings. A key point in those models is the de�nition of the
continuum free energy density function  (F;�), in terms of the gradient of deformation7
tensor F, that acts as the free (thermodynamically independent) variable, and a set of internal
variables � (including the inelastic strain measures) characterized by speci�c evolution laws9
[31]. The nominal stress �eld P can be then directly obtained, on thermodynamical reasonings,
from that continuum free energy as11

P(X; t)=
@ (F;�)

@F
:= @ F(F;�) (20)

which quali�es the continuum free energy  as a potential for the nominal stress �eld P.13
In this context, let us consider the discontinuous interface S and the free energy per unit

of this surface, � , from now on termed discrete free energy which, in the context of the15
regularization procedure sketched in Figure 1(b), can be written as

� =
free energy
unit surface

=
free energy
unit volume︸ ︷︷ ︸

 

· unit volume
unit surface︸ ︷︷ ︸

h

= lim
h≡k→0

h |S (21)

17

Now, by considering the strong discontinuity kinematics (8), F( �F; R)= �F+�S=h(R⊗N), in
Equation (20) one gets:19

� ( �F; R;�) ≡ lim
h→0

h (F( �F; R);�)|S

@�
� = lim

h→0
h@� |S = lim

h→0
@F ︸︷︷︸
PS

· @�F|S︸ ︷︷ ︸
1
hN

=PS ·N=T




⇒ T= @�
� (22)

Equation (22) hints at a crucial consequence of the insertion of strong discontinuous kine-21
matics into continuum (stress–strain) models: the projection of those continuum models into
discrete (traction–displacement jump) ones. In fact, the discrete free energy � , obtained as23
the discontinuous surface counterpart of the continuum free energy density  , turns into a
potential of the nominal traction T=PS ·N, with respect to the incremental jump R; as shown25
in Equation (22). This suggests that a discrete model can be derived from that discrete free
energy and, therefore, from the inclusion of a strong discontinuity kinematics in the original27
continuum model. Indeed, this is what is shown, for a target constitutive model (continuum
damage), in next sections.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:000–000
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3.5. A representative continuum damage model1

Let us now consider the extension to the �nite deformation range of the isotropic continuum
damage model presented in [17]:

3

Free energy
 (b; r)= (1− d) 0(b)

 0(b)= 1
4�(J

2 − 1)− ( �2 + �) log J + 1
2�[tr(b)− 3]

(a)

Constitutive
equation P= @F ⇔ �=2b · @b = q

r [�
(J 2−1)
2 )+ �(b− ))] (b)

Damage
variable d=1− q(r)

r ; d∈ [0; 1] (c)

Evolution
law ṙ= �

{
r ∈ [r0;∞)
r|t=0 = r0¿0

(d)

Damage
criterion �(�; q) ≡ �� − q; ��=

√
� : c−1� : � (e)

Load:-unl:
conditions �¿0 �60 ��=0 (f )

Softening
rule q̇=Hṙ H¡0

{
q∈ [0; q0]
q0 := q|t=0 = r0

(g)

(23)

where � and � are the Lame’s parameters, � is the Kirchho� stress tensor, b(F)=F · FT is
the left Cauchy–Green deformation tensor, r is a scalar strain-like internal variable which5
determines the damage (or degradation) level of the material and q(r) is a stress-like internal
variable (hardening variable) that sets the evolution of the elastic domain E� := {�;�(�; q)¡0}7
through the damage function �(�; q). The initial value of r is r0 =�u=

√
E where �u is the

uniaxial peak stress and E is Young modulus. In addition, in Equation (23c), d(r)=1−q(r)=r9
is the classical damage variable ranging from 0 (undamaged state) to 1 (full damage). Also
in Equation (23) �� is a norm of the stresses in the metric of the tensor c−1� , � is the damage11
multiplier and H is the softening modulus from now on termed continuum softening modulus
(see the appendix for the explicit expression of tensor c−1� and additional details on the model).13

3.5.1. Strong discontinuity analysis. Let us �nd out what conditions make the unbounded
strains at the strong discontinuity regime, t¿tSD (and, thus, h ≡ k → 0), compatible with the15
stress boundedness requirements of Section 3.1. Using the multiplicative decomposition (5)
and expressions (8) and (10), one can rewrite the Kirchho� stress (23b) in the discontinuous17
interface S as

�S=
qS
rS

[
�
2

(
�J 2
[
k + R · �n

k

]2
− 1

)
)+ �(�b− )) + 2�

(
�b · �n ⊗ R

k

)sym
+ �

(
R⊗ R
k2

)]
(24)

19

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:000–000
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where �b= �F · �FT. The corresponding Cauchy stresses, taking into account Equations (10) and1
(11), and after some algebraic manipulations can be written as

�S=
1
JS
�S=

qS
rS

(
�0 +

1
k
�1
)
=

qS
krS

(k�0 + �1) (25)3

where

�0 =− �
2 �J

(
k

k + R · �n
)
)+ �

�J

(
k

k + R · �n
)
(�b− )+ 2 �((b · �n)⊗ R)sym) (26)5

and

�1 =
�
2
�J (k + R · �n))+ �

�J

(
R⊗ R

k + R · �n
)

(27)7

From Equation (25), and for the strong discontinuity regime (t¿tSD h ≡ k → 0), one gets:

�S=
qS

lim
k→0

krS
lim
k→0

( k�0︸︷︷︸
=0

+�1)=
qS

lim
k→0

krS

[
�
2
�J (R · �n))+ �

�J (R · �n)R⊗ R
]

(28)
9

where the bounded character of �0 (from inspection of Equation (26)), and then limk→0 (k�0)
= 0 has been considered. Multiplying Equation (28) times �J �n and recalling Equation (25)11
(T= �J�S · �n) we obtain:

T= �J�S · �n= 1
lim
k→0

(krS)
qS

[
�
2
�J 2(R · �n)�n+ �R

]
(29)

13

In view of Equation (29) we now consider the following two scenarios:

(I) limk→0 (krS)=0 for t¿tSD (rS=bounded). Then, from Equation (29) the bounded15
character of T implies:

�
2
�J 2(R · �n)�n+ �R= 0 for t¿tSD (30)17

and multiplying Equation (30) times �n:(
�
2
�J 2|�n|2 + �

)
︸ ︷︷ ︸

�=0

(R · �n)=0⇔ (R · �n)=0⇔ R= 0 for t¿tSD (31)

19

where Equation (30) and the facts �¿0; �¿0 have been considered. Equation (31) states
that the incremental displacement jump R is null and, thereby, no evolution of the jump at the21
strong discontinuity regime. Therefore, this scenario would not model the strong discontinuity
and has to be discarded. The alternative scenario is then:
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(II) limk→0 (krS) �= 0 for ∀t¿tSD (rS=O(1=k)=unbounded): Such condition is trivially1
ful�lled for the following structure of ṙS, in Equation (23d):

ṙS= �=
�̇	
k
¿0 ∀t¿tSD (32)3

⇒ rS= r0 +
∫ tSD

0
ṙS dt︸ ︷︷ ︸

def= rSD

+
∫ t

tSD

�̇	
k
dt= rSD +

1
k
( �	t − �	SD)︸ ︷︷ ︸

=	 �	

(33)

where �̇	 and, therefore, �	 and 	 �	 are bounded and Equation (23f) (�¿0) has been considered.5
From now on the variable �	 will be termed discrete internal variable. From Equations (32)
and (33):7

�̇	= k �︸︷︷︸
¿0

def= ��¿0

	 �	 def= �	t − �	SD¿0


∀t¿tSD (34)

where the parameter �� will be termed discrete damage multiplier.9
From Equation (33) it follows that the assumption for scenario (II) is ful�lled, that is

lim
k→0

(krS)= lim
k→0

krSD︸ ︷︷ ︸
=0

+( �	t − �	SD)=	 �	¿0 ∀t¿tSD (35)

11

Let us now consider the hardening=softening variable qS that, from Equation (23g) (q∈[0; r0]),
is bounded. Let us �nd out what conditions would make also q̇S bounded. From the softening13
rule (23g), in connection with Equation (32) for t¿tSD, and loading cases we obtain:

q̇S︸︷︷︸
bounded

=H ṙS︸︷︷︸
= �̇	

k

=H
1
k

�̇	︸︷︷︸
bounded

(36)

15

Hence, the continuum softening modulus H must ful�ll:

H
1
k
= �H (bounded) (37)17

and substitution of Equation (37) into Equation (36) leads to

q̇S= �H �̇	 ∀t¿tSD (38)19

which constitutes a discrete softening rule in terms of the discrete internal variable �	. On the
other hand Equation (37) is ful�lled from the following softening regularization condition:‡‡21

H= h �H ∀t¿tB (39)

‡‡In strict sense the softening regularization condition is only required at the strong discontinuity regime
(H= k �H ∀t¿tSD) but, in the context of the variable bandwidth model, it is also extended to the weak
discontinuity regime (tB6t¡tSD) (see References [18, 25]).
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where �H¡0 (from now on termed the discrete softening modulus) is a (bounded) material1
parameter.§§

Finally, substitution of Equation (35) into (28) leads to3

�S(qS;	�	; R)= qS
	�	

[
�
2
�J (R · �n))+ �

1
�JR · �nR⊗ R

]
∀t¿tSD (40)

Equation (40) guaranties the bounded character of �S as a continuous function of the bounded5
entities qS;	�	 and R: Moreover, time derivation of Equation (40) also shows the bounded
character of �̇S(qS;	�	; R; q̇S; �̇	; Ṙ) since q̇S; �̇	 and Ṙ are also bounded. Therefore, it appears7
that the softening regularization in Equation (39) is a su�cient condition to guarantee the
bounded character of the stress and rate of stress �elds required in Section 3.1.

9
On the other hand, Equation (40) provides a set of six (due to its symmetry) equations that

allows to solve for the incremental displacement jump R (three equations) and also supplies11
three additional constrains on the stress �eld �S: Indeed, multiplying such equation times �J �n;
and considering Equation (15) (T= �J�S · �n) one obtains:13

T= �J �S · �n= qS
	�	

(
�
2
�J 2(�n ⊗ �n) + �)

)
︸ ︷︷ ︸

Q

·R= qS
	�	

Q · R (41)

or, equivalently:15

T=(1−!)Q · R; !=1− qS

	�	
; !∈ [−∞; 1] ∀t¿tSD (42)

that can clearly be interpreted as a discrete damage constitutive equation for the cohesive dis-17
continuous interface S. It describes the relation between the traction T and the displacement
jump R in terms of a discrete damage variable !∈ [−∞; 1]¶¶ and an acoustic-like sti�ness19
tensor Q.
Equation (42) can be solved for R (as R=(	 �	=qS)Q−1 ·T) and, once substituted into Equa-21

tion (40), provides, after some algebraic manipulations, a set of three equations in terms of
�S. These conditions on the stress �eld, which are termed the strong discontinuity conditions23
[17], have to be ful�lled at the strong discontinuity regime‖‖ (t¿tSD). In a local orthogonal
basis (e1; e2; e3); see Figure 4, with unit vectors e2 and e3 laying on the tangent plane to the25

§§In fact the discrete softening parameter �H can be readily related to the fracture energy concept in fracture
mechanics [17].

¶¶The initial !=−∞ value states that the induced discrete model is a rigid damage model. This extends to �nite
deformation settings this feature already proved for in�nitesimal strains settings [17].

‖‖As it will be shown through numerical simulations in Section 5.1, the strong discontinuity conditions (43) are not
always ful�lled at the bifurcation time tB and, in the context of the SDA, this fact generally precludes the onset
of the strong discontinuity immediately after the bifurcation, see References [17, 25] for additional details. The
variable bandwidth (weak–strong discontinuity) model outlined in Section 3.2 constitutes a mechanism to smoothly
induce those conditions that, in turn, can be related to the Fracture Process Zone concept in Fracture Mechanics
[25, 26].
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Figure 4. Orthogonal basis attached to the discontinuity surface.

discontinuity surface, S, and e1 = n=‖n‖= �n=‖�n‖, they can be written as:1

�22s =
�̂

�+ �̂
�11s +

�+ �̂
�

(�212s =�11s)

�33s =
�̂

�+ �̂
�11s +

�+ �̂
�

(�213s =�11s)

�23s =
�+ �̂
�

(�12s�13s =�11s)

(�̂=
�
2
�J 2‖�n‖2)




∀t¿tSD (43)

which states a continuous functional dependence of the stress �22S , �33S and �23S on the traction3
vector components [T] ≡ [�11S ; �12S ; �13S ]. Hence, all the components of �S can be expressed
as a function of the components of T, i.e.5

�S= �(T) ∀t¿tSD (44)

Considering now the T-dependence of �S stated in Equation (44), and substituting into the7
damage criterion (23e) we obtain:

��(T; qS)
def= �(�(T); qS) ≡ �T − qS; �T=

√
�(T) : c−1� : �(T) ∀t¿tSD (45)9

which constitutes a discrete damage criterion at the interface in terms of the traction T.
Finally, recalling the expression of the discrete free energy (21) for the particular case of11

Equations (23a) one obtains, after some algebraic manipulation:

lim
h≡k→0

k (b; r) = � (R;	�	) (46)

� (R;	�	) = qS(	 �	)
	 �	

� 0(R); � 0 =
�
4
�J 2(R · �n)2 + �

2
(R · R) (47)

and, from the expression of the discrete free energy (47), the constitutive Equation (41) is13
immediately recovered by derivation (T= @�

� ), as suggested in Section 3.4. In summary, by
collecting the expressions derived in this section, the following discrete constitutive model at15
the discontinuous interface S emerges (Figure 5):
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Figure 5. (a) Original (continuum) vs induced (discrete) constitutive response;
(b) and (c) induced discontinuous interfaces.

Free energy � (�;	�	)= (1−!) � 
0
;



� 
0
(R)= 1

2R ·Q · R

Q=
�
2
�J 2(�n ⊗ �n) + �)

(a)

Constitutive
equation T= @�

� =(1−!)Q · R (b)

Damage
variable !=1− qS(	 �	)

	 �	
; !∈ (−∞; 1] (c)

Evolution
law �̇	= ��;

{
	�	∈ [0;∞)
	 �	|tSD = 0

(d)

Damage
criterion

��(T; q)= �T − qS; �T=
√
�S(T) : c−1� : �S(T) (e)

Load:-unl:
conditions ��¿0 ��60 �� ��=0 (f )

Softening
rule q̇S= �H �̇	; �H¡0;

{
qS ∈ [0; qSD]
qSD = qS|tSD

(g)

(48)
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Notice that, according to the previous reasonings, the discrete constitutive model (48) is1
implicitly induced from:

(1) the introduction of the softening regularization condition (39) into the continuum con-3
stitutive model (23),

(2) the presence of unbounded strains measures that develop at the discontinuous interface,5
according to Equation (7), and

(3) the imposition of the traction continuity Equation (14).7

These are the only speci�c ingredients introduced by the SDA in addition to a standard
continuum modelling. For the numerical simulation purposes the simulation is carried out in9
the continuum format on the basis of the continuum model (23) and the aforementioned
ingredients.11

4. FINITE ELEMENT APPROACH

Conceptually there are not substantial di�erences between the �nite element technology for13
the in�nitesimal strain case, reported elsewhere [14], and the one used here for the numerical
simulations in large strain settings. Therefore, in this section only the outline of the theoret-15
ical foundations of considered �nite element with embedded discontinuity will we provided,
emphasizing the speci�c features introduced by the large deformation kinematics.17

4.1. Discretized displacement �eld

Let us consider the material domain � discretized in a triangular∗∗∗ �nite element mesh with19
nelem elements and nnode nodes crossed by the discontinuity interface S(see Figure 6(a)). Let
us then consider the subset J of the nJ elements that are crossed by S at the considered21
time t:

J ≡ {e |�e ∩S �= ∅}= {ei;; : : : ; em; : : : ; ep; : : :} (49)23

This subset is determined by means of an speci�c algorithm devoted to track the discontinu-
ity [14]. For every element of J, the tracking algorithm also provides the position of the25
elemental discontinuity interface Se (see Figure 6(b)) of length le which de�nes the domains
�+e and �

−
e and leaves one node at one side of the element (the solitary node jsol) and two27

nodes (j1 and j2) at the other side. The sense of the normal N inside the element is chosen
to point toward the solitary node side �+e .29
Based on this, and motivated by the kinematics presented in Section 2, we consider the

following interpolation of the (rate of) displacement �eld u(e) inside a given element e [15]:31

u̇(e)(X; t)= �̇u(e) + ˙̃u(e) =
i=3∑
i=1

N (e)
i (X)ḋi(t)︸ ︷︷ ︸
�̇u(e)

+M
(e)
S (X)[[u̇]]e(t)︸ ︷︷ ︸

˙̃u(e)

(50)

∗∗∗From now on the three noded (constant stress) triangle will be considered as the basic element for explanation
purposes. Generalization to other families of �nite elements can also be done but it is out of the scope of this
work.
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Figure 6. Finite element with embedded discontinuity.

where �̇u
(e)
is the standard C0 displacement �eld, interpolated by the shape functions {N (e)

1 ;1
N (e)
2 ; N (e)

3 } of the linear isoparametric triangle [32], in terms of the nodal displacements di(t)
at node i. The term ˙̃u, in Equation (50), captures the singular (discontinuous) part of the3
displacement �eld in terms of the elemental displacement jump [[u̇]]e and the unit jump
function Me

S(X) de�ned as follows:5

M
(e)
S (X)=

{
0 ∀e =∈J

H
(e)
S (X)− N (e)

sol (X) ∀e∈J
(51)

where H
(e)
S is the step function (H(e)

S (X)=1 ∀X∈�+e and H
(e)
S (X)=0 ∀X∈�−

e ) and the7
index ‘sol’ refers to the solitary node. Figure 6(c) shows the M

(e)
S function and emphasizes

its elemental support.9
The term ˙̃u

(e)
in Equation (50) can be regarded as an enhancement of the basic displacement

�eld �̇u(e), provided by the underlying isoparametric �nite element, which due to the particular11
structure of the unit jump function Me

S in Equation (51) makes the resulting displacement
�eld discontinuous.13
The kinematics of Equation (50) can be also expressed in compact form as

u̇(X; t) = �N(X) · ḋ(t) + M̃(X) · Ṡ(t)

ḋ ≡ {ḋ1; : : : ; ḋnnode}T; Ṡ ≡ {[[u̇]]1; : : : ; [[u̇]]nJ}T
(52)

15
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From Equations (50) and (51), the discrete (rate of) deformation gradient reads:1

Ḟ(e) = u̇(e) ⊗∇X=
i=3∑
i=1
(ḋi ⊗∇XN (e)

i )− ([[u̇]]e ⊗∇XN
(e)
sol )︸ ︷︷ ︸

�̇F
(e)
(bounded)

+�S([[u̇]]e ⊗N) (53)

where �S stands for Dirac’s delta function emerging from the spatial derivation of the Heavi-3
side function H

(e)
S in Equation (51) (∇XH

(e)
S (X)= �SN). Notice that Equation (53) matches

the strong discontinuity kinematics discussed in Section 2.5
As pointed out there, in order to overcome the numerical di
culties of treating with the

Dirac’s delta function, and also to model the transition from the weak to the strong discon-7
tinuity regimes, �S is replaced by a regularized function �(e)S de�ned within the element e
as9

�(e)S =�(e)S

1
he

(54)

where he is the elemental bandwidth, de�ned according the variable bandwidth model, and11
�(e)S is a collocation function whose support is the domain Sk

e in Figure 6(b) de�ned in terms
of the regularization parameter k:13

�(e)S (X) = 1 ∀X∈Sk
e

�(e)S (X) = 0 ∀X =∈Sk
e

(55)

By considering Equations (54) and (55) the regularized form of the rate of deformation15
gradient (53) reads:

Ḟ(e) =
i=3∑
i=1
(ḋi ⊗∇XN

(e)
i )− ([[u̇]]e ⊗∇XN

(e)
sol )︸ ︷︷ ︸

�̇F
(e)
(bounded)

+�(e)S

1
he
([[u̇]]e ⊗N)︸ ︷︷ ︸

unbounded for he → 0

(56)

17

In order to integrate the discontinuous terms emerging from the second term of the right-
hand side of Equation (56), in addition to the regular sampling point of the constant strain19
triangle (PG1 in Figure 6(e)), the element is equipped with a second integration point (PG2
in Figure 6(e)) whose associated area is21

measure (Sk
e )= kle (57)

The regularization parameter k has an arbitrary small value (as small as permitted by23
the machine precision). Therefore, integration of regular (bounded) terms in Sk

e results in
arbitrary small values, which makes the approach consistent. Also notice that neither k nor25
he are associated to any length of the �nite element or mesh.
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4.2. Body equilibrium and discrete equilibrium equations1

Let us consider the weak form of the local equilibrium equations (13) in �\S:

���\S(u; �W) =
∫
�\S

P : ( �W⊗∇X) d�−
∫
�\S

�B · �W d�−
∫
��
Text · �W d�= 0

∀ �W∈ �V0
def≡ { �W(X); �W|X∈ �u = 0}

(58)

3

As previously stated, in Equation (14) an additional traction continuity condition should
be imposed in S to induce at this interface the discrete (traction vs displacement jump)5
constitutive equation. This reads:

PS ·N=P�+ ·N (=P�− ·N)=T for (X; t)∈S× [0; T ] (59)7

After introducing the spatial discretization of Equation (52) the discrete counterpart of Equa-
tion (58) reads:†††9

��h�(u
h; �Wh) =

∫
�
P : ( �Wh ⊗∇X) d�−

∫
�

�B · �Wh d�−
∫
��
Text · �Wh d�︸ ︷︷ ︸

Gext

= 0

∀ �Wh ∈ �Vh
0 := �Wh(X)= �N · Td; Td|�u

= 0

(60)

On the other hand, the nominal traction continuity condition (59) can be weakly enforced11
in terms of the averages of T=P ·N inside every element e∈J as follows:

1
kle

∫
Sk

e

P ·N d�︸ ︷︷ ︸
mean value of T on Sk

e

=
1
�e

∫
�e

P ·N d�︸ ︷︷ ︸
mean value of T on �e

∀e∈J⇒ (61)

∫
�e

(
�(e)S

1
kle

− 1
�e

)
P ·N d�= 0 ∀e∈J (62)

where the discontinuous character of the function �(e)S inside the element (see Equation (55))13
can be captured by the integration rule sketched in Figure 6(e).
Finally, some algebraic manipulation of Equations (60) and (62) leads to:

15

∫
�i

P · (∇X Ni) d� − f exti = 0 ∀i∈{1; : : : ; nnode}
∫
�e

(
�(e)S

1
k
− le
�e

)
P ·N d�= 0 ∀e∈J (63)

f exti =
∫
�i

Ni �B dV +
∫
@�i∩��

Ni T
ext d� (64)

†††Observe that, due to the zero measure of the interface S and the bounded character of the integral kernels, the
integration domain can be extended from �\S to �:
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where �i stands for the support of the shape function Ni. The discrete system of Equa-1
tions (63) provides a set of nnode + nJ non-linear equations to solve for the nnode + nJ un-
knowns d ≡ {d1; : : : ; dnnode}; S ≡ {[[u]]1; : : : ; [[u]]nJ} of the discrete problem as pointed out in3
Equation (52).
For computational purposes, and since the constitutive equations are given in terms of the5

symmetric Kirchho� stresses �=P · FT, Equation (63) can be appropriately rewritten, taking
into account the identity ∇X(•)=∇x(•) · F, as7 ∫

�i

� · (∇xNi) d�− f exti = 0 ∀i∈{1; : : : ; nnode}∫
�e

(
�(e)S

1
k
− le
�e

)
� · n d�= 0 ∀e∈J

(65)

where n=F−T ·N is the convected normal at the spatial con�guration in Equation (12), and9
(•)T stands for the transpose of (•). For the considered 2D case in a cartesian (x; y) co-ordinate
system, Equation (65) can then be cast into the classical B-matrix format11
[32] as

e=nelem⋃
e=1

[ ∫
�e

B(e)
T · {�} d�− Fext(e)

]
= 0 (66)

13

where ∪ stands for the assembling operator and the elemental B-matrix, B(e), the 2D Kirchho�
stress vector {�}; and nodal forces vector, Fext(e), are given by15

B(e) = [B(e)1 B(e)2 B(e)3 G(e) ] (67)

B(e)i =



@xN

(e)
i 0

0 @yN
(e)
i

@yN
(e)
i @xN

(e)
i


 ; G(e) =

(
�(e)S

1
k
− le
�e

)

nx 0

0 ny

ny nx




(68)

{�}=




�xx

�yy

�xy


 n=

[
nx

nx

]
; Fext(e) =



f ext(e)1

f ext(e)2

f ext(e)3

0




The structure of Equations (67) and (68) suggests the introduction of an internal additional
fourth node for each element e, that is activated only for the elements crossed by the discon-17
tinuity interface (e∈J) and whose corresponding degrees of freedom and associated shape
function are, respectively, the displacement jumps [[u]]e and M

(e)
S in Equations (50) and (51).19

Since the support of M
(e)
S is only �e, those internal degrees of freedom can be eventually

condensed at the elemental level and removed from the global system of equations.
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4.3. Time integration and linearization1

In the context of a time advancing process, the rate equation (56), within the element (e), is
integrated at time t +	t, in terms of the corresponding values at time t and the incremental3
values of the nodal unknowns 	di and 	[[u]]e, as follows:‡‡‡

F(X; t +	t) not= Ft+	t

= Ft +
i=3∑
i=1
[	di ⊗∇XN

(e)
i ]− (	[[ue]]⊗∇XN

(e)
sol )

+�(e)S

1
he(t)

(	[[u]]e ⊗N) (69)

	di = di(t +	t)− di(t)

	[[u]]e = [[u]]e(t +	t)− [[u]]e(t)

On the other hand, the algorithm of the continuum constitutive model updates the stresses5
�t+	t ; in terms of the updated gradient of deformation tensor Ft+	t and the previous values
of the stresses �t ; and the internal variables qt; and also provides the algorithmic constitutive7
operator ctangt+	t (see the appendix):

�t+	t =F(Ft+	t ; �t ; qt); L �v�t+	t = c
tang
t+	t : (∇x ⊗ u̇t+	t)S (70)9

Using standard procedures [33], linearization, in the direction u̇t+	t , of the equilibrium equa-
tions (60) and (62) at time t +	t yields:11 ∫

�i

(�Wh ⊗∇x) : [(u̇t+	t ⊗∇x) · �t+	t + L �v(�t+	t)] d�− Ġext = 0 ∀ �Wh ∈ �Vh
0

∫
�e

(
�(e)S

1
k
− le
�e

)
((u̇t+	t ⊗∇x) · �t+	t · n+ L �v(�t+	t) · n) d� = 0 ∀e∈J

(71)

which, after substitution of Equation (70) and some algebraic manipulation, reads:13 ∫
�i

(�Wh ⊗∇x) : [() �⊗�t+	t) + c
tang
t+	t] : (∇x ⊗ u̇t+	t) d�− Ġext = 0 ∀ �Wh ∈ �V

h
0

∫
�e

(
�(e)S

1
k
m− le

�e

)
n · [(�t+	t ⊗ )) + ctangt+	t] : (∇x ⊗ u̇t+	t) d� = 0 ∀e∈J

(72)

‡‡‡As a technical detail in Equation (69) notice that the elemental bandwidth is updated with one time step delay
(het+	t ≡ he(t)). In the context of the variable bandwidth method at the weak discontinuity regime, this
explicit update makes linear that equation, with a considerable simpli�cation of the whole procedure while
keeping the consistency of the integration method.
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were () �⊗�t+	t)ijkl
def= �ik�jl and (�t+	t ⊗ ))ijkl= �il�jk . From Equations (50), (51) and (60), the1

terms ∇x ⊗ u̇t+	t and (�Wh ⊗∇x) in Equation (71) can be expressed in discrete form as:

∇x ⊗ u̇t+	t =
i=3∑
i=1

∇xN
(e)
i ⊗ ḋit+	t + �(e)S

1
he(t)

n ⊗ [[u̇]]et+	t −∇xN
(e)
sol ⊗ [[u̇]]et+	t

�Wh ⊗∇x =
i=3∑
i=1

�d ⊗∇xN
(e)
i

(73)

3

After insertion of Equation (73) and some algebraic manipulations Equation (72) can be
rewritten, in discrete form and for the 2D problem in a cartesian (x; y) co-ordinate system,5
in the following B-matrix format:

e=nelem⋃
e=1

[∫
�e

B(e)
T

geo · [�̂t+	t] · B∗(e)
geo d�︸ ︷︷ ︸

Kgeo

+
∫
�e

B(e)
T · ctangt+	t · B∗(e) d�

]
︸ ︷︷ ︸

Kmat

·
[
ḋ(e)

[[u̇]]e

]
t+	t

= Ḟ
ext(e)
t+	t (74)

7

where Fext e is given in Equation (68) and Kgeo and Kmat can be recognized, respectively, as the
classical geometrical and material tangent sti�ness [32]. The remaining terms of Equation (74)9
can be described as:

B(e) = [B(e)1 ;B(e)2 ;B(e)3 ;G(e) ]

B∗(e) = [B(e)1 ;B(e)2 ;B(e)3 ;G∗(e)
t+	t ]

B(e)i =



@xN

(e)
i 0

0 @yN
(e)
i

@yN
(e)
i @xN

(e)
i




G(e) =
(
�(e)S

1
k
− le
�e

)

nx 0

0 ny

ny nx




G∗(e)
t+	t = �(e)S

1
he(t)



nx 0

0 ny

ny nx


−



@xN

(e)
sol 0

0 @yN
(e)
sol

@yN
(e)
sol @xN

(e)
sol




(75)

11

B(e)geo = [B(e)geo1 ;B
(e)
geo2

;B(e)geo3 ;G
(e)

geo ]

B∗(e)
geo = [B

(e)
geo1

;B(e)geo2 ;B
(e)
geo3

;G∗(e)
geot+	t

]
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B(e)geoi =




@xN
(e)
i 0

@yN
(e)
i 0

0 @xN
(e)
i

0 @yN
(e)
i


 (76)

G(e)geo =
(
�(e)S

1
k
− le
�e

)


n(e)x 0

n(e)y 0

0 n(e)x

0 n(e)y




G∗(e)
geot+	t

= �(e)S

1
he(t)



n(e)x 0

n(e)y 0

0 n(e)x

0 n(e)y


−




@xN
(e)
sol 0

@yN
(e)
sol 0

0 @xN
(e)
sol

0 @yN
(e)
sol




�̂=



�xx �xy 0 0

�xy �yy 0 0

0 0 �xx �xy

0 0 �xy �yy




{ �L �v�}=


( �L �v�)xx

( �L �v�)yy

( �L �v�)xy


 ; {∇x ⊗ u̇t+	t}=




@xu̇x

@yu̇y

@yu̇x + @xyu̇y




t+	t

(77)

�L �v�t+	t = c
tang
t+	t : (∇x ⊗ u̇t+	t)S ⇔{ �L �v�t+	t}= ctangt+	t · {∇x ⊗ u̇t+	t}

Observe that, due to the di�erences B(e) �=B∗(e) and B(e)geo �= B∗(e)
geo (emerging from the di�er-1

ent matrices G(e) �= G∗(e) and G(e)geo �= G(e)geo) in Equations (75) and (76), the tangent sti�ness
K=Kgeo + Kmat, in Equation (74), is not symmetric. This should be expected from the con-3
tinuum formulation of the problem since the traction continuity equation (59) has not been
imposed from the variational principle (58), but enforced in an average or weighting procedure5
through Equation (61). This fact confers to the presented �nite element procedure the character
of a Petrov–Galerkin �nite element approximation in front of the classical Galerkin-based7
�nite element approaches. The resulting procedure has been sometimes termed, in in�nites-
imal strain settings, the Statically and Kinematically Optimal Non-symmetric formulation9
[34], emphasizing its improved behaviour in front of other symmetric alternative �nite ele-
ments with embedded discontinuities.
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Figure 7. (a) Boundary conditions; (b) bandwidth variation law h vs q; (c) total load Px vs lateral dis-
placement ux; (d) equilibrium path in the principal stress plane for a point in S (singular Gauss point
PG2 in Figure 1(e); and (e) idem for a point in �\S (regular Gauss point PG1 in Figure 1(e)).

5. NUMERICAL SIMULATIONS1

In this section the numerical method described above is applied to the simulation of di�erent
problems where strong discontinuities develop. The main goal is to show that these numerical3
simulations behave as predicted by the theoretical analyses, as well as to highlight the role
of large strain kinematics in the obtained results.5
The constitutive model considered in the simulations is the continuum isotropic damage

model described in Equation (23) with the softening regularization condition (39). Therefore,7
it is expected that the discrete damage model (48) is induced at the interface of discontinuity
and the results to be the same than if this discrete model had explicitly been implemented.9

5.1. Specimen under biaxial stress state

This example highlights the role of the variable bandwidth model in the presented approach.11
A square specimen is subjected to a biaxial stress state by imposing a constant displacement
uy and a gradually increasing displacement ux on the upper and right edges of the plate,13
respectively, see Figure 7(a).
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The material is characterized by the following data: elastic Lame’s parameters �=0:0(MPa),1
�=E=2=1:104(MPa); continuum softening modulus H=−0:125, discrete softening modulus
�H=−0:125(cm−1).3
The damage criterion is that de�ned in the appendix, with ��=� and ��= �. In this circum-

stances the elastic threshold results r0 = q0 =�u=
√
E=0:00707(MPa)1=2 (where �u=1:0(MPa)5

stands for the uniaxial strength and E=2:104(MPa) for Young modulus).
The bifurcation analysis determines the normal to the discontinuity interface as en=(1; 0)T7

and the only non-trivial strong discontinuity condition in Equation (43) is �xx�yy − �2xy=0.
Since, due to the geometrical symmetries and loading conditions, �xy=0; the strong disconti-9
nuity condition reads �yy=0 which clearly is not trivially ful�lled at the bifurcation time tB.
Therefore, bifurcation takes place under the form of a weak discontinuity, and a weak–strong11
discontinuity transition regime has to be introduced. This is governed by a variable bandwidth
law h(q), given by (see Figure 7(b)):13

h= h0 = 1 cm; t6tB (q¿qB)

h= k +
h0 − k

qB − qSD
(q− qSD); tB¡t¡tSD (qSD¡q¡qB)

h= k; t¿tSD (q6qSD)

(78)

where qB and with qSD stand for the values of the internal variable q at the bifurcation15
time, tB; and at the strong discontinuity time, tSD, respectively. The value qSD is de�ned
as qSD = (1 − �)qB (�∈ [0; 1]). Therefore, the transition factor � determines the size of the17
weak discontinuity interval [qSD; qB] so that for �=0 there is no weak discontinuity regime
(qSD = qB) and the kinematics immediately after the bifurcation is imposed to be the strong19
discontinuity one. On the other hand, if �=1 then qSD =0 and all the post-bifurcation stage
will be traced as a weak discontinuity.21
As a matter of example, results, obtained with several values of �, are presented in

Figures 7(c) and 7(d).
23

• For a very short transition regime,§§§ determined by a very small transition factor �=0:05,
it appears an unexpected arti�cial elastic loading (in terms of Px − ux response) imme-25
diately after bifurcation (see point A in Figure 7(c)) followed by the regular expected
unloading response. This can be explained as follows: since after bifurcation an incremen-27
tally elastic behaviour is algorithmically imposed at �\S, as expected from the theoretical
bifurcation analysis, violation of the strong discontinuity conditions make the stresses at29
that point infringe the damage criterion as the process evolution proceeds (see Figure
7(e)). This results in an arti�cial elastic loading at that part of the body¶¶¶ responsible,31
in turn, for the behaviour observed in Figure 7(c) up to point A, where the strong dis-
continuity condition �yy=0 is ful�lled at S (see Figure 7(d)). Beyond that point the33
strong discontinuity regime takes place and regular elastic unloading occurs at �\S (see
Figure 7(e)) resulting in the Px − ux unloading branch in Figure 7(c). There we can35
notice that:

§§§For practical purposes this is equivalent to enforce bifurcation into a strong discontinuity.
¶¶¶As a matter of fact if this arti�cial elastic loading takes place, a ‘two material’ constitutive equation (elastic

at �\S and elasto plastic at S) is arti�cially imposed by the algorithm.
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• For longer (slower) transitions, determined for instance by �=0:2 or �=0:5, this1
arti�cial elastic loading is no longer observed and the transition from bifurcation to
the strong discontinuity regime takes place smoothly as shown in Figure 7(c) and keep-3
ing the theoretical elastic unloading at �\S.

These results con�rm that, as predicted by the theoretical analyses, the strong discontinuity5
kinematics cannot be imposed, in general, immediately (or very shortly) after bifurcation
since the strong discontinuity conditions (43) are not ful�lled at this time. Therefore, the7
transition regime (weak discontinuity) appears as a mechanism to smoothly induce these
strong discontinuity conditions preserving the bounded character of the stress and rate of9
stress �elds.
In addition, it can be observed in Figure 7(c) that the �nal slopes of the Px − ux curves11

are the same in all cases. This could have been expected from the fact that this part of the
structural response is ruled by the induced discrete (traction–displacement jump) constitutive13
equation which is independent of the size of the transition regime.

5.2. Debinding problem: crack propagation in mode I15

This example is devoted to get some insight on the in�uence, on the response provided by the
SDA, of the chosen kinematics (large or in�nitesimal strains). For comparison purposes the17
results using the in�nitesimal strain counterpart of the continuum model (23) and the SDA
for in�nitesimal strains settings given in [17] are used.19
The induced discrete constitutive models for both cases (in�nitesimal and large strains) are

made equivalent in terms of the fracture energy as a material property. The fracture energy21
Gf , de�ned as the external mechanical energy required per unit of surface of the discontinuity
interface S to produce the total decohesion of the material [26], can be then computed as23

Gf =
∫ t∞

tSD
T(X; t) · [[u̇]](X; t) dt (79)

where it is assumed that complete decohesion (T= 0) is achieved at time t∞:25
Considering the same reference problem (uniaxial stress process) Gf can be computed and

equated for both cases leading to:27

Small strains Gf =−�2u=(2E �Hsmall)

Large strains Gf =−�2u=(E �Hlarge)
⇒ �Hlarge = 2 �Hsmall (80)

where �u stands for the uniaxial peak stress and E for the Young modulus. The relationship29
between the discrete softening modulus �H, obtained in Equation (80), is then extended to
more general stress states as an approximate way to keep the fracture energy as a common31
material property for large and small strain kinematics.
With these considerations in mind, in Figure 8 the simulation of a debinding process in a33

composite panel is presented.
Two plates, initially bound together, are enforced to separate by pulling the upper notch,35

as depicted in Figure 8(a). Both the plates and the binding material are assumed to have the
same material properties, and, as a result of the loading process, a crack propagates vertically37
beneath the notch and along the binding.
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Figure 8. Crack propagation in Mode I: (a) geometry, boundary conditions and �nite element mesh; (b)
contours at the �nal time with the large deformation model: (deformed shape at true scale), Contours
of the Cauchy stress �xx and �yy; (c) load–displacement curves of point A with a soft material; and

(d) load–displacement curves of point A with a rigid material.

Two di�erent �ctitious materials, both having the same Gf ( �Hlarge = 0:4 and �Hsmall = 0:2),1
and di�erent elastic properties (see Figures 8(c) and 8(d)) have been then considered. The
rigid material has elastic properties 1000 times larger than the soft one. This precludes, in3
the former, large elastic strains and displacements to develop at the bulk, unlike in the soft
material case. As can be checked in Figure 8(c), the results obtained assuming �nite strain or5
in�nitesimal strain kinematics are quite di�erent for the soft material (which allows the plates
to undergo large strains and displacements). However, for the rigid material case, Figure 8(d)7
shows very similar responses for both types of kinematics since large strains do not develop
at the bulk and the separation law is made equivalent for both cases through Equation (80).
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These analyses show that, despite the considered kinematics does make a di�erence in the1
results, if the regular strains are small the consideration of the fracture energy as a material
property makes those results more insensible to the type of kinematics used to model the3
discontinuous interface S.
In Figure 8(c), invariance of the results with respect to the regularization parameter k is5

also shown through comparison of the results obtained with two di�erent values (k=10−3

and 10−5).
7

6. CONCLUSIONS

Throughout the previous sections the strong discontinuity approach (SDA) in �nite strain9
settings has been explored. Although the topic had already been tackled in di�erent contexts
[8, 9] here we have extended the results found in in�nitesimal strain settings [17, 18, 25] to11
the large strain case. As the main result we have shown that the strong discontinuity analysis
procedures used there can be extended to the large strain case, by changing the considered13
strong discontinuity kinematics (7), and the same set of conclusions are achieved, i.e.

• Regularization of the softening modulus H in the continuum (stress–strain) constitutive15
model (23) induces, via the traction continuity condition (14) and the softening regu-
larization condition (39), a projected discrete (traction–displacement jump) constitutive17
model, (48), at the discontinuity interface (see Figure 5).

• This fact requires a particular stress structure to be reached at the discontinuous interface,19
that is determined by the strong discontinuity conditions, (43).

• The variable bandwidth model of Section 3.2 provides a tool to automatically induce21
those strong discontinuity conditions and to relate them to the fracture process zone
concept, classically considered in fracture mechanics [25].23

• In addition, the induced discrete constitutive model keep the character (continuum dam-
age) of the original continuum constitutive one and have the feature of being a rigid25
model (the initial sti�ness is in�nite).

• As in the in�nitesimal strains case, the initiation and propagation of the displacement dis-27
continuity can be here determined via standard procedures supplied by the discontinuous
bifurcation analysis for �nite strain cases.29

• Finally, and as the most distinguishing feature of the presented approach, for practical
purposes the complete analysis and simulation can be done in a continuum format, both31
for the continuous and discontinuous regimes, since the discrete constitutive model is
automatically induced from the traction continuity and the softening regularization.33

Through the numerical simulations performed in this work, it has been proved its ability
to capture strong discontinuities also when large strain kinematics are considered. The main35
drawback of this type of �nite element i.e. the necessity of a global‖‖‖ algorithm to track
the discontinuity across the �nite element mesh, remains in the large strains context. The37
global character of this algorithm makes its implementation in typical �nite element codes
cumbersome, and di
cult to deal with multiple crack problems, branching phenomena, etc.

‖‖‖The global character means that the algorithm cannot be implemented only a�ecting the one element level
(local level) of a �nite element code, but at higher levels of the algorithmic structure of the code.
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The numerical simulations also corroborate the predictions of the strong discontinuity anal-1
yses, i.e. the relevance of the strong discontinuity conditions and the role of the transition
(weak discontinuity) regime, and the proposed variable bandwidth model, to make the simu-3
lations physically consistent [25] as well as the relevance of the type of kinematics (large or
small results) in the obtained results.5

APPENDIX A: CONSTITUTIVE TANGENT TENSOR LOCALIZATION
CONDITION, INCREMENTAL INTEGRATION7

In this section additional details related to the damage constitutive model of Section 3.5 are
presented. First we particularize the damage function (23e) by adopting:9

�(�; q)=
√
� · c−1� · � − q; c−1� =

1
2��

I − ��

2��(2�� + 3��)
)⊗ ) (A1)

I being the fourth-order identity tensor. The surface �(�; q)=0 de�nes an ellipsoid of revo-11
lution in the stress space, where parameters �� and �� governs the ratio among its major and
minor axis.13
The constitutive tangent tensor associated to this damage function is given by

L �v�= ctang : d= ctang : (∇xu̇)S (A2)

ctang =
q
r
ce +

(
rq; r − q

r3

)[

− 2� tr(��)

J 2
��⊗ ��

+
(
�tr(��)
J 2

− r2
)
��⊗ )+ 2!

J 2
��⊗ ��2

]
if ṙ¿0 (A3)

ctang =
q
r
ce if ṙ60

where ��=(r=q)�=(1− d)� is the e�ective Kirchho� stress, and ce is the hyperelastic consti-15
tutive tensor:

ce = �∗()⊗ )) + 2�∗I (A4)

�∗ = � J 2; �∗=�+
�
2
(1− J 2)

where �, � are the Lame’s parameters of the hyperelastic law (Equation (23a)), and the scalar17
factors �, 
 are:

�= �∗!− 3��∗ − 2�∗�; 
=2�∗!

!=
1
2��

; �=
��

2��(2�� + 3��)
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We write the localization tensor QL of Section 3.3 as follows:
1

QL=
q
r
Qe

(
)+

[
q; r

rq
− 1

r2

]
^⊗ �

)
(A5)

Qe= en ·ce ·en+(en · �� ·en)) being the acoustic elastic tensor satisfying det(Qe)¿0, and vectors3
^, � being given by

^= (Qe)−1 · � · en

�= 
− 2� tr(��)
J 2

� · en +
(
� tr(�)
J 2

− qr
)
en +

2!
J 2
��2 · en

5
Recalling the term q; r =H, the critical softening modulus Hcrit which makes singular the

localization tensor Qd (det(Qd)=0), is then determined through the following expression:
7

Hcrit =
q
r

(
1− r2

^ · �
)

(A6)

Damage integration algorithm: Box 1 describes the integration algorithm.
9

Box 1. Damage integration algorithm.

Assume that incremental displacement are given at time t +	t:
Then: evaluate the following terms

(i) Ft+	t; bt+	t; Jt+	t

(ii) ��t+	t = �
(J 2t+	t − 1)

2
)+ �(bt+	t − ))

(iii) �trialt+	t =
1

Jt+	t

qt

rt

√
��t+	t · c−1� · ��t+	t − qt

if �trialt+	t60 then

there was unloading and the result of the integration step is:

�t+	t =
qt

rt
��t+	t; rt+	t = rt; qt+	t = qt

else if �trialt+	t¿0 then

there was loading and from the equation �t+	t =0 it is obtained

rt+	t = 1
Jt+	t

√
��t+	t · c−1� · ��t+	t

which �nally determines:

qt+	t = qt +H(rt+	t − rt); �t+	t =
qt+	t

rt+	t
��t+	t

endif
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This algorithm is slightly modi�ed in the weak discontinuity regime to take into account1
the bandwidth variation, and hence the softening modulus dependence with q.
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