
UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC) – BarcelonaTech
FACULTAT D’INFORMÀTICA DE BARCELONA (FIB)

On the design of an implementation of kinetic minimum
spanning trees

THESIS FOR THE ACHIEVEMENT OF A
BACHELOR’S DEGREE IN COMPUTER

ENGINEERING

Director: Amalia Duch Brown
Department: Computer Science

Specialisation: Computing
Date: January 2020

Erik-Augund Kvam Gaŕı

Abstracts

Resum

En aquest projecte dissenyem una possible implementació dels arbres
cinètics d’expansió mı́nims proposats teòricament per Agarwal et al. a
‘Parametric and kinetic minimum spanning trees’ [1]. El problema que es
vol resoldre amb aquesta proposta és el de mantenir un arbre d’expansió
mı́nim d’un graf amb pesos que canvia al llarg del temps. Els possibles
canvis del graf són causats per canvis als pesos de les arestes –els quals
són funció d’un paràmetre t que representa el temps—- a més de permetre
addicions i supressions d’arestes i actualitzacions de la funció de càlcul
del pes de les arestes.

Resumen

En este proyecto diseñamos una posible implementación de los árbo-
les cinéticos de expansión mı́nimos propuestos teóricamente por Agarwal
y col. en ‘Parametric and kinetic minimum spanning trees’ [1]. El proble-
ma que se pretende resolver con esta propuesta es de mantener un árbol
de expansión mı́nimo de un grafo con pesos que cambia a lo largo del
tiempo. Los posibles cambios del grafo vienen dados por cambios en los
pesos de las aristas –que son función de un parámetro t que represen-
ta el tiempo—- además de permitir adiciones y supresiones de aristas y
actualizaciones de la función de cálculo del peso de las aristas.

Abstract

In this project, we design a possible implementation of kinetic min-
imum spanning trees proposed theoretically by Agarwal et al. in ‘Para-
metric and kinetic minimum spanning trees’ [1]. The problem we try to
solve with this proposal is to maintain a minimum spanning tree of an
edge-weighted graph that changes through time. The possible changes
in the graph come from changes in the edge weights –which are functions
of a parameter t which represents time– in addition to permitting addi-
tions and deletions of vertices and edges and updates to the edge weight
calculation function.

i

Contents

Abstracts i

Contents ii

1 Introduction 1

2 Preliminaries 3
2.1 Graphs . 3
2.2 Minimum Spanning Trees . 5
2.3 Kinetic Data Structures . 6
2.4 The Kinetic spanning tree problem 8

3 Theoretical solution by Agarwal et al. [1] 11
3.1 Swaps . 11
3.2 Clusters . 12
3.3 Dynamic convex hull . 12
3.4 Megiddo’s parametric search . 13
3.5 Finding the next swap . 14
3.6 advance(t) . 15

4 Implementation 17
4.1 The Graph class . 17
4.2 The Event class . 18
4.3 The Certificate class . 18
4.4 The Parametric Minimum Spanning Tree class 19

5 Planning and economic analysis 23
5.1 Time plan . 23
5.2 Economic Analysis . 24

6 Sustainability 27
6.1 Environmental sustainability 27
6.2 Social sustainability . 27
6.3 Self-assessment . 27

7 Conclusions and future work 29

Bibliography 31

A List of Figures 33

ii

CONTENTS iii

B List of Tables 35

C List of Algorithms 35

D Original timeplan 39
D.1 Description of tasks . 39
D.2 Gantt chart . 45
D.3 Alternative plans . 47

Chapter 1

Introduction

Computers, from their inception, have been conceptualised as discrete math-
ematical objects. Discrete mathematical objects, like the integer arrays that
are the foundation of modern computation, can assume only distinct, separated
values [17].

This means that computers dealing with the continuity of the real world
need specialised processes. Regarding time, the näıve approach is to discretize
the continuity. This is done by advancing time in discrete time steps and
deleting and reinserting each item at their new position. But how do you
choose which time step difference to advance to? On the one hand, if it’s
too small, we might waste a lot of resources calculating small, insignificant
changes. On the other, if it’s too big, we may miss discrete events, like two
points moving towards each other, which collide at exactly one point in time.
Even if we found the ideal time step for each concrete case, in many fields events
tend to occur in irregular patterns, which means that no value will avoid both
problems simultaneously for all time.

To deal with these kinds of problems, kinetic data structures (KDS) were
introduced in 1997 by Basch, Guibas and Hershberger [2]. Theoretical work
on them has been done since their inception, but not many library imple-
mentations have been created. The main resource in this field is an area of
the Computational Geometry Algorithms Library (CGAL), a software project
that aims to provide easy access to efficient and reliable geometric algorithms
in the form of a C++ library [21]. The area, developed by Russel [18], provides
a general framework, but using it requires knowledge of KDS, apart from the
problem that one is trying to solve itself. To avoid reinventing the wheel, the
owners have made available implementations for a sorted list, a 2D Delaunay
triangulation and 3D Delaunay and regular triangulations.

Another use for KDS that has been theoretically put forward is for main-
taining a minimum spanning tree (MST) of a graph with continuously changing
edge weights [3]. An MST is a subgraph of a weighted graph that contains just
the edges necessary to keep the graph connected while minimising the total
weight. There are quite a few use cases for minimum spanning trees. One ex-
ample, explained in [6], would be a telecommunications company trying to lay
cable in a new neighbourhood. If it is constrained to bury the cable only along
certain paths (e.g. roads), then there would be a graph containing the points
(e.g. houses) connected by those paths. Some of the paths might be more

1

2 CHAPTER 1. INTRODUCTION

expensive, because they are longer, or require the cable to be buried deeper;
these paths would be represented by edges with larger weights. Currency is an
acceptable unit for edge weight – there is no requirement for edge lengths to
obey normal rules of geometry such as the triangle inequality. A spanning tree
for that graph would be a subset of those paths that has no cycles but still
connects every house; there might be several spanning trees possible. A min-
imum spanning tree would be one with the lowest total cost, representing the
least expensive path for laying the cable. This can also be used as a stepping
stone to other problems that can be reduced to it [3].

The main goal of this project is to provide an implementation of a kinetic
data structure that stores the minimum spanning tree of a graph, where the
edge weights are changing along time. To do this thoroughly, we intended to:

1. Analyse, experimentally and theoretically, the algorithms proposed in the
literature to choose the one which performs best,

2. Implement the chosen algorithm using the framework provided by the
CGAL KDS [18] library,

3. Study the efficiency of the final implementation experimentally and finally
(if possible)

4. Submit the implementation to the CGAL editorial board.

Unfortunately, the project could not be completed as initially planned.
Once the planning phase was done, we started researching the details of the
CGAL, especially the submission process. It became fast apparent that the
section on KDS that we intended to expand had not had much development in
some time and had been left only in a semi-usable state, so much so that the
latest versions (from 4.12 onward) of the CGAL had dropped it. No submis-
sions were accepted for deprecated sections, only a full re-build, so the initial
idea could not be undertaken.

Given this obstacle, we decided to try to design our library, independent
from CGAL, which solved the problem we were trying to solve. The intention
was to generate a design that could either be adapted to the framework of the
KDS section of the CGAL, were it ever to be recuperated, be used by another
library interested in the problem or implemented in a standalone fashion.

Agarwal et al. [1] proposed a solution for the problem in general terms,
which is the one we will try to design a program for. We chose this paper
because of two main reasons. First, it provides one of the best solutions found
to date and is cited widely. Second, it is well-known and educational resources
exist around it, so someone new to the field will find it easier to understand
the solution.

This document is structured as follows. Chapter 1 introduces the general
idea for the project. Chapter 2 explains what’s required to understand the
problem. Chapter 3 details the solution. Chapter 4 is the proposal itself.
Chapters 5 and 6 describe the rest of the details of the project development.
Chapter 7 presents the extracted conclusions.

Chapter 2

Preliminaries

To aid in understanding the project, we will describe some of the preliminary
concepts. The explanations are merely to introduce the concepts to the reader,
and are not meant to be formal definitions.

2.1 Graphs

Let V be a set, whose elements we call vertices. Let E be a set of subsets of
V with two different vertices. We call the members of E edges. The tuple
G = (V,E) is a graph. For example, we could have V = {a, b, c, d, e, f, g} and

E = {{a, b}, {a, d},
{b, c}, {b, d}, {b, e},
{c, e},
{d, e}, {d, f},
{e, f}, {e, g},
{f, g}}.

This would mean there are seven vertices and eleven edges. A graphical rep-
resentation can be seen in Figure 2.1.

Graphs come in many varieties. If a graph’s edges are pairs, instead of
sets, the order of the vertices in a set matters. This can be represented as

a b

c

d e

f g

Figure 2.1: A simple graph

3

4 CHAPTER 2. PRELIMINARIES

a b

c

d e

f g

Figure 2.2: A directed graph

a b

c

d e

f g

7

8

5
9

7

515

6

8

9

11

Figure 2.3: A weighted graph

edges having a direction, like the ones in Figure 2.2 and the graph is called
a directed graph or a digraph. To disambiguate, we call a graph that is not
directed undirected.

Let l be a function that assigns to each vertex or edge an element of a set
L called a label. We call the triple G = (V,E, l) a labeled graph. If l assigns to
elements of V , we call the graph vertex-labeled. If l assigns to elements of E,
we call the graph edge-labeled. If l : E → L and L is a set of numbers, such as
R or Z, we call the labels weights. An example of a edge-weighted graph is the
one in Figure 2.3.

A graph is a subgraph of another graph if its vertex and edge sets are subsets
of the vertex and edge sets of the original graph. The labels of a labeled
subgraph are the labels of the original graph where its vertex or edge are in the
subgraph. For example, if G = (V,E,w), w : E → L is an undirected, weighted
graph, the graph G′ = (V ′, E′, w′) is a subgraph of G if V ′ ⊆ V,E′ ⊆ E and
w′ : E′ → L,∀e ∈ E′, w′(e) = w(e). As an example, we could take the vertices
a, b, c and d only and some of the edges that join them. This defines the graph
in Figure 2.4, which is a subgraph of the weighted graph in Figure 2.3.

We call a sequence of edges joining a sequence of vertices without repeating
any edge or vertex a path. The marked edges of Figure 2.5 form a path between
a and g. The weight of a path is the sum of the weights of the edges in the
path. In our example, the weight of the path is 29.

2.2. MINIMUM SPANNING TREES 5

a b

c

d

7

8

9

Figure 2.4: A subgraph of the graph in Figure 2.3

a

b c

d e

f g

7

8
5

9

7

515

6

8

9

11

7

8

5

9

Figure 2.5: A path in a weighted graph

a

b c

d e

f g

7

8

15

6

8

9

11

Figure 2.6: An unconnected graph with two connected components

If for every pair of vertices u, v ∈ V we can find a path between them, we
call the graph connected. If not, we call it unconnected. In an unconnected
graph, every subgraph Gi = (Vi, Ei, wi) that is connected and has no outside
connections, that is ∀v ∈ Vi,@e ∈ E, e = {v, u}, u ∈ V, u /∈ Vi, is a connected
component of G. The graph in Figure 2.6 is unconnected and has two connected
components, one with vertices {a, b, c} and the other with vertices {d, e, f, g}.

2.2 Minimum Spanning Trees

Let G = (V,E,w) be an undirected, weighted graph, where w is the weighing
function E → R.

6 CHAPTER 2. PRELIMINARIES

a b

c

d e

f g

7

8

5
9

7

515

6

8

9

11

7

8

9

5

96

Figure 2.7: A graph with a spanning tree marked in red

a b

c

d e

f g

7

7

5
9

7

515

6

8

9

11

5

7

5

96

7

7

Figure 2.8: A graph with two minimum spanning trees marked, one in red and
blue and one in red and green

Let G′ = (V,E′, w′) be a subgraph of G. If ∀u, v ∈ V there is exactly one
path between u and v, we call G′ a spanning tree of G. The red edges in Figure
2.7 form a spanning tree.

A spanning tree of G where
∑
e∈E′ w′(e) is minimum is called the minimum

spanning tree of G. The notation MST(G) refers to such a graph. There can
be several spanning trees that are minimum, depending on the edge weights.
For example, in Figure 2.8, the red edges together with either the blue or green
edge form a minimum spanning tree of the underlying graph.

When G is unconnected, since there’s at least one pair of vertices of V with
no path between them, we can’t have a spanning tree of G. If we treat every
connected component Gi = (Vi, Ei, wi) of G as its own graph and find each of
their respective spanning trees, the subgraph F = (V,E′, w), E′ =

⋃
∀iEi is

called a spanning forest of G. Analogously to the minimum spanning tree, we
can define the minimum spanning forest of G as the spanning forest of G with
the minimum total weight sum. Figure 2.9 shows an example.

2.3 Kinetic Data Structures

Kinetic data structures were developed by Basch, Guibas and Hershberger [2]
to manage data that changes continuously over time. Specifically, data that

2.3. KINETIC DATA STRUCTURES 7

a

b c

d e

f g

7

8

15

6

8

9

11

7

8

6

8

9

Figure 2.9: An unconnected graph with its minimum spanning forest marked
in red

contains a set of mostly independent objects moving through an n-dimensional
field.

An example, extracted from Demaine [7], is trying to maintain the previous
element of each point in a set, where the points are moving back and forth in
a single dimension. It can be visualised as cars on a raceway. We would like
to know, for example, the distance between a car and the previous, or who is
expected to be in the lead at a certain time in the future.

Each object in a kinetic data structure has a value which is a defined func-
tion of time that represents its movement. In our example, that would be the
current speeds and positions of the cars.

A KDS must support 3 types of operations:

• modify(x,f(t)): The previous position function describing point x is
replaced by f(t). This allows us to refit the structure to more up-to-date
information, which is essential if the function used to approximate the
position of a point is imperfect.

• advance(t): Advances the current time in the data structure to t. The
current time must be less than t.

• query: Queries the data structure relative to the current time. The
specific queries are dependent on the data structure in question.

The approach is to store a set of boolean conditions that uniquely represent
the current state of the structure called certificates. These allow us to know
when the structure we are trying to maintain is no longer valid and needs
changes, instead of trying to calculate it at every time or arbitrary times. We
call the moments when a certificate fails events. For the predecessor example,
we could store the points in a binary search tree and a possible set of certificates
would be ∀i, xi ≤ xi+1, where xi is the i-th element of the list.

The choice of certificates is the biggest factor in the design of a kinetic
data structure. Advancing time consists, basically, of processing events one at
a time, as they come. This means a good implementation strikes a balance
between the number of events and the number of certificates that have to be
checked when an event happens. Our previous example might be too simple
to be able to show the difference, but for more complex cases it is trivial to see

8 CHAPTER 2. PRELIMINARIES

that a certificate set can use a larger number of more specific certificates or a
smaller number of more general certificates.

Guibas [12] proposes four metrics to for evaluating kinetic data structures.
They are usually measured in relation to the number of individual objects in
the structure, n.

Responsiveness A KDS is good if the time to process an event is small. The
responsiveness of a KDS is the worst-case amount of time needed to update the
certificate set after an event. For our example, when certificate xi ≤ xi+ 1 fails,
we will have to swap xi and xi+1 in three certificates: the one that relates xi
to its predecessor, the failing certificate itself and the one that relates xi+1 and
xi+2. Calculating their failure time is just a matter of finding when the position-
velocity equations of each pair cross, so it is O(1). Finally, we have to re-add
the certificates to the priority queue, which takes O(log n) time for each change.
The final responsiveness comes out to O(1)×O(1)×O(log n) = O(log n).

Efficiency As we said before, having certificates that are too specific, de-
pending on the case, might mean we need too many certificates. The efficiency
of a KDS is the worst-case number of events processed. In our case, at most
each car will pass all other cars at some point; that means we will have O(n2)
events.

Locality The locality of a KDS is the maximum number of certificates in
which any one object can ever appear. In our case, each xi appears in only
two certificates at any time: one represents what its predecessor is, and one
represents whose predecessor it is.

Compactness The size of a KDS is the maximum number of certificates in
the set. We call a KDS compact if its size is of order similar to O(n). In our
case, we have n− 1 = O(n) certificates at any point.

2.4 The Kinetic spanning tree problem

The kinetic spanning tree problem is in the middle of two problems: finding
the minimum spanning tree of a graph (explained in Section 2.2) and dealing
with data that changes continuously over time (explained in Section 2.3).

The problem, then, is to maintain the MST(G) for a graph G that is chan-
ging over time.

The definition of changing over time can have several interpretations, so
depending on whether we use a parametric or kinetic graph, we will have one
version or another of the problem.

A parametric graph is a graph G = (V,E,wt) such that the weighting
function wt changes depending on a time variable t. The vertex and edge sets
are constant, but each edge weight is a function of the current time, like the
one in Figure 2.10.

Similarly, in a kinetic graph G = (V,E, l), we allow for insertions and
deletions of vertices and edges as well as having a weighing function that is
a function of a time variable t. We also allow for updates to the labelling
function. These changes are assigned a time in which they happen, so we often

2.4. THE KINETIC SPANNING TREE PROBLEM 9

a b

c

d e

f g

3t

8

t2

3t2 + t

sin(t)

t
cos(t)

1
t

0

∫ t

18
x2dx

52t

Figure 2.10: A parametric graph

refer to the graph Gt = (Vt, Et, lt) as the instance of a kinetic graph for a
specific time t.

Insertions and deletions of edges can be simulated using a small construc-
tion, so we differentiate structurally kinetic graphs, those where the insertions
and deletions are stored separately, from functionally kinetic graphs, where
these changes are simulated in a slightly different graph.

Chapter 3

Theoretical solution by Agarwal
et al. [1]

The solution we have chosen comes from a paper from Agarwal et al. [1]. It
proves the existence of an algorithm for the kinetic and parametric minimum
spanning tree problems in O(n2/3 log4/3 n) per change in the MST. Introducing
randomisation, the cost is reduced to O(n2/3 log n).

As we explained before, a kinetic data structure is characterised by three
things: the type of its independent objects, how it performs each operation
and what certificates it uses.

By definition, all vertices should be in the MST. In the calculation of an
MST, we are mostly just interested in which edges are in the MST and which
aren’t, so that is what we will use as our objects. So as not to complicate the
calculation of the edge weights at each point in time, the authors choose to
limit edges to having an affine function as a weight. This means each edge
weight function has the form w(e, t) = aet+ be, where ae, be are constants. All
weight functions are, then, linear in the (t, w) plane.

The three operations our KDS should be able to support are modify(x,f(t)),
advance(t) and query. The query function is not specified in the paper, as
it depends mostly on the interest of the user. Since the kinetic problem allows
for events to be insertions and deletions, we can simplify the modify(x,f(t))

function to simply create and evaluate a deletion and an addition of an edge at
the current time. This is probably why it is also not mentioned in the paper.
The advance(t) function is the main length of the paper. It finds the next
event and evaluates it until the current time reaches t. The challenge is mainly
to establish how to find the next event and how to process each event.

3.1 Swaps

A swap is an easy enough concept: remove an edge from a spanning tree and
add a different edge so that the tree remains a spanning tree. Formally, if T is
a spanning tree, e ∈ T, f /∈ T form a swap if the cycle created when adding f
to T includes e. The weight of the swap is w(e, f) = −w(e) + w(f), which is
by how much the total weight of T would change if we perform the swap.

11

12 CHAPTER 3. THEORETICAL SOLUTION BY Agarwal et al. [1]

a b1 b2

c

d1

d2

e1 e2 e3

f g

3t

8

t2

3t2 + t

sin(t)

t

cos(t)

1
t

0
∫ t

18
x2dx

52t

−∞

−∞
−∞

−∞

Figure 3.1: A transformation of the graph in figure 2.10 so that all vertices
have degree at most three

3.2 Clusters

To avoid recalculating the whole data structure every time anything changes,
we partition the graph in a way that helps us maintain the calculations in a
local area. Specifically, we need to partition V in sets we will call clusters in
such a way that:

1. Each cluster contains at most z vertices.

2. Each cluster induces a connected subtree of the MST. That is, if we take
the vertices in a cluster and connect them as they are connected in the
MST, the resulting graph is a tree.

3. For cluster C, if C contains more than one vertex, then there are at most
two edges in the MST having one endpoint in C.

4. No two clusters can be combined and still satisfy the other conditions.

Doing this is possible in linear time, as explained by Frederickson [9].
To take advantage of this, we need to previously transform the graph G into

a graph G′ with degree at most 3. To do this, we will turn all vertices with
degree ∆ > 3 to ∆−2 vertices connected in a line. The two ends take two edges
of the original vertex each, and each vertex in the middle takes one. All edges
in the path will have as small a cost as possible so that they always are in the
MST. Figure 3.1 shows the graph in Figure 2.10 after such a transformation.

Let two edges e ∈ MST and f /∈ MST form a swap. If both endpoints of f
are in the same cluster, e is in the same cluster and we call it an intra-cluster
swap. If the endpoints of f are in different clusters and e is in one of them,
we call it a dual-cluster swap. If, instead, e is in none of the clusters of the
endpoints of f , it’s an inter-cluster swap.

3.3 Dynamic convex hull

An edge e with weight w(e) = aet+ be can be represented as a line in the (t, w)
plane. It can also be represented as a point in the (x, y) plane with coordinates

3.4. MEGIDDO’S PARAMETRIC SEARCH 13

Figure 3.2: From Agarwal et al. [1]: First non-positive swap: in line arrange-
ment (left), rightmost point above lines from tree edges and below lines from
non-tree edges; in dual point arrangement (right), line with highest slope above
points from tree edges and below points from non-tree edges.

(−a, b). This is best seen graphically, as in Figure 3.2, which appears in the
same paper [1]. On the left (t, w) plane, each edge is an line. On the right
(x, y) plane, each edge is a point.

The dark lines and edges represent the edges that are in the MST, and the
clear ones, the ones that aren’t. The next swap is the point in the (t, w) plane
with t greater than the current time at which a line in the MST crosses a line
not in the MST; that is, the value of an edge in the MST becomes greater that
one of the edges outside the MST. Analogously, it’s the line in the (x, y) plane
with greatest slope tangent to the convex hulls of the sets of edges in and out
of the MST.

This swap can only be done, though, if the edges crossing can form a swap.
Connecting f might not let us release e. This is why we can’t use this as our
only calculation method, only when we know all edges of the MST will form
swaps with edges not in the MST.

At this point, the paper asserts finding the next swap can be done in
O(log n) time, without giving a reference. We used a paper by Cole [4] as
the reference.

3.4 Megiddo’s parametric search

As we will see in Sections 3.5 and 3.5, often it will be easier for us to find
the best swap at a certain time t than to find the value t∗ of the first non-
positive swap. Parametric search is a technique invented by Megiddo [14] for
transforming a decision algorithm into an optimization algorithm. The basic
idea is to simulate a basic algorithm that takes as input a numerical parameter
X as if it were being run with the (unknown) optimal solution value X∗ as its
input. For this reason, we call it the simulated algorithm. This test algorithm
is assumed to behave discontinuously when X = X∗, and to operate on its
parameter X only by simple comparisons of X with other computed values, or
by testing the sign of low-degree polynomial functions of X. To simulate the
algorithm, each of these comparisons or tests need to be simulated, even though

14 CHAPTER 3. THEORETICAL SOLUTION BY Agarwal et al. [1]

the X of the simulated algorithm is unknown. To simulate each comparison,
the parametric search applies a second algorithm, a decision oracle, that takes
as input another numerical parameter Y , and that determines whether Y is
above, below, or equal to the optimal solution value X∗.

3.5 Finding the next swap

The next swap can be one of the three types of swaps we explained in Section
3.2: inter-, dual- or intra-cluster. If we can find the next swap of each type, we
will be able to find the overall next swap.

Finding the next intra-cluster swap

At any given t we can see if a spanning tree is still minimum with an MST
verification algorithm. This can be done in O(n) time, as shown by Dixon,
Rauch and Tarjan [8] and King [13].

If we sort a list of the edges by their weight, we’ll have a discontinuity when
one surpasses the other. According to Cole [5], this can be done in O(n log n)
time, for a graph of n vertices.

We can then calculate the next swap for each cluster by using the first
function as the decision oracle and the second as the simulated algorithm for
Meggido’s parametric search. Since each cluster has O(z) vertices, it will take
O(z log z) time.

Finding the next dual-cluster swap

Let f = {f1, f2} be an edge not in the MST with one endpoint in a cluster C
and another not in C. We call such an edge an external edge of C. Notice that
f can only form swaps with edges in the path between its endpoints, or the
MST would be disconnected.

The MST has at most two edges with one endpoint v, w in a cluster C.
Define µv(f) as the edge e on the path in the MST {f1, . . . , v} that forms a
swap with f and where wf (t) − we(t) = 0 for the smallest t. Refer to Figure
3.3 for a graphical interpretation.

If we don’t have any of the µv(f) edges of a cluster C, we can traverse the
tree from each vertex v with one endpoint in C and keep adding them to a
convex hull data structure like the one in Section 3.3. Every time we find an
external edge, µv(f) is the line of highest slope tangent to the point repres-
entation of f and the convex hull of the points added. When we backtrack,
we undo the last addition. This can be done in time O(log z). Since there are
O(z) vertices, we can find all of them in O(z log z) time.

Storing this information lets us maintain a data structure that, for each
cluster, contains all of the µv(f) edges. We changeO(1) clusters each update, so
we can keep it updated in O(z log z) time per update. Define µv(Ci), v /∈ Ci as
the pair (µv(f), f) for which wf −wµv(f) = 0 earliest, where f = {f1, f2}, f2 ∈
Ci and f is an external edge of the cluster v is in. There are O(m/z) such
Ci per cluster. We can modify this information in time O(z) per modification
of a cluster, cycling through O(z) vertices, finding their µv(f) and taking the
earliest. We also store a lowest-common-ancestor data structure for the tree
formed by contracting each cluster of the partition; this takes time O(m/z)

3.6. ADVANCE(T) 15

e1 e2

f1 vw

f2

. . .

. . .

. . .

. . .

. . .

e

f

Figure 3.3: A graph with a dual-cluster swap (e-f), with the two clusters
marked in red (C) and green (C ′) and non-tree edges marked as dashed lines

per update to maintain. Thus, we can maintain both data structures in time
O (z log z +m/z) per update.

To find the next dual swap of f = {f1, f2}, f1 ∈ C1, f2 ∈ C2, first we use the
lowest-common-ancestor data structure to find the vertices v1, v2 that connect
C1 and C2 in the MST in O(1) time. Then, µv1(C2) and µv2(C1) form swaps
with f and they can be found also in O(1) time. The best swap of the two can
thus be found also in O(1) time.

Finding the next inter-cluster swap

To find the next intra-cluster swap, we can do it by generating a graph G′

from the original G and computing the earliest t∗ such that MST (G (t∗)) =
MST (G′ (t∗)) using Megiddo’s parametric search (Section 3.4). The point at
which the equality no longer holds lets us determine which swap will happen
at that time.

The graph we have to generate, then, needs to reflect the connections
between clusters. We turn clusters with one edge in the MST with one en-
dpoint in the cluster into a vertex and clusters with two such edges into an
edge between the two endpoints, with its weight equal to that of the heaviest
edge in the path between the endpoints. For every two clusters C1, C2 connec-
ted by a path that exits the clusters through v1, v2 respectively, we contract
all edges not in the MST between C1 and C2 into an edge {v1, v2} with weight
equal to that of the lightest.

3.6 advance(t)

The advance(t) function, then, will run a loop of finding the next event (in-
sertion, deletion, modification or swap), evaluating it and advancing until the
current time reaches the target t.

If we reach an insertion, we will update all our structures and check if there
is any non-positive swap we need to do.

If we reach a deletion, we need to update our structures and, if the edge
was in the MST, replace it with the best option. This is calculated by querying
the convex hull data structure of Section 3.3 to find the best swap with the
edge we are trying to delete.

16 CHAPTER 3. THEORETICAL SOLUTION BY Agarwal et al. [1]

If we find the next swap, we perform it: update the structures and the MST
and continue.

When we reach the target time t, we’re done. We update our structures
and exit the loop.

Chapter 4

Implementation

To aid in the understanding of our design, it will be explained in a model. We
will try to specify it loose enough so the changes to fit it in either an object-
oriented paradigm or a functional style are minimal. These two paradigms
include almost all the main programming languages used today [15]. Since the
original plan was to use this for a library written in C++, the nomenclature
will follow C++ object-oriented standards.

To implement the solution, we will need three small classes (Graph, Event
and Certificate) and a main one to tie it all together and do the calculations
we will call Kinetic Minimum Spanning Tree.

The three simple classes will need a parametric constructor that creates
the structure from its components. We have omitted this from the description
since they all assign the parameters to the components of the class and take
O(1) time.

Additionally, the internal components of each class will be available for
consultation by the other classes, either directly or by calling getter functions
or some other simple queries that should not take more than O(1) time.

4.1 The Graph class

Objects of this class will represent undirected, edge-weighted graphs.

Data structures

We will define a vertex to be an integer which will be its ID. We will maintain
a vertex set V.

Edges will be represented in an adjacency list E. Since it is an undirected
graph, we will need to make sure ∀u, v ∈ V , u ∈ E[v] ⇐⇒ v ∈ E[u].

Finally, we will define w to be a function which, for every edge, returns a
function of t that is the weight of the edge at that point in time. Since we are
using only edge weights of the form aet + be, we can return the pair (ae, be)
instead.

Functions

This data structure will support additions and deletions to E and changes to w.

17

18 CHAPTER 4. IMPLEMENTATION

add(u,v,a,b) Adds an edge {u, v} to the edge set, which means adding v to
E[u] and u to E[v]. The weight of the edge is set to wuv(t) = at + b. Takes
O(1) time.

delete(u,v) Deletes edge {u, v} from the graph, that is, v from E[u] and u

from E[v]. Takes O(1) time.

modify(u,v,a,b) Changes wu,v to equal at+b. Can be simplified to deleting
and re-adding the edge with the new weight. Takes O(1) time.

4.2 The Event class

An Event is a change to the structure either of the graph or of the MST.

Data structures

An event will be of one of three types: an Addition, a Deletion or a Certificate
failure. Both Addition and Deletion refer to edges, not to vertices.

Notice there are no edge weight updates. This is because an updates can
be parsed simply as a Deletion followed by an Addition.

In all three cases, we will store the failure time and make it available for
consultation.

We will also store the data necessary for the change. For Addition and
Deletion events, the vertex IDs u and v and, only for Addition, the new
function wuv(t) = at+b or its components a and b. For Certificate failure

events, we will store the certificate that fails at time t.

Functions

This data structure will support only creations and consultations of its ele-
ments.

4.3 The Certificate class

A Certificate is a boolean assertion that a possible swap between an edge e
in the MST and an edge f not in the MST is positive, which means its weight
w = wf − we is greater than 0.

Data structures

We need to store the two edges. We can either store a reference to them or the
vertex endpoints, depending on what is easiest.

Functions

We will only need a simple parametric creator and queries. Both can be done
in O(1) time.

4.4. THE PARAMETRIC MINIMUM SPANNING TREE CLASS 19

4.4 The Parametric Minimum Spanning Tree class

This class will be the workhorse of the design and the actual Kinetic Data
Structure. It will contain both the structure we are interested in, as well as
the necessary structures to calculate efficiently the next event.

Data structures

Firstly, we will need to store the current time, the current graph G and the
current MST. For both G and its MST we will use instances of the Graph class.
Additionally, we will need to store two data structure to aid in finding the next
swap: one for inter-cluster swaps and one for dual-cluster swaps.

Inter-cluster swaps (convex hulls) For each cluster with two terminal
clusters, we will store the convex hull of the points in the path between the
two terminal vertices of the cluster (see Section 3.3). For each pair of clusters,
we will store the convex hull of the points that represent the edges connecting
them. To do both of these, we will use the CGAL [21] and its sections on points
and convex hulls.

Dual-cluster swaps (lowest common ancestor) For an arbitrary root
vertex r in G, we will define the ancestor of any vertex v as any vertex in
the path from v to r, including v and r. The lowest common ancestor of two
vertices u and v is, then, the ancestor of both u and v that has all of the other
ancestors of both u and v as its ancestors. We will store the lowest common
ancestor of each pair of vertices.

Dual-cluster swaps (convex hulls) For each cluster and each of its ex-
ternal vertices, we will store a convex hull of the external vertex f and the
edges in the path between f and the terminal vertex in the path between the
endpoints of f.

Functions

As a KDS, we need to support three functions: modify, advance and query.

query The query function is highly dependent on the interest of the user.
Some examples include knowing the current MST, its weight or its edges. In
any case, they should all be queries on the structure at the current time, not
at any future or past time.

modify We will treat modifications as if they were events happening at
the current time. We will offer three functions add, delete and modify

which will evaluate events at the current time. Algorithm 1 shows a sample
delete function. Choosing a cluster size of z = m2/3 minimises the update
time, creating an event takes O(1) time, and evaluating it takes O(z log z +

m/z +m2/z2 log2 z) = O(m2/3 log4/3m) time, so any modification will run in

O(m2/3 log4/3m) time as well.

20 CHAPTER 4. IMPLEMENTATION

Algorithm 1 delete(u,v): delete the u, v edge

a← Certificate.createAddition(u,v)

evaluate(a)
return

advance(t*) Advance time until it’s equal or greater to t*. We will need to
calculate the next event and then evaluate it until the next one happens after
t*. An example is shown in Algorithm 2.

There are two main time sinks: finding the next swap and updating the
structures. The next inter-cluster swap can be found in O(z log z), the next
intra-cluster swap in O(m log z) and the next dual-cluster swap in O(m2/z2).
Updating the structures is done in O(m/z + z log z) for the dual-cluster struc-
ture and O(z log z) for the inter-cluster structure for each update. This means
our total time goes to O(p(z log z + m/z + m2/z2 log2 z)), with p being the
number of updates. Since the choice of z is ours, we can minimise the time per
update by setting z = m2/3 and we will get a total time of O(pm2/3 log4/3m).

Algorithm 2 advance(t*): Advance time t until a limit t∗

se ← nextInter()

sd ← nextDual()

sa ← nextIntra()

s← next(se, sd, sa)
EventQueue.push(s)
x← EventQueue.top()

while x.failureTime < t∗ do
x← EventQueue.pop()

t← x.failureTime

updateStructures()

evaluate(x)
end while

We have referenced some functions in the algorithms which we will need to
define.

evaluate(e) Evaluate the effects of event e. If e is an Addition, we will
need to update G and the MST and any other internal structures. If e is a
Deletion, we will need to check if the edge is in the MST or not. If it is, we’ll
need to find the best option to replace it.

next(a,b,c) Pick the swap between a, b and c that happens first.

nextInter Find the next inter-cluster swap. Use Megiddo’s parametric search,
simulating the verification of MST (G (t∗)) = MST (G′ (t∗)) , where G′ is the
contraction explained in Section 3.5. Instead of programming the verification
from scratch, we will use a library to do so. It depends on the language, but
as an example, the Boost Graph Library [19] could be useful if we are using
C++.

4.4. THE PARAMETRIC MINIMUM SPANNING TREE CLASS 21

Algorithm 3 evaluate(e): Evaluate the effects of event e

G′ ← transform(G)
if x is an insertion then

Update the structures
if there is a non-positive swap s then

perform(s)
end if

end if
if x is a deletion of an edge e ∈ MST then

for each group of edges connecting a pair of clusters Ei,j do
find the best replacement edge ei,j for e in Ei,j

end for
Replace the best ei,j

end if
if x is a deletion of an edge e /∈ MST then

Update the structures
end if
if x is s then

Update the structures
end if

This process is done in time O(z log z), using O(z) calls to the decision
oracle, which takes O(log z) time. The simulated algorithm itself takes only
O(1) time.

nextDual Find the next dual-cluster swap. For each pair of clusters, query
the lowest common ancestor data structure to find the terminal vertices on the
path between them and take the lowest of the two. Use the convex hull data
structureto find the best swap of the two clusters. Finally, return the earliest
swap of all the pairs of clusters.

There are O(m/z) clusters and we need to do an O(1) operation on each
pair, so this operation will take O(m2/z2) time.

nextIntra Find the next intra-cluster swap. For each cluster, simulate a sort
of the edges between vertices in the cluster by their weight and use a check if
the MST of the cluster is still minimum to see if we have surpassed the next
intra-cluster swap. Instead of programming the verification from scratch, we
will use a library to do so. It depends on the language, but as an example, the
Boost Graph Library [19] could be useful if we are using C++.

MST verification is shown to be O(n log n) [8] and the each cluster has O(z)
vertices, so this operation will take O(z log z) time per cluster. Since there are
O(m/z) clusters, the function should take time O(m/z · z log z) = O(m log z).

Chapter 5

Planning and economic analysis

5.1 Time plan

As explained in Section 1, the scope of the project and with it, the plan,
changed during its execution. To help legibility, the original plan is shown in
appendix D and this section contains only a summary. The comparison of the
three plans (initial, follow-up and estimated final) is shown in table 5.1.

The original plan had seven main task groups. Project planning included
defining the project and its execution. A report was written for each section
to get the specification exactly. This was also used to write up the initial
report, with some hours dedicated to the layout of the final report, represen-
ted in the Initial report task group. Submission collated the hours dedicated
to the submission process. The design, implementation, testing and improve-
ment of the library itself was included in the Project execution group. It was
planned as a cascade to design a minimum viable product, then an agile cycle
for improvements until the submission process to CGAL was initiated, and
finally another agile cycle to close the submission process. The Final report
and Follow-up report groups included the work needed to adapt and finish the
required evaluation reports, and the Presentation includes the preparation of
the defence.

At the time of the follow-up report, the new scope had not yet been set, but
a proposal was written up that intended to maintain the scope by cramping as
much work into the remaining time as possible. A timing was devised, which
we included in table 5.1, but it is mostly not applied.

The Project planning and Initial report did go as planned, so their estima-
tions reflect that.

In a similar situation is the Follow-up report. There were weekly meetings
with the project director, so the follow-up report and meeting were planned
at a semi-arbitrary point in the development. When trying to re-frame the
project and scope, then, it was used as a tool for the plan proposal to be more
in-depth. This served as an initial point in the debate.

The hours dedicated to the Submission are reduced ten-fold. It didn’t take
much to find out the latest library didn’t support KDSs, but making sure that
was the case and trying to find a way around it did, which is why there are
three hours in this task even though most of it wasn’t done.

The time dedicated in the Project execution and Final report groups are

23

24 CHAPTER 5. PLANNING AND ECONOMIC ANALYSIS

Task group Initial Follow-up Final (estimation)
Project planning 105 105 105
Submission 30 0 3
Initial report 30 30 30
Project execution 150 150 102
Final report 140 140 130
Follow-up report 16 16 16
Presentation 30 30 30
Total 501 471 416

Table 5.1: Comparison of time planned or executed in each of the stages of the
project in hours

harder to calculate. There were two different periods for work days. Before the
24th of December, the hours dedicated per day were inconsistent depending
on the time available, so it is very hard to estimate how much time was used.
On the other hand, between Christmas Eve and the delivery deadline of the
21st of January, excluding holidays, the whole day was dedicated exclusively to
the project. To make the calculation simple, we suppose the work of the first
period compensates the work not done during the second period if we suppose
an 8-hour work day. The total comes up to 29 days × 8 h

day = 232 h, which
are divided between the two task groups in as well an estimation as we could
manage.

Finally, the Presentation hours haven’t yet been done, so the estimate re-
mains the same.

5.2 Economic Analysis

Budget

The total budget of this project was of 12290.93e, most of which is staff
salaries. If we suppose the workers were paid, the cost would have been of
10918.38e.

Income

There is no predicted income for this project.

Expenses

The main costs of the production of this project are the salaries for the workers
and the material cost derived from the use of the computer. Table 5.2 shows a
summary of the expenses.

Salaries

The salaries for the project lead and developer are taken from [10] and [16],
respectively. The total yearly salary is divided by the same ratio in both cases
to obtain a consistent hourly rate. The budget separated the tasks between the

5.2. ECONOMIC ANALYSIS 25

Concept Budgeted cost Final cost
Project lead salary 10186.55e 10836.80e
Developer salary 2022.80e 0.00e
Electricity usage 10.19e 8.13e
Depreciation 71.39e 71.39e
Total 12290.93e 10918.38e

Table 5.2: Summary of expenses

lead and developer. Since the change in scope (see Section 1 for the details),
there is no need for a developer and the whole work is done by the project lead.

Material cost

The only material to be used is a computer. The model used is a MacBook Pro
(13-inch, Late 2016). The exact consumption could not be found, but when
in use and charging it still charges the battery, which means the maximum
wattage is that of the charger, 85W. This is just an upper bound, but since the
cost of electricity is so small compared to the salaries, the total budget is just
barely skewed.

The cost in Spain of electricity is around 0.23e/kWh [11]. All tasks require
the use of the same computer, so for a total of 416h, the total electrical bill
will be of 85W× 416h× 0.23e/kWh = 8.13e.

The estimated cost due to amortization is derived from the initial cost,
salvage value, time used and useful lifespan [20] as shown in equation 5.1.

(Initial cost− Salvage value)× Time used

Useful lifespan
=

= (2099e− 100e)× 4 months

7 years
=

=71.39e/quarter.

(5.1)

Reflection and commentary

The cost of the project is big for a school project, but it is mostly due to
the salary being taken as if the staff were paid averagely for a person with
their work. A junior programmer or manager would probably get paid less to
compensate for inexperience and possible errors. Since it is mostly an academic
endeavor that can be done on a single computer, there is not as big of a budget
as with other computer engineering projects, especially ones which have to be
continually running.

Although the aim of the project is clear, there is no evident application
which quickly needs a solution to be viable. This is also the situation for many
mathematically-focused studies, that uncover facts that may not be of use
until years later. The intention is for the project to contribute to the general
availability of KDSs and allow future applications to be more easily found.

Chapter 6

Sustainability

6.1 Environmental sustainability

For the production, the project uses only a computer and a very small amount
of electricity, so the environmental footprint is very small. If the computer
was to be bought new, a different model may have been more efficient, but the
production of a new computer would be much worse for the environment than
the use of a slightly less efficient one.

For the rest of the product life, at most it might cause some calculations
by someone using our design to be more efficient, and thus, use less power.
The environmental effect, though, is highly dependent on the exact applica-
tions. Worst-case it will have no effect, so any other situation improves in an
environmental sense.

6.2 Social sustainability

This is the last part of my degree, which will give me certification of the things
I have learned in the past few years. Additionally, I feel I will be slightly
contributing to the general knowledge of humanity, which I think is a noble
goal.

It may be that the project is done and then no one ever uses the im-
plementation because the potential applications have better solutions in other
frameworks, but it is equally likely that suddenly KDSs become pivotal in some
new algorithmic strategy for an important problem. The exact repercussions
are hard to predict, but it seems the lower bound is that there is no effect, so
anything that deviates from that is positive.

6.3 Self-assessment

Completing the survey has made me see that, although I believe myself pretty
involved in environmental and social issues, I have still much to learn in this
field. I noticed the phrases I agreed most with were when the intention was
the focus, rather than the knowledge or ability.

I believe this to be the result of two things. On the one hand, there is a
lack of content in the degree about it. On the other, though, sustainability
is treated by both students and faculty as this unimportant, added-on part

27

28 CHAPTER 6. SUSTAINABILITY

of subjects. In my opinion, we could improve this if this kind of evaluations
influenced the final score of the subjects.

I knew already, from my studies, that economic matters tend to be very
unappealing to me, and though I can do the analyses, it requires from me a
great deal of effort. The projects I have done in school have required little
or no infrastructure, so an economic study has never felt like an important
evaluation. I understand, though, that in the capitalism we live in money is
always an issue to address, especially in computer science projects, in which
size can quickly get out of hand.

Chapter 7

Conclusions and future work

We have explained the details of the paper by Agarwal et al. [1] and designed
a library to provide for its implementation by using a myriad of different tech-
niques, including geometrical structures like convex hulls, combinatorial al-
gorithms like Megiddo’s parametric search and graph theoretic algorithms.

Implementation of the library has been an objective from the start, but
different factors around the project have not allowed for a full implementation
to be finished in time. This is a clear next step, which would greatly improve
both the design and efficiency by allowing for testing to be done, so any flaws
in reasoning or wrong assumptions could be exposed.

A second avenue for furthering this project would be to include additional
features from the solution which did not make it into the design but can improve
slightly the lower bound. The two main venues for attack are allowing for
randomisation in some of the algorithms and applying sparsification.

Additionally, the paper offers even better solutions if the graphs studied are
planar or from another minor-closed family of graphs. This could be studied
and added to improve efficiency in these particular cases.

29

Bibliography

[1] Pankaj K Agarwal et al. ‘Parametric and kinetic minimum spanning
trees’. In: Proceedings 39th Annual Symposium on Foundations of Com-
puter Science (Cat. No. 98CB36280). IEEE. 1998, pp. 596–605.

[2] Julien Basch, Leonidas J Guibas and John Hershberger. ‘Data structures
for mobile data’. In: Journal of Algorithms 31.1 (1999), pp. 1–28.

[3] Julien Basch, Leonidas J Guibas, Li Zhang et al. ‘Proximity Problems
on Moving Points’. In: Symposium on Computational Geometry. 1997,
pp. 344–351.

[4] Richard Cole. ‘Searching and storing similar lists’. In: Journal of Al-
gorithms 7.2 (1986), pp. 202–220.

[5] Richard Cole. ‘Slowing down sorting networks to obtain faster sorting
algorithms’. In: Journal of the ACM (JACM) 34.1 (1987), pp. 200–208.

[6] Wikipedia contributors. Minimum spanning tree — Wikipedia, The Free
Encyclopedia. 2019. url: https : / / en . wikipedia . org / w / index .

php?title=Minimum_spanning_tree&oldid=916913357 (visited on
21/11/2019).

[7] Erik D. Demaine. Lecture 4, Course 6.851: Advanced Data Structures.
2012. url: http : / / courses . csail . mit . edu / 6 . 851 / spring12 /

lectures/L04.html?notes=4.

[8] Brandon Dixon, Monika Rauch and Robert E Tarjan. ‘Verification and
sensitivity analysis of minimum spanning trees in linear time’. In: SIAM
Journal on Computing 21.6 (1992), pp. 1184–1192.

[9] Greg N Frederickson. ‘Ambivalent Data Structures for Dynamic 2-edge-
connectivity and k smallest spanning trees’. In: [1991] Proceedings 32nd
Annual Symposium of Foundations of Computer Science. IEEE. 1991,
pp. 632–641.

[10] Glassdoor.es. Sueldo: Project Leader. 2019. url: https://www.glassdoor.
es/Sueldos/project-leader-sueldo-SRCH_KO0,14.htm?countryRedirect=

true (visited on 07/10/2019).

[11] GlobalPetrolPrices.com. Spain electricity prices. Mar. 2019. url: https:
//www.globalpetrolprices.com/Spain/electricity_prices/#hl223

(visited on 07/10/2019).

[12] Leonidas J Guibas. ‘Kinetic data structures–a state of the art report’. In:
(1998).

31

32 BIBLIOGRAPHY

[13] Valerie King. ‘A simpler minimum spanning tree verification algorithm’.
In: Workshop on Algorithms and Data Structures. Springer. 1995, pp. 440–
448.

[14] Nimrod Megiddo. ‘Applying parallel computation algorithms in the design
of serial algorithms’. In: 22nd Annual Symposium on Foundations of
Computer Science (sfcs 1981). IEEE. 1981, pp. 399–408.

[15] Stack Overflow. Developer survey 2019. 2019. url: https://insights.
stackoverflow.com/survey/2019#technology (visited on 19/01/2020).

[16] PayScale. Software developer salary in Spain. 2019. url: https://www.
payscale.com/research/ES/Job=Software_Developer/Salary (vis-
ited on 07/10/2019).

[17] John Renze and Eric W. Weisstein. ”Discrete Mathematics.” From MathWorld–
A Wolfram Web Resource. url: http://mathworld.wolfram.com/

DiscreteMathematics.html (visited on 24/09/2019).

[18] Daniel Russel. ‘Kinetic Data Structures’. In: CGAL User and Reference
Manual. 4.11.3. CGAL Editorial Board, 2018. url: http://doc.cgal.
org/4.11.3/Manual/packages.html#PkgKdsSummary.

[19] Jeremy Siek, Lie-Quan Lee and Andrew Lumsdaine. The Boost Graph
Library (BGL). 2001. url: https://www.boost.org/doc/libs/1_72_
0/libs/graph/doc/index.html.

[20] Apple Support. Vintage and obsolete products. 2019. url: https : //

support.apple.com/en-ca/HT201624 (visited on 07/10/2019).

[21] The CGAL Project. CGAL User and Reference Manual. 4.11. CGAL
Editorial Board, 2017. url: http://doc.cgal.org/4.11/Manual/

packages.html.

Appendix A

List of Figures

2.1 A simple graph . 3
2.2 A directed graph . 4
2.3 A weighted graph . 4
2.4 A subgraph of the graph in Figure 2.3 5
2.5 A path in a weighted graph . 5
2.6 An unconnected graph with two connected components 5
2.7 A graph with a spanning tree marked in red 6
2.8 A graph with two minimum spanning trees marked, one in red and

blue and one in red and green . 6
2.9 An unconnected graph with its minimum spanning forest marked

in red . 7
2.10 A parametric graph . 9

3.1 A transformation of the graph in figure 2.10 so that all vertices have
degree at most three . 12

3.2 From Agarwal et al. [1]: First non-positive swap: in line arrange-
ment (left), rightmost point above lines from tree edges and below
lines from non-tree edges; in dual point arrangement (right), line
with highest slope above points from tree edges and below points from
non-tree edges. 13

3.3 A graph with a dual-cluster swap (e-f), with the two clusters marked
in red (C) and green (C ′) and non-tree edges marked as dashed lines 15

D.1 Gantt chart for the project . 46

33

Appendix B

List of Tables

5.1 Comparison of time planned or executed in each of the stages of the
project in hours . 24

5.2 Summary of expenses . 25

D.1 Summary of tasks to be fulfilled 40

35

List of Algorithms

1 delete(u,v): delete the u, v edge 20
2 advance(t*): Advance time t until a limit t∗ 20
3 evaluate(e): Evaluate the effects of event e 21

37

Appendix D

Original timeplan

D.1 Description of tasks

In this chapter, we define a list of tasks to be carried out, in detail. All tasks
are done by the developer and require only a computer to develop on, so this
information is omitted from the task descriptions. Table D.1 shows a summary
of the task list.

Project planning

Define the scope and context

Code PP1
Description Define the scope of the project and context in which it will be
developed. Create a report summarising the information.
Estimated workload 20 hours
Depends on -
Dependent on this task IR1 Correct and finish initial assessment report

Define the time plan

Code PP2
Description Define the time plan for the entirety of the project. Create a
Gantt chart and a report summarising the information.
Estimated workload 20 hours
Depends on -
Dependent on this task IR1 Correct and finish initial assessment report

Make the economic and sustainability reports

Code PP3
Description Prepare an economic report on the project. Prepare a document
showing the social, environmental and economic sustainability of the project.
Estimated workload 20 hours
Depends on -
Dependent on this task IR1 Correct and finish initial assessment report

39

40 APPENDIX D. ORIGINAL TIMEPLAN

Code Time (h) Depends on Dependent

PP1 20 - IR1
PP2 20 - IR1
PP3 20 - IR1
PP4 30 - PE1
PP5 15 - SU1
PP 105

SU1 10 PP5 SU2
SU2 20 SU1 -
SU 30

IR1 30 PP1-PP3 -
IR 30

PE1 50 PP4 PE2, FR3
PE2 40 PE1 PE3, PE4, FR4
PE3 30 PE2 FR5
PE4 50 PE2 -
PE 150

FR1 10 - FR7
FR2 15 - FR7
FR3 25 PE2 FR7
FR4 15 PE3 FR7
FR5 25 PE3 FR7
FR6 30 - FR7
FR7 20 FR1-FR6 -
FR 140

FU1 15 - FU2
FU2 1 FU1 -
FU 16

PR1 30 - -
PR 30

Total 501

Table D.1: Summary of tasks to be fulfilled

D.1. DESCRIPTION OF TASKS 41

Read literature on minimum spanning tree kinetic data structures

Code PP4
Description Do a bibliographic search on kinetic data structures that hold a
minimum spanning tree with continuously changing edge weights and similar
constructs to both the MST and KDS topics.
Estimated workload 30 hours
Depends on -
Dependent on this task PE1 Design

Read library protocol and submission process

Code PP5
Description Read and review the protocol and process to add new features to
the kinetic data structure section of the Computational Geometry Algorithms
Library [18]. Make sure it fits as expected into the time plan or adapt accord-
ingly. Observe the derived requirements for the implementation of the library.
Estimated workload 15 hours
Depends on -
Dependent on this task SU1 Prepare formal submission

Submission

Prepare formal submission

Code SU1
Description Prepare the necessary information and documentation to submit
the work to the Computational Geometry Algorithms Library [18]. Send the
submission according to their process.
Estimated workload 10 hours
Depends on PP5 Read library protocol and submission process
Dependent on this task SU2 Respond to corrections and commentary from
reviewer

Respond to corrections and commentary from reviewer

Code SU2
Description Once the submission process starts, a reviewer assigned by the
CGAL editorial board will send back commentary and corrections to be done
to have the changes included to the library. These changes will have to be
implemented.
Estimated workload 20 hours
Depends on SU1 Prepare formal submission
Dependent on this task -

Initial report

Correct and finish initial assessment report

Code IR1
Description Once all sections of the initial assessment report are done, the

42 APPENDIX D. ORIGINAL TIMEPLAN

corrections and commentary received from the teacher will be taken into ac-
count to make the initial assessment report. Some time will also be taken to
put together the document from its parts.
Estimated workload 30 hours
Depends on PP1 Define the scope and context, PP2 Define the time plan,
PP3 Make the economic and sustainability reports
Dependent on this task -

Project execution

Design

Code PE1
Description Define what classes are going to be implemented and how they
will communicate with each other. Create a high-level version of the algorithms
found in the literature and analyse which one should perform best. Define the
high-level inner workings of the chosen algorithm.
Estimated workload 50 hours
Depends on PP4 Read literature on MST KDSs
Dependent on this task PE2 Implement, FR3 Write final report section on
design

Implement

Code PE2
Description Create a working example of the design created in PE1.
Estimated workload 40 hours
Depends on PE1 Design
Dependent on this task PE3 Test, PE4 Make changes and additional fea-
tures, FR4 Write final report section on implementation

Test

Code PE3
Description Test the implementation experimentally to make sure it works
as expected and complies with all requirements.
Estimated workload 30 hours
Depends on PE2 Implement
Dependent on this task FR5 Write final report section on testing

Make changes and additional features

Code PE4
Description If the results of the tests are positive, design, implement and test
additional features that can be useful. If not, make the needed changes to make
sure everything works as it should.
Estimated workload 50 hours
Depends on PE2 Implement
Dependent on this task -

D.1. DESCRIPTION OF TASKS 43

Final report

Write final report section on minimum spanning tree kinetic data
structures

Code FR1
Description Write the section of the final report concerning minimum span-
ning trees, kinetic data structures and their combination.
Estimated workload 10 hours
Depends on Start of PP4 Read literature on MST KDSs
Dependent on this task FR7 Finalise the report

Write final report section on library protocol

Code FR2
Description Write the section of the final report concerning the submission
process to the Computing Geometry Algorithms Library [21] and the require-
ments for submitted code.
Estimated workload 15 hours
Depends on Start of PP5 Read library protocol and submission process
Dependent on this task FR7 Finalise the report

Write final report section on design

Code FR3
Description Write the section of the final report that explains the design
process and results.
Estimated workload 25 hours
Depends on PE2 Design
Dependent on this task FR7 Finalise the report

Write final report section on implementation

Code FR4
Description Write the section of the final report concerning implementation
details and limitations.
Estimated workload 15 hours
Depends on PE3 Implement
Dependent on this task FR7 Finalise the report

Write final report section on testing

Code FR5
Description Write the section of the final report that explains the testing
process, results and conclusions.
Estimated workload 25 hours
Depends on PE3 Test
Dependent on this task FR7 Finalise the report

44 APPENDIX D. ORIGINAL TIMEPLAN

Write final report sections on project development

Code FR6
Description Write the sections of the final report that explain how the project
has developed in relation to the planning and what adaptations have been
made.
Estimated workload 30 hours
Depends on -
Dependent on this task FR7 Finalise the report

Finalise the report

Code FR7
Description Compile all written sections of the report and structure the doc-
ument correctly. Make sure it contains no grammatical or typographical errors.
Ensure all explanations are complete. Format consistently and correctly.
Estimated workload 20 hours
Depends on FR1 Write final report section on MST KDSs, FR2 Write final
report section on library protocol, FR3 Write final report section on design,
FR4 Write final report section on implementation, FR5 Write final report sec-
tion on testing, FR6 Write final report sections on project development
Dependent on this task -

Follow-up report

Prepare the follow-up report

Code FU1
Description Use written sections of the final report and other material to
prepare the follow-up report.
Estimated workload 15 hours
Depends on -
Dependent on this task FU2 Follow-up meeting

Follow-up meeting

Code FU2
Description Hold a meeting with the director presenting the follow-up report.
Discuss project direction and schedule.
Estimated workload 1 hours
Depends on FU1 Prepare the follow-up report
Dependent on this task -

Presentation

Prepare the oral defence

Code PR1
Description Prepare an oral presentation explaining the project, including
the plan, development and results.
Estimated workload 30 hours

D.2. GANTT CHART 45

Depends on -
Dependent on this task -

D.2 Gantt chart

Figure D.1 shows the resulting Gantt chart of the tasks described above. To
show information in as good a layout as can be managed, the figure appears in
landscape mode.

46 APPENDIX D. ORIGINAL TIMEPLAN

13
16

23
30

7
14

21
28

4
11

18
25

2
9

16
23

30
6

13
20

Se
p

'1
9

O
ct

 '1
9

N
ov

 '1
9

D
ec

 '1
9

Ja
n

'2
0

st
ar

t
en

d

16
/0

9/
19

31
/1

0/
19

16
/0

9
23

/0
9

24
/0

9
27

/0
9

30
/0

9
04

/1
0

03
/1

0
17

/1
0

17
/1

0
31

/1
0

01
/1

1/
19

19
/1

2/
19

01
/1

1
08

/1
1

28
/1

1
19

/1
2

24
/0

9/
19

21
/1

0/
19

24
/0

9
24

/0
9

30
/0

9
30

/0
9

07
/1

0
07

/1
0

21
/1

0
21

/1
0

07
/1

0
18

/1
0

31
/1

0/
19

19
/1

2/
19

31
/1

0
14

/1
1

15
/1

1
28

/1
1

29
/1

1
12

/1
2

29
/1

1
19

/1
2

10
/1

0/
19

16
/0

1/
20

10
/1

0
17

/1
0

24
/1

0
31

/1
0

15
/1

1
21

/1
1

29
/1

1
05

/1
2

13
/1

2
19

/1
2

28
/1

1
19

/1
2

08
/0

1
15

/0
1

16
/0

1
16

/0
1

02
/1

2/
19

16
/1

2/
19

02
/1

2
11

/1
2

12
/1

2
12

/1
2

16
/1

2
16

/1
2

16
/0

1/
20

23
/0

1/
20

23
/0

1
23

/0
1

16
/0

1
22

/0
1

P
ro

je
ct

 p
la

nn
in

g
D

ef
in

e
th

e
sc

op
e

an
d

co
nt

ex
t

D
ef

in
e

th
e

tim
e

pl
an

M
ak

e
th

e
ec

on
om

ic
 a

nd
 s

us
ta

in
ab

ili
ty

 re
po

rt
s

Re
ad

 li
te

ra
tu

re
 o

n
M

ST
 K

D
Ss

Re
ad

 li
br

ar
y

pr
ot

oc
ol

 a
nd

 s
ub

m
is

si
on

 p
ro

ce
ss

Su
bm

is
si

on
Pr

ep
ar

e
fo

rm
al

 s
ub

m
is

si
on

Re
sp

on
d

to
 c

or
re

ct
io

ns
 a

nd
 c

om
m

en
ta

ry
 fr

om
 re

vi
ew

er

In
it

ia
l r

ep
or

t
G

EP
 1

: S
co

pe
 a

nd
 c

on
te

xt
 d

ea
dl

in
e

G
EP

 2
: T

im
e

pl
an

ni
ng

 d
ea

dl
in

e
G

EP
 3

: E
co

no
m

ic
 m

an
ag

em
en

t a
nd

 s
us

ta
in

ab
ili

ty
 d

ea
dl

in
e

G
EP

: I
ni

tia
l a

ss
es

sm
en

t r
ep

or
t d

ea
dl

in
e

Co
rr

ec
t a

nd
 fi

ni
sh

 in
iti

al
 a

ss
es

sm
en

t r
ep

or
t

P
ro

je
ct

 e
xe

cu
ti

on
D

es
ig

n
Im

pl
em

en
t

Te
st

M
ak

e
ch

an
ge

s
an

d
ad

di
tio

na
l f

ea
tu

re
s

Fi
na

l r
ep

or
t

W
rit

e
fin

al
 r

ep
or

t s
ec

tio
n

on
 M

ST
s

W
rit

e
fin

al
 r

ep
or

t s
ec

tio
n

on
 li

br
ar

y
pr

ot
oc

ol
W

rit
e

fin
al

 re
po

rt
 s

ec
tio

n
on

 d
es

ig
n

W
rit

e
fin

al
 r

ep
or

t s
ec

tio
n

on
 im

pl
em

en
ta

tio
n

W
rit

e
fin

al
 r

ep
or

t s
ec

tio
n

on
 te

st
in

g
W

rit
e

fin
al

 r
ep

or
t s

ec
tio

ns
 o

n
th

e
pr

oj
ec

t d
ev

el
op

m
en

t
Fi

na
lis

e
th

e
re

po
rt

W
rit

te
n

re
po

rt
 d

el
iv

er
y

de
ad

lin
e

Fo
llo

w
-u

p
re

po
rt

Pr
ep

ar
e

th
e

fo
llo

w
-u

p
re

po
rt

Fo
llo

w
-u

p
m

ee
tin

g
Fo

llo
w

-u
p

re
po

rt
 d

ea
dl

in
e

P
re

se
nt

at
io

n O
ra

l d
ef

en
ce

Pr
ep

ar
e

or
al

 d
ef

en
ce

P
ow

er
ed

 b
y

T
C

P
D

F
 (

w
w

w
.tc

pd
f.o

rg
)

F
ig

u
re

D
.1

:
G

a
n
tt

ch
a
rt

fo
r

th
e

p
ro

je
ct

D.3. ALTERNATIVE PLANS 47

D.3 Alternative plans

There are two main risks in the carrying out of this project: that there may
not be an appropriate solution to the problem we are trying to solve or that
the time plan is not able to be followed accurately.

If there is no appropriate solution

Tasks SU1 and SU2, which concern the formal submission to the CGAL, will
not be carried out. Instead, a study of the problems encountered will be done
and added as a section of the final report.

If the time plan is not able to be followed accurately

Using the dependencies defined in the time plan, tasks will be reorganised and
retimed if a big deviation from the plan is detected. It depends on the stage the
project is at, but tasks concerning the initial, follow-up and final assessments
will be prioritised. The rest may be shortened to arrive at the destination on
time.

