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Abstract. In this article we consider the generalised-α methods, make an analysis of the
methods and apply them to a coupled model problem. A new adaptive timestep control
is presented.

1 INTRODUCTION

Coupled problems appear in different research areas. One common example is the
interaction of structure and fluid [DR08], e.g. the numerical simulation of offshore wind
turbines, see [MM04], or of biomechanical processes. Coupled problems consist of two
or more different physical problems which are in general space and time dependent. The
discretisation in space leads to a high dimensional system of ordinary differential equations
(ODEs) or differential algebraic equations (DAEs). The computation of the numerical
solution needs the simultaneous solution of the strong coupled equations of each problem.
But often for each subproblem different discretisation schemes are used. In the case
of fluid-structure interaction the fluid is often discretised with Finite Volumes, and the
structure with Finite Elements. To build a monolithic solver [RB00] it is often difficult to
find a cost free available software system which processes different discretisation methods
for different problem classes.

This is one reason to use a modular approach and partitioned methods [RB00, FP80,
MW01, PFL95, MS02, MNS06], i.e. the subproblems are solved by different codes which
communicate with each other. The communication between the solvers can be realised
with the help of the Component Template Library (CTL), i.e. the solvers are transformed
into software components and are controlled with an independent central unit. In [RSM09]
the CTL is used to solve FSI problems.

In this paper we consider the generalised-αmethods, which are introduced for first order
ODEs in [JWH00], and for second order ODEs in [CH93]. The generalised-α methods
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are in general of second order and allow the damping of high frequencies, which can
be controlled by certain parameters. An analysis for first order problems can be found
in [DP03]. In the case of second order ODEs many papers can be found, which analyse
the generalised-α method, for example [EBB02]. It is well known that the generalised-α
method for first order problems can be formulated as onestep and as multistep method.
In the case of second order methods this statement is only true, if the ODE is linear in
the first derivative (see [EBB02]). For both classes of multistep methods second order
can be achieved if a further condition is satisfied. Together with the stability conditions
(see [EBB02]) a robust and effective class of methods is obtained. If these parameter
sets are used for onestep methods theoretically only first order can be reached. But the
error constant is very small so that the observed numerical order of convergence is two.
Moreover, in our experience the onestep versions obtain better results than the multistep
versions.

In this paper we apply the generalised-α methods for first and seond order ODEs on a
damped mass system (see [JDP10]). In this paper we show that it is possible to couple the
multistep versions of the generalised-α method. The numerical results are a little better
than those of onestep versions. But the coupling of onestep methods has the advantage
that it allows to easily compute adaptive timestep sizes, which is introduced in this paper,
too.

This paper is structured as follows: First we introduce the generalised-α methods for
first and second order ODEs. A short analysis about convergency and stability is given.
Then we apply both generalised-α methods on the damped mass spring system of [JDP10]
and analyse the linear systems.

2 THE GENERALISED-α METHOD FOR 1ST ORDER ODES

In the following we consider the ODE

u̇ = f(t,u), u(0) = u0. (1)

The numerical solution of (1) is determined by the generalised-α method, which is given
by the formulas (see [JWH00, DP03])

u̇n+αm = f(tn+αf
,un+αf

), (2)

un+1 = un + τ u̇n + τγ(u̇n+1 − u̇n), (3)

u̇n+αm = u̇n + αm(u̇n+1 − u̇n), (4)

un+αf
= un + αf (un+1 − un). (5)

It is well known that the generalised-α method can be formulated as onestep and as
twostep methods.
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2.1 The formulation as onestep method and its analysis

First we manipulate the formulas (2)–(5) to obtain a non-linear system consisting of
two decoupled equations. To abbreviate we define fn+αf

:= f(tn+αf
,un+αf

). A simple
calculation gives us

un+1 = un + τ

(
1− γ

αm

)
u̇n +

τγ

αm

fn+αf
(6)

u̇n+1 =
1

τγ
(un+1 − un − τ(1− γ)u̇n) , (7)

if αm �= 0. We call the scheme (6), (7) the onestep generalised-α method. The starting
value value u̇0 can be computed from the ODE (1). Next we want to determine the order
of consistency. For this the numerical solution un+1 can be expanded in a Taylor series
as follows

un+1 = un + τ u̇n +
τ 2γαf

αm

ün +O(τ 3).

For consistency of order 2 we get the condition
γαf

αm

=
1

2
. Since un+1 depends on u̇n (see

equation (6)) we use equation (7) for expanding u̇n+1 in a Taylor series and get

u̇n+1 = u̇n +
ταf

αm

ün +O(τ 2),

i. e. u̇n+1 is of order 1 if
αf

αm

= 1. Summarising our results we have consistency of order

2 if αm = αf and γ = 1/2. The generalised-α method is zero-stable if αm > 1/2. In other
words our method is convergent if αm > 1/2.

2.2 Formulation as multistep method and its analysis

The generalised-α method can be formulated as a two-step method as follows

un+1 =
2αm − 1

αm

un −
αm − 1

αm

un−1 +
τ(1− γ)

αm

fn−1+αf
+

τγ

αm

fn+αf
. (8)

For αm = 3/2, αf = 1, and γ = 1 we obtain the backward difference formula (BDF) from
Gear (see [HW96]). Next we expand un+1 in a Taylor expansion and compare it with the
exact solution. Then we have

un+1 = un + τ u̇n +
τ 2

2

2αf − αm + 2γ − 1

αm

ün +O(τ 3).

Comparing the Taylor expansions for u(tn+1) and un+1 leads to the condition for accuracy
of order 2

γ =
1

2
− αf + αm, (9)
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which is already known from [JWH00, EBB02, CH93]). The generalised-α method in
form (8) is convergent of order 2 if αm > 1/2 and condition (9) holds. For stability
reasons often the setting

αf = γ =
1

1 + ρ∞
, αm =

3− ρ∞
2(1 + ρ∞)

. (10)

is used (see [JWH00, DP03]). Note that the condition (9) is automatically satisfied. For
ρ∞ = 0 we get the BDF-2 method.

3 THE GENERALISED-α METHOD FOR SECOND ORDER ODES

3.1 Formulation as onestep method

In the following we consider the second order ODE

ü = f(t,u, u̇), u(0) = u0, u̇(0) = u̇0. (11)

The generalised-α method can be written as

un+αf
= αfun+1 + (1− αf )un, (12)

u̇n+αf
= αf u̇n+1 + (1− αf )u̇n, (13)

ün+αm = αmün+1 + (1− αm)ün, (14)

un+1 = un + τ u̇n + τ 2
[(

1

2
− β

)
ün + βün+1

]
(15)

u̇n+1 = u̇n + τ [(1− γ)ün + γün+1] (16)

ün+αm = f(tn+αf
, αfun+1 + (1− αf )un, αf u̇n+1 + (1− αf )u̇n), (17)

where tn+αf
= tn + ταf . To abbreviate we write

fn+αf
:= f(tn+αf

, αfun+1 + (1− αf )un, αf u̇n+1 + (1− αf )u̇n).

First we determine the order of consistency and use equations (14) and (17) for manipu-
lating (15). We obtain

un+1 = un + τ u̇n + τ 2
[(

1

2
− β

αm

)
ün +

β

αm

fn+αf

]
, (18)

u̇n+1 = u̇n + τ

[(
1− γ

αm

)
ün +

γ

αm

fn+αf

]
, (19)

ün+1 =
1

αm

[ün+αm − (1− αm)ün] =
1

αm

[
fn+αf

− (1− αm)ün

]
. (20)
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Next we expand these three expression into Taylor expansions and get

un+1 = un + τ u̇n +
1

2
τ 2ün +O(τ 3),

u̇n+1 = u̇n + τ ün + γ
αf

αm

τ 2ün +O(τ 3),

ün+1 = ün + τ
αf

αm

...
un +O(τ 2).

It follows that the method is of order 2 if

αf

αm

= 1 and γ
αf

αm

=
1

2
.

This is the same result as in the previous section.

3.2 Formulation as multistep method

As in the previous section the generalised-α method can be written as a multistep
method if the ODE (11) is linear in u̇. Therefore we consider the problem as in [EBB02]

M ü+ Cu̇+ S(u) = F(t). (21)

Then equation (17) reads as

M ün+αm = F(tn+αf
) − S(αfun+1 + (1 − αf )un) − C(αf u̇n+1 + (1 − αf )u̇n). (22)

The generalised-α method can be formulated as a multistep method with the help of (15),
(16), and (22). These formulas are evaluated at time tn, tn+1, and tn+2 (see for exam-
ple [EBB02]). Then we get

3∑
j=0

[Mαj + τCγj]un+j + τ 2
2∑

j=0

δj[Sn+j+αf
− F(tn+j+αf

)] = 0, (23)

where

α0 = 1− αm, α1 = 3αm − 2, α2 = 1− 3αm, α3 = αm,

γ0 = (1− αf )(γ − 1), γ1 = 1− 2αf − 2γ + 3γαf , γ2 = αf + γ − 3γαf , γ3 = αfγ,

δ0 =
1

2
+ β − γ, δ1 =

1

2
− 2β + γ, δ2 = β,

and

Fn+j−αf
= F(αf tn+j+1 + (1− αf )tn+j) = F(tn+j + αfτ)

Sn+j+αf
= αfS(un+j+1) + (1− αf )S(un+j).
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The method has consistency order 2 if γ =
1

2
+ αm − αf . It is zero-stable and convergent

if αm ≥ 1/2, αf ≤ 1/2 and γ ≤ 1/2 (see [EBB02]). For stability reasons often the setting

β =
(1 + αm − αf )

2

4
, αf =

1

1 + ρ∞
, αm =

2− ρ∞
1 + ρ∞

is used (see [CH93, EBB02, JDP10]).

4 Coupling of generalised-α methods

In the following we consider the model problem

ü+ 2ξωu̇+ ω2u = 0, u(0) = u0, u̇(0) = v0,

where ξ is a given damping factor and ω a given frequency.

4.1 The onestep methods

As in [JDP10] we introduce a partitioning of the problem as follows

(1− α)üs + ω2us = −αüf − 2ξωu̇f , (24)

where the left-hand side of (24) is integrated with the generalised-α for second order
problems and the the right-hand side of (24) is integrated with the generalised-α for first
order problems. In the case of onestep formulation we have

(1− α)üs
n+αs

m
+ ω2us

n+αs
f
= −αüf

n+αf
m
− ξωu̇f

n+αf
f

u̇I
n+1 = u̇I

n+1 =: u̇I
n+1, u̇I

n = u̇I
n =: u̇I

n.

Quantities u̇I
n+1 and u̇I

n represent the interface velocities at time tn+1 and tn (see [JDP10]).

We insert the formulas for üs
n+αs

m
, üf

n+αf
m
, and u̇f

n+αf
f

and get

(1− α)
[
αs
mü

s
n+1 + (1− αs

m)ü
s
n

]
+ ω2

[
αs
fu

s
n+1 + (1− αs

f )u
s
n

]

= −α
[
αf
mü

f
n+1 + (1− αf

m)ü
f
n

]
− 2ξω

[
αf
f u̇

I
n+1 + (1− αf

f )u̇
I
n

]
.

Moreover we have

us
n+1 = us

n + τ u̇I
n + τ 2

[(
1

2
− βs

)
üs
n + βsü

s
n+1

]
,

u̇I
n+1 = u̇I

n + τ
[
γf üf

n+1 + (1− γf )üf
n

]
,

u̇I
n+1 = u̇I

n + τ
[
γsüs

n+1 + (1− γs)üs
n

]
.
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Since the left- and right-hand side of (24) are taken at different times we set

F s
n+αs

f
= (1− α)üs

n+αs
m
+ ω2us

n+αs
f
,

F f

n+αf
f

= −αüf

n+αf
m
− 2ξωu̇I

n+αf
f

,

where F s
n+αs

f
= αs

fFn+1 + (1− αs
f )Fn and F f

n+αf
f

= αf
fFn+1 + (1− αf

f )Fn. It then follows

αs
fFn+1 + (1− αs

f )Fn = (1− α)üs
n+αs

m
+ ω2us

n+αs
f
,

αf
fFn+1 + (1− αf

f )Fn = −αüf

n+αf
m
− 2ξωu̇I

n+αf
f

.

Then our problem reads as

(1− α)
[
αs
mü

s
n+1 + (1− αs

m)ü
s
n

]

+ω2
[
αs
fu

s
n+1 + (1− αs

f )u
s
n

]
= αs

fFn+1 + (1− αs
f )Fn,

αf
fFn+1 + (1− αf

f )Fn = −α
[
αf
mü

f
n+1 + (1− αf

m)ü
f
n

]

− 2ξω
[
αf
f u̇

I
n+1 + (1− αf

f )u̇
I
n

]

us
n+1 = us

n + τ u̇I
n + τ 2

[(
1

2
− βs

)
üs
n + βsü

s
n+1

]
,

u̇I
n+1 = u̇I

n + τ
[
γf üf

n+1 + (1− γf )üf
n

]
,

u̇I
n+1 = u̇I

n + τ
[
γsüs

n+1 + (1− γs)üs
n

]
.

Finally we arrive at the problem

vn+1 = A−1
1 A2vn (25)

with

A1 =




ω2αs
f 0 (1−α)αs

m

τ2
0 −αs

f

τ2

0 2 ξω
τ
αf
f 0 ααf

m

τ2
αf
f

τ2

1 0 −βs 0 0

0 1
τ

0 −γf

τ
0

0 1
τ

−γs

τ
0 0




,

A2 =




−ω2(1− αs
f ) 0 − (1−α)(1−αs

m)
τ2

0
1−αs

f

τ2

0 −2 ξω
τ
(1− αf

f ) 0 −α(1−αf
m)

τ2
−1−αf

f

τ2

1 1 1
2
− βs 0 0

0 1
τ

0 1−γf

τ
0

0 1
τ

1−γs

τ
0 0




,

vn = (us
n, τ u̇

I
n, τ

2üs
n, τ

2üf
n, τ

2Fn)
�.
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Using a computer algebra package we can compute un+1 and expand it into a Taylor series.
Then the local error reads δτ = O(τ 2). We test the implementation on two different
settings, which are considered in [JDP10], too. In setting 1 we set ω = 1, ξ = 0.001, and
α = 0.5, in setting 2 we have ω = 1, ξ = 0.01, and α = 0.8. The parameters ρf and ρs are
taken as variables and we test the above method with each combination of ρf and ρs. The
numerical results are presented in Figure 1. We see that the coupled method produces

Figure 1: Numerical errors of the coupled method: setting 1 (left) and setting 2 (right)

accurate results. It can be observed that the monolythic approach does not always give
the best results. The best result is obtained with setting ρf = ρs = 1.

4.2 The multistep methods

In the next step we couple the multistep versions. First we have

un+1 =
2αm − 1

αm

un −
αm − 1

αm

un−1 +
τ(1− γ)

αm

fn−1+αf
+

τγ

αm

fn+αf
.

for the first order problem and

3∑
j=0

[Mαj + τCγj]un+j + τ 2
2∑

j=0

δj[Sn+j+αf
− F(tn+j+αf

)] = 0.

for the second order problem. For coupling un+1 and u̇n+1 we use the difference quotient

11un+3 − 18un+2 + 9un+1 − 2un = 6τ u̇n+3.

8
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Finally we have a coupled system of three equations

(1− α)
3∑

j=0

αs
ju

s
n+j + τ 2

2∑
j=0

δj[ω
2un+j+αf

− F(tn+j+αf
)] = 0

αf
mu̇

f
n+3 − (2αf

m − 1)u̇f
n+2 + (αf

m − 1)u̇f
n+1

+τ(1− γf )(2ξωu̇f
n+1+αf

+ fn+1+αf
) + τγ(2ξωu̇f

n+2+αf
+ fn+2+αf

) = 0

6τ u̇n+3 − 11un+3 + 18un+2 − 9un+1 + 2un = 0.

Using a computer algebra package we can compute un+1 and expand it into a Taylor
series. Then the local error reads δτ = O(τ 2). As for the onestep methods the coupled
method is applied on two different settings. Again, in setting 1 we set ω = 1, ξ = 0.001,
and α = 0.5, and in setting 2 we have ω = 1, ξ = 0.01, and α = 0.8. Parameters ρf
and ρs are taken as variables and we test the above method with each combination of
ρf and ρs. The numerical results are presented in Figure 2. We see that the coupled

Figure 2: Numerical errors of the coupled method: setting 1 (left) and setting 2 (right)

multistep methods produce more accurate results than the previous approach with the
onestep methods. It can be observed that the monolythic approach does not always give
the best results. The best result is obtained with setting ρf = ρs = 1.

5 Adaptivity

In [Ran13] an adaptive timestep control for the generalised-α method is introduced for
onestep and for multistep versions. In this article only adaptivity for onestep methods
is considered. With the help of the backward Euler method a second solution can be
computed. Then the next timestep size τn+1 is proposed to be

τn+1 = ρ
τ 2n
τn−1

(
TOL · rn
r2n+1

)1/p

, (26)
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where ρ ∈ (0, 1] is a safety factor, TOL > 0 is a given tolerance, and rn+1 := ‖un+1−ûn+1‖.
For details about the numerical error and the implementation of automatic steplength
control, we refer to [HW96, Lan01]. For our coupled problem (25) the algorithm reads as
follows:

• First compute the solution of (25). Then we have us
n+1 and u̇I

n+1

• Compute ün+1 by evaluating the model problem.

• Compute a second solution with the backward Euler method, i. e. us
n+1 = us

n+τ u̇I
n+1

and u̇I
n+1 = u̇I

n + τ ün+1.

• Compute the numerical error rn+1 and approximate the new timestep length τn+1

with (26).

• If the numerical error is smaller than the given tolerance the timestep is accepted
otherwise it is rejected and has to recomputed with the new timestep length τn+1 .

As before we test our numerical method on the problem with settings 1 and 2. We choose
different tolerances and compute the numerical errors with respect to the computing time
(see Figure 3). It can be observed that our approach produces stable numerical results.

Figure 3: Numerical errors of the adaptive method
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6 Summary and Outlook

In this article we introduced a new coupling scheme of generalised-α methods, which
use multistep formulation. As in the case of onestep methods order 2 is theoretically not
reached. In the second part of the paper we developed an adaptive timestep control for
the partitioned approach, which gives good numerical results.

In a future work this approach should be applied on other problems like, for example,
FSI problems.
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