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Abstract. This research is devoted to mass conservation and CFL properties of the
Finite Elements Immersed Boundary Method. We first explore an enhanced higher order
scheme applied to the Finite Element Immersed Boundary Method technique introduced
by Boffi and Gastaldi. This technique is based on a Pointwise (PW) formulation of the
kinematic condition, and higher order elements show better conservation properties than
the original scheme. A further improvement with respect to the classical PW formulation
is achieved introducing a fully variational Distributed Lagrange Multiplier (DLM) for-
mulation. Numerical experiments show that DLM is not affected by any CFL condition.
Furthermore the mass conservation properties of this method are extremely competitive.

1 INTRODUCTION

Several applications require the modeling of fluid structure interactions. In particular,
the Immersed Boundary Method (IBM) has been developed to tackle the biomedical mod-
eling of organic tissues. The IBM has been firstly considered by Peskin in the seventies,
see [13] for a review.

Boffi and Gastaldi in [3] introduced a finite element version of the IBM which enjoys
interesting properties both for practical and theoretical aspects (see [4, 5, 7, 6, 8, 11, 2]).
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Interesting investigations concern, in particular, the choice of the time advancing strat-
egy and the mass conservation of the resulting scheme. In this respect, the main con-
tribution of the present work is twofold. From one side, we explore the use of higher
order finite element for the approximation of the fluid; from the other side, we examine
a different, in a sense more natural, strategy for handling the movement of the immersed
structure. Higher order finite elements are constructed extending the ideas of [1] for the
enhancement of continuous pressure fluid schemes. The original formulation of the IBM
considers a pointwise evolution (PW) of the immersed structure; on the other hand, in
this paper we consider a variational formulation of the structure evolution equation (see
also [12]). This gives rise to a scheme which shares several analogies with the Fictitious
Domain method with Distributed Lagrange Multiplier (see, for instance, [10]); for this
reason we shall refer to this scheme as DLM approach.

It turns out that the first modification of the original IBM formulation (higher-order
fluid scheme) provides significant improvements of the mass conservation and that the
second modification (DLM) gives rise to a scheme which is superior in terms of time
advancing procedure (no CFL condition is required for its stability). Surprisingly enough,
we observed that the DLM approach enjoys much better mass conservation properties as
well, thus becoming a very promising scheme for future studies.

2 PROBLEM SETTING

Let Ω ⊂ Rd, d = 2, 3 be the fluid domain, and let the structure domain Bt ⊂ Ω be
immersed into the fluid one. We consider incompressible fluid and viscoelastic structure.
The key assumption of the IBM lays in the particular form of the structure stress tensor.
In fact we assume the structure stress tensor to be composed by an elastic and a viscous
contribution. The viscous contribution has exactly the same form as for the fluid, then
the principle of virtual work applies.

More in detail, at time t the structure lays on the time dependent domain Bt. The
structure domain can be parametrized by a map X on a reference domain B ⊂ Rm,
m = d, d−1. In a Lagrangian framework we set s as the reference variable in B. A material
point on the current domain Bt is denoted by x. A typical assumption is ∂Bt ∩ ∂Ω = ∅.
We consider the initial domain as the reference one B = B0.

The map X represents the relationship between the current and the reference domains:

X : B × [0, T ] → Bt so that x = X(s, t) ∀x ∈ Bt. (1)

We assume X(s, t) being invertible at any time, which implies that the deformation gradi-

ent Fαi :=
(
∇s X(s, t)

)
αi

= Xα,i(s, t) =
∂Xα(s,t)

∂si
has rank m. We have that |F| = 1 at the

initial time; thanks to the incompressibility assumption this is true also at any subsequent
time. Here |F| stands for the determinant of F in the case m = d. When m = d − 1 we
set |F| = |∂X/∂s| for m = 1 and |F| = |∂X/∂s1 ∧ ∂X/∂s2| for m = 2.
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The kinematics of the material particle can be defined through its velocity:

u(x, t) =
∂X

∂t
(s, t) for x = X(s, t). (2)

The densities of the incompressible fluid and solid phases are assumed to be piecewise
constant:

ρ =

{
ρf in Ω \ Bt

ρs in Bt.
(3)

Detailed study of stability criteria regarding the ratio ρs/ρf can be found in [2]. We
already mentioned that the key idea of IBM lays in the definition of the Cauchy stress
tensor σ as:

σ =

{
σf in Ω\Bt

σf + σs in Bt.
(4)

Here we have the viscous term all over the domain, and the elastic contribution is taken
into account where the structure is located. This assumption is accepted in biological
frameworks where the viscoelasticity of the tissues play a key role (see, e.g., [14]). The
stress tensor for a viscous fluid is:

σf = −pI + µ(∇u+ (∇u)T ). (5)

The first Piola–Kirchhoff stress tensor can be derived from the elastic stress tensor σs

using Lagrangian variables as:

P(s, t) = |F(s, t)|σs(X(s, t), t)F−T (s, t). (6)

Using the principle of virtual work and equations (3)-(6) we obtain the following formu-
lation of the problem:

Problem 2.1 Given u0 ∈ H1
0 (Ω)

d and X0 : B → Ω such that X0 ∈ W 1,∞(B), for all
t ∈ ]0, T [, find (u(t), p(t)) ∈ H1

0 (Ω)
d × L2

0(Ω) and X(t) ∈ W 1,∞(B), such that

ρf
d

dt
(u(t),v) + b(u(t),u(t),v) + a(u(t),v)

− (∇·v, p(t)) = 〈d(t),v〉+ 〈F(t),v〉 ∀v ∈ H1
0 (Ω)

d (7a)

(∇·u(t), q) = 0 ∀q ∈ L2
0(Ω) (7b)

〈d(t),v〉 = −(ρs − ρf )

∫

B

∂2X

∂t2
v(X(s, t)) ds ∀v ∈ H1

0 (Ω)
d (7c)

〈F(t),v〉 = −
∫

B
P(F(s, t)) : ∇sv(X(s, t)) ds ∀v ∈ H1

0 (Ω)
d (7d)

∂X

∂t
(s, t) = u(X(s, t), t) ∀s ∈ B (7e)

u(x, 0) = u0(x) ∀x ∈ Ω (7f)

X(s, 0) = X0(s) ∀s ∈ B. (7g)
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We have used the following definitions for the bilinear forms

a(u,v) = µ(∇sym u,∇sym v),

b(u,v,w) =
ρf
2
((u ·∇v,w)− (u ·∇w,v)) ,

where ∇sym u = (∇u+ (∇u)T )/2.
We observe that in the above formulation we have that the incompressible Navier–Stokes
equations (7a)-(7b) are written in variational form, while the movement of the structure
governed by (7e) is written pointwise, since at each point s ∈ B we solve an ordinary
differential equation with initial value given by (7g). For this reason we address this
formulation as PW in the rest of the paper.

We assume that the structure is composed by a hyperelastic material. These materials
are characterized by a positive energy density W (F) depending only on the deformation
gradient. Then the first Piola–Kirchhoff stress tensor P can be expressed in terms of
the potential energy density as (P(F(s, t))αi = ∂W (F(s, t))/∂Fαi where i = 1, . . . ,m and
α = 1, . . . , d; the elastic potential energy of the body is given by:

E (X(t)) =

∫

B
W (F(s, t))ds.

Assuming that the potential energy density W is convex, that ρs ≥ ρf , and using the
relation between the energy density and the Piola–Kirchhoff above, the following energy
estimate can be obtained for all t ∈ [0, T ]:

ρf
2

d

dt
||u(t)||20 + µ|| ∇u(t)||20 +

ρs − ρf
2

d

dt

∥∥∥∥
∂X

∂t

∥∥∥∥
2

0,B
+

d

dt
E(X(t)) = 0. (8)

In the following section we present the space-time discretization of Problem 2.1 based on
the use of finite elements, and in the next one we shall introduce a variational version
also of equation (7e). The issue of the stability for the space-time scheme will be also
addressed.

3 MASS PRESERVING HIGH ORDER FINITE ELEMENT SPACES

In this section we discretize Problem 2.1 using high order mass preserving stable finite
elements. Consider a triangulation Th of Ω into triangles or rectangles if d = 2, and
tetrahedrons or parallelepipeds if d = 3. We denote by K any single element of Th.

The structure domain B is subdivided into segments, triangles or tetrahedrons for
m = 1, 2, 3 respectively; we denote this subdivision by Sh. We shall need also the following
notation: Tk, k = 1, . . . ,Me is an element of Sh, sj, j = 1, . . . ,M stands for a vertex of
Sh, and Eh is the set of the edges (or faces) e of Sh. Given these definitions we introduce
the solution space for the structure position Sh:
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Sh = {Y ∈ C0(B; Ω) : Y|Tk
∈ P1(Tk)

d, k = 1, . . . ,Me}, (9)

being P1(Tk) the space of affine polynomials on the element Tk.
As far as the fluid domain is concerned, we consider two finite dimensional spaces

Vh ⊆ H1
0 (Ω)

d and Qh ⊆ L2
0(Ω) for the velocity and pressure discretizations, respectively.

It is well know that these two spaces need to satisfy the inf-sup condition [9]. We recall
also that, due to the presence of the source term localized along the structure, the pressure
might present jumps along the interface between fluid and solid. For this reason, pairs
of finite element spaces enjoying the so called local mass conservation property are to
be preferred. Discontinuous pressure schemes enjoy this property, however many popular
Stokes elements, as e.g. Hood–Taylor and Bercovier–Pironneau elements, are based on
continuous pressure. In [1] we proposed and analyzed an enhancement of such elements
by adding to the pressure space piecewise constant functions. In this work we consider
higher polynomial degree and higher enhancing shape functions with respect to [1]. More
precisely, we consider the Hood–Taylor element of degree 2, that is the velocities are
piecewise cubic polynomials while the pressures are continuous piecewise quadratic. Then
we add to the pressure space discontinuous piecewise affine functions. Hence the resulting
two-dimensional finite element spaces are:

Vh = {v ∈ H1
0 (Ω)

d : v|K ∈ P3(K)d ∀K ∈ Th}
Qh = {q ∈ L2

0(Ω) : q = q2 + q1, q2 ∈ C0(Ω̄),

q2|K ∈ P2(K), q1|K ∈ P1(K) ∀K ∈ Th}.
(10)

Let us introduce a subdivision of the interval (0, T ) in N equal parts with size ∆t,
then tn = n∆t and un stands for the value of the function u at time tn. Similar notation
holds for the other functions involved in the problem. Applying a modified backward
Euler scheme to equations (7a)-(7b) and (7e) and using the latter in order to discretize
the source term (7c) we end up with the following time advancing scheme.

Step 1. Compute

〈Fn+1
h ,v〉 = −

∑
e∈Eh

[[Ph]]
n · v(Xn

h(s, t)) dA ∀v ∈ Vh. (11)

Step 2. Solve the Navier–Stokes equations: find (un+1
h , pn+1

h ) ∈ Vh ×Qh such that

ρf

(
un+1
h − un

h

∆t
,v

)
+ b(un+1

h ,un+1
h ,v) + a(un+1

h ,v)− (∇·v, pn+1
h ) =

− (ρs − ρf )

∫

B

un+1
h (Xn

h(s))− un
h(X

n−1
h (s))

∆t
· v(Xn

h(s))ds+ 〈Fn+1
h ,v〉 ∀v ∈ Vh

(∇·un+1
h , q) = 0 ∀q ∈ Qh.

(12)

5
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Step 3. Advance the position of the points of the structure:

Xn+1
hi −Xn

hi

∆t
= un+1

h (Xn
hi) ∀i = 1, . . . ,M. (13)

We remark here that the expression we have introduced to compute the force (7d) takes
into account the fact that Xh is piecewise affine so that P(F) is piecewise constant.

The space-time scheme described above satisfies an energy estimate similar to (8)
provided the following CFL condition is verified

µ− κmaxC
h
(m−2)
s ∆t

h
(d−1)
x

LnCn
e ≥ 0 (14)

where Ln := maxTk∈Sh

{
maxsj ,si∈V (Tk) |Xn

hj −Xn
hi|
}
.

4 DISTRIBUTED LAGRANGE MULTIPLIER FORMULATION

In the PW approach we advance the structure moving each point according to equa-
tion (7e). We introduce now a different variational approach whose time-space discretiza-
tion seems to enjoy better stability conditions.

First of all we write equation (7e) in weak form as follows:
〈
µ,u(X(·, t), t)− ∂X(·, t)

∂t

〉
= 0 ∀µ ∈ (H1(B)d)∗ (15)

where 〈·, ·〉 denotes the duality pairing between H1(B)d and its dual space (H1(B)d)∗. The
notation (·, ·)B stands for the L2-scalar product in L2(B). Then introducing a Lagrange
multiplier associated to the above constraint, Problem 2.1 can be reformulated as follows:

Problem 4.1 Given u0 ∈ H1
0 (Ω)

d and X0 ∈ W 1,∞(B), find (u(t), p(t)) ∈ H1
0 (Ω)

d×L2
0(Ω),

X(t) ∈ W 1,∞(B), and λ(t) ∈ ((H1(B))d)∗, such that for almost every t ∈]0, T [ it holds

ρf
d

dt
(u(t),v) + b(u(t),u(t),v) + a(u(t),v)

− (∇·v, p(t)) + 〈λ(t),v(X(·, t))〉 = 0 ∀v ∈ H1
0 (Ω)

d (16a)

(∇·u(t), q) = 0 ∀q ∈ L2
0(Ω) (16b)

(ρs − ρf )

(
∂2X

∂t2
(t),Y

)

B
+ (P(F(t)),∇s Y)B − 〈λ(t),Y〉 = 0 ∀Y ∈ (H1(B))d (16c)

〈
µ,u(X(·, t), t)− ∂X(·, t)

∂t

〉
= 0 ∀µ ∈ ((H1(B))d)∗ (16d)

u(0) = u0 in Ω, X(0) = X0 in B. (16e)

We consider Λh = {µ ∈ C0(B; Ω) : µ|Tk
∈ P1(Tk)

d, k = 1, . . . ,Me}; then the space-time
discretization of Problem 4.1, obtained by approximating the time derivatives in (7a),
(16c) and (16d) with proper finite differences, reads:

6
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Problem 4.2 Given u0,h ∈ Vh and X0,h ∈ Sh, for n = 1, . . . , N find

(un
h, p

n
h) ∈ Vh ×Qh, Xn

h ∈ Sh, λn
h ∈ Λh,

such that u0
h = u0,h, X

0
h = X0,h and

ρf

(
un+1
h − un

h

∆t
,v

)
+ b(un+1

h (t),un+1
h (t),v) + a(un+1

h ,v)

− (∇·v, pn+1
h ) + 〈λn+1

h ,v(Xn
h)〉 = 0 ∀v ∈ Vh

(∇·un+1
h , q) = 0 ∀q ∈ Qh

(ρs − ρf )

(
Xn+1

h − 2Xn
h +Xn−1

h

∆t2
,Y

)

B
+ (P(Fn+1

h ),∇s Y)B

− 〈λn+1
h ,Y〉 = 0 ∀Y ∈ Sh〈

µ,un+1
h (Xn

h)−
Xn+1

h −Xn
h

∆t

〉
= 0 ∀µ ∈ Λh.

We remark that in Problem 4.2 we have evaluated the nonlinear terms involving the
position of the structure at the previous time. It remains only one possible nonlinear
contribution which depends on the expression of P. For clearness we write the time
advancing scheme in matrix form in the linear case P(F) = κF. Consider time tn = n∆t
and solve for tn+1:



(
ρf
∆t
Mu + A) B� 0 G(Xn

h)
�

B 0 0 0

0 0 δρ
∆t2

MX +K −J�

G(Xn
h) 0 1

∆t
J 0







un+1
h

pn+1
h

Xn+1
h

λn+1
h


 =




ρf
∆t
Muu

n
h

0
δρ
∆t2

MX(2X
n
h −Xn−1

h )
1
∆t
JXn

h




with the following definitions of the involved matrices:
Mu, MX fluid and structure mass matrices,
A matrix associated to the convective term and the fluid stiffness,
G(X) matrix associated to 〈µ,v(X)〉,
B matrix associated to the divergence,
K structure stiffness matrix,
J matrix associated to 〈µ,Y〉.

5 NUMERICAL EXPERIMENTS

In this section we provide numerical experiments illustrating the techniques depicted
in this work. We first control the performances of the high order enhanced finite elements
defined in (10), both in terms of approximation and local mass conservation. We start
with the PW scheme described in Sect. 3. A typical test case for IBM is the simulation of
an immersed co-dimension one elastic string. In this case we take P = κF. The domain

7
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(b) p− ph, P3/(P2 + P0).
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(c) p− ph, P3/(P2 + P1).

Figure 1: Stationary solution for an elastic circle immersed into the fluid, error for the pressure. In the
pictures we plot only the upper right corner of the solution.

Ω is the unit square and we a consider a regular mesh obtained by dividing the unit
square domain into N ×N squares subdivided into two triangles, with mesh size hx. The
reference domain B is the unit interval divided intoM subintervals with size hs. When the
initial configuration of the string is circular, we have an analytical solution, characterized
by a discontinuous pressure, the interested reader can refer to [8] for the details. In
Fig. 1, we represent the error distribution for the pressure in the upper right quarter of
the domain. In order to visually stress the differences among the different finite element
performances we represent the error on a coarse mesh obtained by dividing Ω into 16×16
squares. Due to the discontinuity of the pressure one can appreciate oscillations around
the position of the immersed elastic string which can be interpreted as a sort of Gibbs
phenomenon. In the case of P3/P2 finite element (the standard Hood–Taylor element of
degree 2), the area involved by the Gibbs oscillations covers more than three sub-squares
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(a) Area conservation for different
finite elements.
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(b) L2-norm for the real divergence.

Figure 2: Area conservation, and L2-norm of the real divergence for the PW scheme with κ = 1, ∆t =
10−3, µ = 1, hs = 1/1024, hx = 1/16.

close to the immersed boundary. In the case of the enhancement with piecewise constants
P3/(P2+P0), this area is reduced to two or three times hx, and the error profile is sharper.
The enhancement with discontinuous piecewise affine polynomials P3/(P2 + P1) provides
oscillations greater than 0.1 confined in the same element where the structure is located.

In the second experiment we consider an elastic string whose initial configuration con-
sists of an ellipse. In this case the elastic structure evolves into a circle. Due to the
incompressibility constraint the area internal to the elastic boundary has to remain con-
stant, see [4] for details. In Fig. 2 we compare the evolution of the area and of the L2-norm
of the divergence with respect to time. In Fig. 2(a) we see that the enhancement with
piecewise constant discontinuous functions is already effective in improving the area con-
servation, but far more effective is the enhancement with discontinuous piecewise affine
polynomials. Same comments hold true for the L2-norm of the divergence presented in
Fig. 2(b). These results suggest that there is a correspondence between the L2-norm of
the divergence and the area preservation of the method.

The next set of experiments is devoted to the comparison between PW and DLM
schemes when the P3/(P2+P1) element is used. In Fig. 3 we compare the mass conserva-
tion properties of the two schemes. We have used here the same parameters for the two
methods and it is evident that the DLM scheme behaves better from this point of view.
This fact is also confirmed in Fig. 4 where the position of the structure during a very
coarse simulation is shown. The plot of the elastic membrane at subsequent simulation
times, demonstrates that, even with a coarse mesh for the structure, the DLM approach
can achieve good mass preservation properties, while the PW scheme needs at least one
structure point per fluid element. When this last condition is not fulfilled, as in Fig. 4(a),
the method fails, and the ellipse collapses instead of setting to a circle.

The next figures illustrate the behavior of PW and DLM schemes from the point of
view of the stability. In Sect. 3 we have pointed out that the PW scheme is stable provided
the CFL condition (14) is satisfied. Here we show that this condition is no longer required

9
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Figure 3: Area conservation for PW and DLM schemes with κ = 1, ∆t = 10−2, µ = 1, hs = 1/1024,
hx = 1/32.
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Figure 4: Structure position evolving in time.

for the DLM scheme. Fig. 5 reports the energy estimate as a function of time for fixed
mesh parameters hx = 1/64 and hs = 1/128 and different values of ∆t. We see that the
energy of the PW scheme blows up when ∆t is greater than 10−2 according with (14)
while in the DLM scheme it remains constant. Same remark holds also for Fig. 5 where
we have fixed ∆t = 10−2 and hx = 1/64 and keep varying hs.

6 CONCLUSIONS

Higher order enhanced finite elements enjoy area and approximation properties that
are up to ten times better in terms of area conservation, and three times better in terms of
Gibbs phenomenon controlling (with respect to standard low order elements). Moreover,
enhancing with P1 pressures is much more effective than with P0. This means that not
only it is important to capture the discontinuity in the pressure, but it is also important
the accuracy of the functions capturing the pressure discontinuity.

On the other hand, first results related to the DLM formulation are extremely encour-

10

332



Daniele Boffi, Nicola Cavallini, Francesca Gardini, Lucia Gastaldi

0 0.5 1 1.5 2
10

−1

10
0

10
1

time

 

 

DLM

PW

(a) ∆t = 10−2, κ = 5, µ = 1.
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(b) ∆t = 5.0 10−2, κ = 5, µ = 1.
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(c) ∆t = 10−1, κ = 5, µ = 1.

Figure 5: Ellipse test case. Energy estimations for different ∆t, with fixed ρ = 1, µ = 1, and κ = 5.
Eulerian mesh size is hx = 1/64, Lagrangian mesh size is hs = 1/128.
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(a) hs = 1/128, hx = 1/64.
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(b) hs = 1/256, hx = 1/64.
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(c) hs = 1/512, hx = 1/64.

Figure 6: Ellipse test case. Energy estimations for different hs, with fixed ρ = 1, µ = 1, and κ = 5,
∆t = 10−2. Eulerian mesh size is hx = 1/64.

aging both in terms of CFL stability and in terms of mass preservation. In fact these
results suggest that the performances are worth the implementation and computational
price of introducing the Lagrange multiplier for the kinematic condition. These prelimi-
nary results will undergo a more extensive and detailed exploration.
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