
Keynote Lecturer: Francesco Marotti de Sciarra A constitutive model of coupled thermoelasticity with 
plasticity

V International Conference on Computational Methods for Coupled Problems in Science and Engineering 
COUPLED PROBLEMS 2013 

S. Idelsohn, M. Papadrakakis and B. Schrefler (Eds) 
 
 
 

A CONSTITUTIVE MODEL OF COUPLED THERMOELASTICITY 
WITH PLASTICITY 

R. BARRETTA*,  F. MAROTTI DE SCIARRA† AND M. SALERNO+ 

* University of Naples Federico II, Department of Structures for Engineering and Architecture 
Via Claudio 21 80121 Naples, Italy 

e-mail: rabaret@unina.it 
 

† University of Naples Federico II, Department of Structures for Engineering and Architecture 
Via Claudio 21 80121 Naples, Italy 

e-mail: marotti@unina.it 
 

+ University of Naples Federico II, Department of Structures for Engineering and Architecture 
Via Forno Vecchio 36 80134 Naples, Italy 

e-mail: maria.salerno@unina.it 
 

Key words: Thermoelasticity without energy dissipation, Thermoplasticity, Constitutive 
model, Thermodynamic potentials. 

Abstract. A consistent set of the thermodynamic functions in the framework of the Green and 
Naghdi (GN) coupled thermoelasticity with plasticity is addressed. The relations between 
these functions are provided and the constitutive relations are obtained. 

 
 
1 INTRODUCTION 

It is well-known that the classical linear theory of heat conduction, based on Fourier's law 
for the thermal flux, predicts that a thermal effects at a point of a body is felt instantly at other 
points of the body. Therefore in past years several alternative theories of heat conduction have 
been proposed. In this paper we consider the non-classical theory of thermoelasticity 
developed by Green and Naghdi [1,2] which incorporates the approach based on Fourier's law 
(referred to as type I), the theory without energy dissipation (type II) and a theory which 
allows finite wave propagation as well as energy dissipation (type III). Contributions on the 
Green and Naghdi (GN) approach can be found, among others, in Bargmann and Steinmann 
[3] and references therein. 

An analytical treatment of coupled thermoelastic problems is complex so that the 
development of alternative methods of analysis turns out to be important. Accordingly 
variational formulations of such problems can be of great interest from a theoretical point of 
view and from a computational standpoint since they are the foundation to develop mixed 
finite elements. 
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In the present paper we treat the non-classical thermoelastic problem following the GN 
model of type II. The purpose of the contribution is to provide a constitutive model of 
thermoelasticity coupled with plasticity suitable to formulate variational formulations (see 
Romano et al. [4-6] and Marotti de Sciarra [7-9] for nonlocal problems), also for functionally 
graded materials [10-13], in order to consistently derive a finite element [14-15] or boundary 
element [16] approach and the related algorithmic procedure. 

The GN coupled thermoelastic model with plasticity is formulated within the framework of 
generalized standard material (Halphen and Nguyen [17]).  

Moreover we adopt the hypotheses of  small strains, additive plasticity  and rate-dependent 
plasticity (Bartels and Roubíček [18]), whereas we get the assumption that the elastoplastic 
behaviour of the material does not influence the thermoelastic constitutive properties, i.e. the 
thermal behaviour in all the elastic ranges. (Bertram  and Krawietz [19]). 

The relations between the thermodynamic functions and their alternative formulations are 
obtained. A consistent set of the eight thermodynamic functions has been derived into the 
framework of convex analysis and conjugate functions.  

In the considered GN model, the thermodynamic functions depend on three state variables 
where the dual set of constitutive state variables are given by strain, stresses, temperature, 
entropy, gradient of thermal displacement and entropy flux. 

Using a systematic procedure based on Legendre transforms, the thermodynamic potentials 
are expressed in terms of different combinations of the abovementioned state variables 
obtaining a set of eight alternative functions. A characteristic feature of the proposed 
approach is that the derivatives of the thermodynamic potentials and of their alternative forms 
provide different expressions of the constitutive relations which turn out to be all equivalent 
each others. 

2 CLASSICAL THERMODYNAMIC FRAMEWORK  
Let us consider the classical thermodynamic framework of the thermo-mechanical 

processes  for an elastoplastic body. The constitutive model follows from the first principle of 
thermodynamics, expressed in pointwise form of the internal energy U : 

U Q r    σ ε  (1) 

where ,ε σ  denote the strain and the stress tensors, Q= div q  is the heat supply from 
conduction,  being q  the heat flux, and r  is the heat supply from irradiation. 

The second principle of thermodynamics is assumed in form of Clausius-Duhem 
inequality: 

0r div      


q  (2) 

where   is the internal entropy production rate per unit volume and   is the absolute 
temperature ( 0  ).   

The thermodynamic eqs. (1) and (2) yield the non-negative total dissipation: 
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0D U     


 
qσ ε

(3) 

The inequality (3) is employed to derive some restrictions on the constitutive equations.  
The thermo-elastoplastic solid is assumed to have a saddle internal energy (convex in 

terms of elastic strain and internal variables and concave in terms of the elastic entropy), 
differentiable with respect to the arguments, as 

e 1 2 e( , , , )U U   ε (4) 

where the plastic behaviour with hardening is introduced by a suitable set of kinematic 
internal variables  1 2,α α  that describe the kinematic and isotropic hardening. The dual 

static internal variables are  1 2,χ χ .  
Moreover, following a consolidated procedure, the total strain ε  is assumed to be the sum 

of an elastic strain eε and of a plastic strain pε  (Coleman and Owen [20]) 
Expanding the derivative of e 1 2 e( , , , )U   ε  and substituting in (3), we can write the 

overall dissipation: 

e 1 2 ee p 1 2 e( ) 0D U U U U                   


    ε
qσ ε σ ε (5)

that leads to 

e

1 2

e

e 1 2 e

1 e 1 2 e 2 e 1 2 e

e 1 2 e

( , , , )

( , , , ) ( , , , )

( , , , )

U

U U

U
 



    

           

     

εσ ε

ε ε

ε

(6) 

 

where 
e

ε  denotes the partial derivative of U with respect to eε  and similarly the other ones. 
Then the inequality (3) reduces to following form  

p 1 1 2 2 e 0D            


   
qσ ε   

Accordingly, introducing the following additive decomposition of the total entropy  in 
elastic and plastic parts, it turns out to be: 

e p     (7) 

so then it follows 

p 1 1 2 2 p 0D            


  
qσ ε

  (8) 

 

where p  is the rate plastic entropy p e     .  
The plastic entropy is related to dissipative plastic structural changes and does not affect 

the internal energy (Simo and Miehe [21]).  
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3 NON-CLASSICAL DISSIPATIONLESS THERMOPLASTICITY 
In this paper we analyse the GN thermoelastic framework of type II coupled with plastic 

behaviour with linear hardening.   
The GN model introduces a scalar variable  , called the thermal displacement, which is 

related to the temperature   by the relation: 

( ) d 0    x x( , )
t
0,t t (9) 

where x is a point pertaining to the thermo-elastoplastic body defined on a regular bounded 
domain Ω of an Euclidean space,    r  represents the temperature variation from the 
uniform reference temperature r  and 0  is the initial value of   at the time 0t . As a 
consequence the time derivative of the thermal displacement field is the temperature variation, 
i.e.    . The thermal displacement gradient   is denoted by  g . 

The internal energy assumes the following form: 

e 1 2 e( , , , , )U U   ε g (10) 

Expanding the derivative of e 1 2 e( , , , , )U   ε g  and substituting in (3), we can write the 
overall dissipation: 

e 1 2 ee p 1 2 e( ) 0D U U U U U                      


     ε g
qσ ε σ ε g (11) 

 

that leads to 

e

1 2

e

e 1 2 e

1 e 1 2 e 2 e 1 2 e

e 1 2 e

( , , , , )

( , , , , ) ( , , , , )

( , , , , )

U

U U

U
 



    

           

     

εσ ε g

ε g ε g

ε g

(12) 

 

Recalling that    g , introducing the entropy flux vector 

qp  and considering the 

relations (12), the total dissipation (11) reduces to this form 

p 1 1 2 2 p ( 0D U- )               gσ ε p (13) 

that leads to  

U gp (14) 

Finally the total dissipation in the GN  model turns to be: 

p 1 1 2 2 p 0D             σ ε (15) 

being null the dissipation due to heat conduction. It is apparent that the above dissipation 
coincides to the classical mechanical dissipation m p 1 1 2 2D         σ ε  [22] and the 
thermal dissipation th pD   . 
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4 ENERGETIC FUNCTIONS FOR COUPLED THERMOELASTICITY WITH   
PLASTICITY 
In this paper the GN thermodynamic framework is formulated by introducing the following 

generalized vectors of the kinematic and dual static internal variables: 
 total strain  , ,


ε ε 0 0 , 

 elastic strain  e e 1 2, ,

ε ε α α , 

 plastic strain  p p 1 2, ,  

ε ε α α , 

 stress  1 2, ,

σ σ χ χ , 

The scalar product between dual quantities 

ε  and 


σ  has the mechanical meaning of the 

internal virtual work: 

e e 1 1 2 2      
 
σ ε σ ε χ α χ α (16) 

Let us now derive the complete set of the energy functions for the considered GN model 
and the related constitutive relations in the framework provided by convex/saddle functions 
(Houlsby and Puzrin [23]) and, for different models, see also [24-28] and [29-31]. 

Classically, the analysis of a thermodynamic process starts from the Helmholtz free energy 
 , which it is a function of strain 


ε , temperature   and thermal gradient vector g , that is 

� �, ,e ε g


. The Helmholtz free energy   is assumed to be convex in the strain e

ε  and in the 

thermal gradient vector g  and concave in the temperature   at any point x. The dual variables 
of the triplet � , �,e ε g

  are the stress σ


, the elastic entropy e  and the entropy flux vector p .  
Now we derive the three conjugates of the free energy   with respect to one state 

variable.  
A saddle function *

1  can be associated with the Helmholtz free energy  , by considering 
the conjugate of   with respect to the strain tensor in the form: 

 1 � , ����p � �* , , ,
e

e e    
ε

σ g σ ε ε g


   
    (17) 

The function *
1  turns out to be convex in ( , )


σ and concave in g . 

The conjugate of the function   with respect to   is the concave function *
2  given by: 

 2� , ����� � �* , , ,e e e e


   ε g ε g
 

 (18) 

where e  is the entropy. 
A saddle function *

3  can be associated with the Helmholtz free energy  , by considering 
the conjugate of   with respect to the thermal gradient vector g , in the form: 

 3� , ����p � �* , , ,e e    
g

ε p p g ε g
 

 (19) 

and it is convex in ( , ) p  and concave in eε


. The variable p  denotes the entropy flux vector 
and is related to the heat flux q  by the relation  p q . 
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Let us now derive the conjugate functions of the Helmholtz free energy with respect to the 
pairs of variables e( , )


ε , ( , ) g  and e( , )


ε g .  

The conjugate of   with respect to e( , )

ε  is the saddle function *

12 , convex in 

σ  and 

concave in e( , ) g ; given by: 

 12� , ����� ��p � �* , , ,
e

e e e e


     
ε

σ g σ ε ε g


   
 (20) 

The saddle function *
23  is the conjugate of   with respect to the pair ( , ) g : 

 23� , ����� ��p � �* , , ,e e e e


     
g

ε p p g ε g
 

 (21) 

and results concave in e e( , )

ε  and convex in p . 

The conjugate of the Helmholtz free energy   with respect to the pair e( , )

ε g is the convex 

function *
13  in � , �,σ p


 given by: 

 13� , ����p � �*
,

, , ,
e

e e      
ε g

σ p σ ε p g ε g


   
 (22) 

The saddle function * is the conjugate of the Helmholtz free energy   with respect to the 
triplet � , �,e ε g


and is defined as: 

 � , ����� ��p � �*
,

, , ,
e

e e e e


       
ε g

σ p σ ε p g ε g


   
 (23) 

The conjugate function *  turns out to be convex in � , �σ p


and concave in e . 
It is worth noting that further relations connecting the above conjugate potentials can be 

derived following the above mentioned procedure but they are not explicitly provided for sake 
of conciseness. 

5 CONSTITUTIVE RELATIONS  
Let us now show that the constitutive relations for the GN thermoelasticity can involve, as 

a maximum, eight different thermodynamic potentials. 
To this end the following equivalent relations in terms of the functions * * *

1 2 12, , ,     and 
* * * *

23 13 3, , ,     are provided: 

*

*
1
*
23
*
2

*
13

*
12

*
3

( , η , )= ( , , )
( , , )= ( , η , )
( ,η , )= ( , , )
( , , )= ( , η , )
( , , )= ( , η , )
( ,η , )= ( , , )
( , , )= ( , η , )
( ,η , )= ( , , )

e e

e e

e e

e e

e e

e e

e e

e e

d
d
d
d
d
d

d
d









   
  

   
  

 
 

  

 

 

 

 

 

 

 

 

σ p ε g
ε g σ p
ε p σ g
σ g ε p
σ p ε g

ε g σ p
ε p σ g
σ g ε p



 (24) 
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The relations (24) among conjugate functions are equivalent to the following Fenchel's 
equalities, in terms of the functions * * *

1 2 12, , ,    and * * * *
23 13 3, , ,    : 

23 1

13 2

3 12

� �� � , ��
� , �� � , ��
� , � � , ��
� , � � , ��

*

* *

* *

* *

, , ,
, ,

, ,
, ,

e e e e

e e e e

e e e e

e e e e



 

 

 

       

       

       

         

ε g σ p σ ε p g
ε p σ g σ ε p g
σ p ε g σ ε p g
ε p σ g σ ε p g

   

   

   

   

 (25) 

On the basis of the above relations (24) eight different thermodynamic functions, with 
different combinations of the state variables, can be defined.  

As a consequence, the differential relations (24) show that the constitutive relations for the 
considered GN model can be equivalently expressed in terms of such eight thermodynamic 
functions.  

The energy definitions and the constitutive relations for the considered GN thermoelastic 
model without dissipation can be obtained by giving the mechanical meanings to the 
introduced energetic functions as reported in Table 1.  

Table 1: Relations among the convex/concave functions and the thermodynamic energy functions.  
 
 
 

 
 
  
In addition, further four thermodynamic potentials can be defined with different 

combinations of the state variables from the above energy functions.  
These thermodynamic potentials are named alternative since they differ from the GN 

thermodynamic potentials reported in Table 1 by the exchange of the displacement gradient g  
with the entropy heat flux p .  

The alternative thermodynamic potentials are reported in Table 2.  
Table 2: Relations among the convex/concave functions and the alternative formulations of the 

thermodynamic energy functions.  
 
 
 

 
 

 
 
 
  
The constitutive relations for the considered GN model can be consistently deduced from 

the differential relations reported in (24) in terms of the thermodynamic energy functions and 

Helmholtz free energy: � �, ,e ε g


 
Internal energy: *

2( ,η , )= ( , η , )e e e eU  
 
ε g ε g  

Enthalpy: 12� , � � , �*, ,e eH    σ g σ g
 

 
Gibbs free energy: 1� , � � , �*, ,G    σ g σ g

 
 

Alternative form of 
Helmholtz free energy: 3� �� � , �*ˆ , , ,e e    ε p ε p

 
 

Alternative form of  
the internal energy: 

*
23

ˆ ( ,η , )= ( , , )e e e eU   
 
ε p ε p  

Alternative form of the 
enthalpy: � , � � , �*ˆ , ,e eH     σ p σ p

 
 

Alternative form of 
Gibbs free energy: 13� , � � , �*ˆ , ,G     σ p σ p
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of their alternative formulations. In particular, the GN constitutive relations in terms of the 
four thermodynamic potentials are provided in Table 3.   

Table 3: The thermodynamic potentials and the related constitutive relations. 

 
Moreover the GN constitutive relations in terms of the four alternative forms of the 
thermodynamic potentials are given in Table 4.   

Table 4: Alternative formulations of the thermodynamic potentials and the related constitutive relations. 

 
It is worth noting that the constitutive relations reported in Table 3 and 4 in terms of the 

Helmholtz free energy � �, ,e ε g


 Internal energy ( ,η , )e eU

ε g  

e

e 1
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ε

ε
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ε g  

e e e( , )U ,   

ε g  

e( , , )    


gp ε g  e e( , )U ,   


gp ε g  

Enthalpy � , �,eH σ g


 Gibbs free energy � , �,G σ g
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σ

σ
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gp σ g  ( , )G ,   


gp σ g  

Alternative form of  Helmholtz free energy 
� �ˆ , ,e ε p


 
Alternative form of  the internal energy 
ˆ ( ,η , )e eU

ε p  

e

e 1

2

e

e 1 e

2 e
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e
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pg ε p  e e
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pg ε p  
Alternative form of  the enthalpy 
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complete set of the thermodynamic functions turn out to be all equivalent each other. 
The correspondences between the thermodynamic potentials provide a generalization to the 

present GN thermoelastic framework of the classical Legendre transform concerning the sum 
of the elastic and complementarity energies. In fact, assuming that the state variables � , �,e ε g


and � ,η �,eσ p

  fulfil the constitutive relations reported in Tables 3 and 4, the Fenchel's 
equalities  (24) can be rewritten in the following form: 

� � � , �
� , � � ,η �
� ,η � � , �
� , � � �

ˆ, , ,
ˆ, ,
ˆ, ,
ˆ, , ,

e e e e

e e e e

e e e e

e e e e

H

G U

U G

H

        

        

       

         

ε g σ p σ ε p g
σ g ε p σ ε p g
ε g σ p σ ε p g
σ g ε p σ ε p g

   

   

   

   

(26)

 
In particular we underline the mechanical meaning of the second relation of (26): 
 the difference between the alternative form of the internal energy and the Gibbs free 

energy provides the sum of mechanical virtual work and thermal virtual work between 
elastic entropy and temperature and between the thermal displacement gradient and 
the entropy flux vector.  

5 CONCLUSION 
Using a systematic procedure based on convex/concave functions and Legendre 

transforms, the consistent set of the thermodynamic functions in the framework of GN 
dissipationless thermo-elasto-plasticity is addressed. Starting from Helmholtz free energy, the 
thermodynamic potentials, i.e. the internal energy, the enthalpy and the Gibbs free energy, are 
derived. Moreover it is shown that four more thermodynamic potentials, named alternative, 
can be provided. The relations between these functions are provided and the constitutive 
relations are obtained. 
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