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The aim of this project is to design and implement a control algorithm and a Luenberger observer in 

order that a mobile two-wheeled robot follows a path. In order to do it, we will study the observability and 

controllability of the system. Simulations of the tracking system will be done and then introduced to the 

robot’s code and tested in a simple circuit. 
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I. INTRODUCTION 

A two-wheeled robot is a simple robot formed by a 

chassis, an electronic and a mechanical part. It is 

schematically composed of two independent actuated 

wheels on a common axle whose direction is linked to the 

robot chassis, and one passively orientable wheel, which is 

not controlled and serves for sustentation purposes. The 

robot has a sensor at the front which is able to detect a color 

change of the path, so it is able to search for the line until it 

finds it and remains over it. 

 

First of all we will study the control problem of the robot 

following a path with a certain velocity.  

  

 
Fig. 1. Two-wheel differential drive mobile robot  

 

In order to do that, we will study the stable case of going 

forward and with any curvature and then we will focus on 

the simplest case of cero curvature. 

 

II. MATHEMATICAL MODEL OF A 

TWO-WHEELED MOBILE ROBOT 

PROBLEM FORMULATION 

The kinematic model for the robot with respect to point 

Pm is given by  

{

�̇� = cos 𝜃 𝑢1 
�̇� = sin 𝜃 𝑢1
�̇� = 𝑢2

 

 

where we defined 𝑢1 and 𝑢2 as 

 

𝑢1 =
𝑟

2
(𝑤𝑙 + 𝑤𝑟)             𝑢2 =

𝑟

2𝑅
(𝑤𝑙 − 𝑤𝑟) 

 

being 𝑤𝑙 and 𝑤𝑟 the angular velocities of the left and right 

wheels, respectively.  

 

Defining a new angle 𝜃𝑒 = 𝜃 − 𝜃𝑞 where 𝜃𝑞 is the angle 

of the path at point 𝑃𝑞 , see figure 1, we get the system 

 

{
 
 

 
 
�̇� = 𝑙𝑢2 − tan 𝜃𝑒 (𝑢1 + 𝑑𝑢2)

�̇� =
𝑢1 + 𝑑𝑢2
cos 𝜃𝑒

𝜃�̇� = −𝑢2 −
𝑐

cos 𝜃𝑒
(𝑢1 + 𝑑𝑢2)

 

 

Where, 𝑑 is the distance between the P point and the 

trajectory, 𝑐(𝑥) is curvature of the path and �̇� is the velocity 

of the robot. 𝑅 is the distance between the two wheels and 𝑟 

is the wheels’ radius. See details in [1], [3] and [4]. 

 

The control objective is that the robot follows the line, 

i.e. 𝑑∗ = 0 and  𝑞∗̇ = 𝑣. At the equilibrium, this requires 

𝑢1, 𝑢2  to be  

 

𝑢1
∗ = 𝑣√1 − 𝑙2𝑐2

𝑢2
∗ = −𝑐𝑣

𝜃𝑒
∗ = arcsin (−𝑐𝑙)

 

 

The linearized system in the working points becomes 

 



  

2 

 

(
�̇�

𝜃�̇�
) =

𝑣

𝛼
(
−𝑙𝑐2 −1

𝑐2 𝑙𝑐2
) (
𝑑

𝜃𝑒
) +

1

𝛼
(
𝑙𝑐

−𝑐
) �̃�1 + (

𝑙

−1
) �̃�2  

 

Where we defined 𝛼 = √1 − 𝑙2𝑐2, �̃�1 = 𝑢1 − 𝑢1
∗  and   

�̃�2 = 𝑢2 − 𝑢2
∗.  

 

From now on, we will set  𝑢1 = 𝑢1
∗ , since 𝑢1 is our 

input variable, obtaining the following system  

 

(
�̇�

𝜃�̇�
) =

𝑣

𝛼
(
−𝑙𝑐2 −1

𝑐2 𝑙𝑐2
) (
𝑑

𝜃𝑒
) + (

𝑙

−1
) �̃�2 

 

The previous dynamics can be written as a transfer 

function of the input/output system 

 

𝐷(𝑠) =
𝑙𝑠 + 𝛼𝑣

𝑠2 + 𝑣2𝑐2
𝑈2(𝑠) 

 

I f we consider the case: 𝑐 = 0 so 𝛼 = 1, that leads to 

 

𝐷(𝑠) =
𝑙𝑠 + 𝑣

𝑠2
𝑈2(𝑠) 

 

III. OUTPUT TRACKING OBSERVER 

DESIGN 

We analyse the observability condition of the system 

with the output 𝑦 = 𝑑. We obtain the following 

observability matrix 

 

𝑊𝑜 = (
1 0

−𝑙𝑣𝑐2

𝛼

−𝑣

𝛼

) 

 

𝑊𝑜 is full rank since 𝛼 > 0 and 𝑣 ≠ 0 and therefore our 

system will be observable. Then we propose a Luenberger 

observer of the form 

 

(
�̇̃�

�̃�𝑒
̇ ) =

𝑣

𝛼
(
−𝑙𝑐2 −1

𝑐2 𝑙𝑐2
) (

�̃�

�̃�𝑒
) + (

𝑙

−1
) �̃�2 + (

𝐿1
𝐿2
) (𝑑 − �̃�) 

 

Which considering a straight line (c=0) we get 

 

(
�̇̃�

�̃�𝑒
̇ ) = (

0 −𝑣

0 0
) (

�̃�

�̃�𝑒
) + (

𝑙

−1
) �̃�2 + (

𝐿1
𝐿2
) (𝑑 − �̃�) 

 

That yields the following state matrix 

 

𝐴𝑂 = (
−𝐿1 −𝑣
−𝐿2 0

) 

 

 

With eigenvalues 

 

𝜆 =
−𝐿1 ± √𝐿1

2 + 4𝑣𝐿2
2

 

 

Then the observer will be stable if  𝐿1
2 + 4𝑣𝐿2 < 0 and 

𝐿1 > 0. 

 

IV. OUTPUT TRACKING CONTROLLER 

DESIGN 

The next step is designing the controller of the robot. We 

propose a state-feedback controller 

 

𝑢2 = −𝑘𝑑�̃� − 𝑘𝜃�̃�𝑒 
 

So our system in closed loop becomes 

 

(
�̇̃�

�̃�𝑒
̇ ) = ((

0 −𝑣

0 0
) − (

𝑙

−1
) (𝑘𝑑 𝑘𝜃)) (

�̃�

�̃�𝑒
) 

 

Yielding in the following matrix state 

 

𝐴 = (
−𝑙𝑘𝑑 −𝑣 − 𝑙𝑘𝜃
𝑘𝑑 𝑘𝜃

) 

 

whose eigenvalues are 

 

𝜆 =
−(𝑙𝑘𝑑 − 𝑘𝜃) ± √(𝑙𝑘𝑑 − 𝑘𝜃)

2 − 4𝑣𝑘𝑑
2

 

 

We want the system to be stable, therefore the following 

conditions must apply: 

 
𝑘𝑑𝑙 > 𝑘𝜃

4𝑣𝑘𝑑 > (𝑙𝑘𝑑 − 𝑘𝜃)
2 

 

Obtaining two poles with imaginary parts that we set 

such that the stablishing time is 0.1s, time enough for the 

robot to do the control action. 

 

V. ASSEMBLING THE ROBOT 

Before implementing the observer and controller, we 

needed a mobile robot to be built. There were already three 

chassis done, but all the connections were needed. So the 

first laboratory days, we had to weld the connections with 

tin. The final result of the robot we used to test our 

controller design is shown in Figure 2. 

 

The robot has a line sensor LRE-F22 (a), two controlled 

wheels at the front (b), plus a free directional wheel (c) at 

the back; a driver L298N (d) for the DC motors; two 
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ultrasound HC-SR04 sensors (e), and a chip ESP8266 (f) 

for the WiFi communications with the PC. The 

alimentation is done through 4 rechargeable batteries (g) A 

that provide 5V of voltage. There are several components 

that need to be alimented at 3.3V so a regulator was also 

needed and a few filters so as to avoid peaks. In order to do 

all of this, a discovery is used, with a STM32F407 

microcontroller (h), that also provides 5V alimentation. 

There were also different filters for the components. 

 

 
Fig. 2. Top and front view of the mobile robot 

 

VI. EXPERIMENTAL RESULTS 

 

The chosen circuit where we made the robot drive along 

is a simple closed circuit composed by two large straight 

lines and the curves that connect them.   

  

After implementing the observer correctly and solving 

the problems that arised, we could take the data when the 

robot does one and a half lap to the circuit, and see the 

graphics of the observed variables in figure 3. In them, we 

can distinguish when the robot takes the curves because 

sudden peaks appear in the graphs and the error is bigger.  

  

We can see that our observer works quite well and that 

the error on the distance is small. We can even see that in 

the straight parts of the circuit, the estimated angle is 

almost zero. 

There is also needed to point out that the controller is 

implemented only when the curvature is c = 0 and, even 

though the error is bigger on the curves, it keeps working 

quite well. 

 

 
Fig 3. From top to bottom: (1) Comparison between the 

distance measured, in red, and observed, in blue. (2) Error 

between measured and observed distance. (3) Observed 

angle. (4) Control action 𝑢2. 
 

VII. SIMULATIONS OF A TWO-

WHEELED ROBOT FOLLOWING A 

PATH BACKWARDS 

We did not have enough time to test our robot going 

backwards, but we were able to do some simulations of the 

behaviour of 𝑑 and 𝜃𝑒 variables when the robot has 

negative velocity. The simulations in figure 4 prove that the 

observer designed works properly and we could implement 

the backwards controller using the observed angle 𝜃𝑒 as a 

parameter. 
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 Fig 4. From top to bottom: (1) Comparison between 

observed (in red) and simulated angle. (2) Error between 

observed and simulated angle. (3) Behaviour of the distance 

 

VIII. CONCLUSION 

After a thorough study of the stability, controllability and 

observability of the two-wheeled robot dynamic system we 

finally were able to achieve our goal: the robot following a 

path.  

  

We have considered the robot following a straight path, 

in other words, with zero curvature. Nevertheless, the 

model has been designed keeping in mind the curvature of 

the line. That means it is possible to use our model as the 

starting point to design an adaptive controller which would 

be able to correct the value of the curvature instantly while 

the robot drives through a complex path. 

  

Finally, we would like to point out that it was also our 

aim to make the robot go backwards. However, because of 

several implementation difficulties and the lack of time it 

was impossible to accomplish it.   
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