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A study of chromatic dispersion (CD) in optical fibers, its effects on signal propagation, the
devices to compensate it and the methods for its characterization. We have presented the exper-
imental setups for the most popular frequency domain methods for CD measurement, Peucheret
and Modulation Phase Shift Method (MPSM), as well as for an advanced method with improved
performance, the Asymmetric Mode and Bias Control method (AMBC), whose theoretical basis
have also been described. Experimental measures of the D parameter of CD for both 75km of
standard single-mode fiber and a Dispersion Compensating Fiber Bragg Grating (DC-FBG) with
all 3 methods have shown good agreement.

I. INTRODUCTION

Chromatic dispersion causes propagation delay dif-
ferences between the spectral components of the signal
transmitted throughout optical fiber, with a net result
of a loss in the data rate that can be achieved.[1] To
overcome this, an accurate characterization of CD in
fiber as well as in the devices to compensate it (namely
Dispersion Compensating Fiber Bragg Grating DC-FBG
and Dispersion Compensating Fiber DCF) is essential.
In this work, we start with the theoretical background
needed (section II) and we try experimentally the stan-
dard methods of measurement MPSM and Peucheret
(section III). Then, we develop an advanced method to
overcome the limitations of standard methods (section
IV), and show its experimental results.

II. THEORETICAL BACKGROUND

Propagation through a single-mode fiber may be mod-
eled as a frequency dependent phase ϕ(ω) [1]. Neglecting
loses, we can model this a the following transfer function
such as:

H(ω) = exp(jϕ(ω)) = exp(−jβ(ω)L) (1)

Where β(ω) = −ϕ(ω)
L is the propagation constant and

L is the length of the fiber. Considering a signal with
bandwidth ∆ω centered at frequency ω0, such that ∆ω ≪
ω0, we may write:

H(ω) ≈ exp

(
−jL

(
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β2
2
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2
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∂iβ
∂ωi

∣∣
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.

Given a Gaussian input pulse of width σ = FWHM
2
√
2 ln 2

and

normalized amplitude: E = e
−t2

2σ2

The output pulse is obtained as:

Eout = E ∗ h(t) = 1
4
√
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exp
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)
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Where we have defined:

γ(L) =
β2L

σ2
(4)

Φ(L) = −β0L− arctan (γ)

2
(5)

κ(L) =
β2L

2(σ4 + β2
2L

2)
(6)

t̃(L) = t− β1L (7)

We can see that the pulse broadens a factor
√

1 + γ2

and its amplitude decreases (while maintaining the total
energy constant), and a group time delay τg = β1L ap-
pears. We can also see that the signal acquires a phase
chirp.

We see that the parameter that quantifies dispersion
is β2. In practice, D is a more useful parameter:

D =
∂τg
∂λ

=
∂β1
∂ω

−Lω2
0

2πc
= −β2

Lω2
0

2πc
(8)

A. Time-based measuring methods

The result of propagation of a Gaussian pulse shows
that the pulse broadens. This suggests that a method
for determining D would be to measure the FWHM of a
Gaussian pulse before and after the dispersive device. In
fact:

FWHMd = 2
√

2 ln(2)σ
√
1 + γ2 (9)

γ =

√(
FWHMd

FWHM0

)2

− 1 (10)

And the expression for D will be:

D =
−ω2

0FWHM2
0

16πc ln 2

√(
FWHMd

FWHM0

)2

− 1 (11)

B. Frequency-based measuring methods

Frequency-based methods use a modulated signal with
carrier whose envelop is:
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E = 1 +m cos(ωRF t+ φ) (12)

Where m≪ 1 is the index of modulation (small-signal
approximation), ωRF is a modulation frequency in the
radiofrequency range and φ is the starting phase which
can be arbitrarily set to zero.
If we develop the effects of propagation in this signal

(with ϕ+ = ϕ(ω0 + ωRF ) and ϕ
− = ϕ(ω0 − ωRF )) we get

for the output envelop:

Eout = E ∗ h(t) = 1 +
m

2

(
ejωRF tejϕ

+

+ e−jωRF tejϕ
−
)

(13)

The detected photocurrent is proportional to the
square modulus of the signal:

|Eout|2 ≈ 1 +
m

2
ejωRF tejϕ

+

+
m

2
e−jωRF tejϕ

−
(14)

= 1 +m

(
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(
ϕ+ + ϕ−

2

)
cos

(
ωRF t+

ϕ+ − ϕ−

2

))
(15)

As seen, the RF term contains depends on the disper-
sion both on its amplitude and its phase, giving rise to
two different approaches to determine D, which we will
proceed to explain next.

1. Peucheret’s method

If we recall our expression for ϕ(ω) equation (2), we
have that:

ϕ+ + ϕ−

2
= β0L+

1

2
β2Lω

2
RF (16)

= β0L+
πλ20Df

2
RM

c
(17)

So, expression (15) will be at a minimum when:

β0L+
πλ20Df

(n)
RM

2

c
= π/2 + nπ (18)

So, by subtracting two consecutive zeros, we will get:

D =
c

λ20

(
f
(n+1)
RF

2
− f

(n)
RF

2) (19)

One shortcoming of this method is that we cannot get
the sign of D.
The main limitation of Peucheret’s method is that, for

small values of D, the radio-frequencies at which a zero
appears may be very far apart, which implies a loss in
spectral resolution. It also implies the need of an in-
strument capable of measuring large ranges of frequency,
which may be expensive.

2. MPSM

From the expression (15), we have that, if we measure
the RF phase shift with a network analyzer, we will get

ψ = ϕ+−ϕ−

2 . We also have τg = − ∂ϕ
∂ω ≈ −ϕ+−ϕ−

2ωm
=

− ψ
ωm

[4] (central difference formula for approximation of

derivatives).
The Modulation Phase Shift Method consists on find-

ing D by varying λ0, (by using a tunable laser, for exam-
ple).

We have:

D =
∂τg
∂λ

≈ τg(λ2)− τg(λ1)

λ2 − λ1
= −ψ(λ2)− ψ(λ1)

ωm(λ2 − λ1)
(20)

One clear shortcoming of this method is the fact that
we need to measure the phase of a signal. The phase
is only distinguishable up to a 2π additive factor. This
means that there is a maximum measurable value of D,
when ψ(λ2)− ψ(λ1) = ±π:

|Dmax| =
1

2fRF (λ2 − λ1)

Another limitation of the MPSM is the trade off be-
tween the values of fRF and ∆λ = λ2 − λ1. Since we
are approximating derivatives with increments, we need
a small frequency to minimize the error of τg ≈ − ψ

ωm
, but

we need a high frequency, since the magnitude measured
experimentally (and thus object to experimental errors)
is the phase ψ.

III. EXPERIMENTAL RESULTS

For this work, we focused on the frequency-based
methods. We will test a DC-FBG (Pirelli CDCM-04074,
with D = −1252.35ps/nm) as well as 75km of standard
single-mode fiber (D = 1275ps/nm).

A. Mach-Zehnder modulator

For all of our methods of measuring dispersion, we will
use a Mach-Zehnder modulator. The input waveguide is
split up into two waveguides interferometer arms. If a
voltage is applied across one of the arms, a phase shift is
induced for the wave passing through that arm. When
the two arms are recombined, the phase difference be-
tween the two waves is converted to an amplitude modu-
lation. The transfer function of the Mach-Zehnder mod-
ulator is:

Eout = Ein cos

(
VB + VRF

Vπ
π

)
(21)

With θi = π
Vπ
Vi, and by using trigonometry identities

and small signal approximation, we have:

Eout ≈ Ein

[
cos(θB)

(
1− 1

2
θ2RF

)
− sin(θB)θRF

]
(22)
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Which at quadrature point (θB = π
4 ) is:

≈ Ein√
2

[
1−m cos(ωRF t)−

m2

2
cos(2ωRF t)

]
(23)

Where m = VRF

Vπ
≪ 1. If we neglect terms of order m2,

and synchronize the phase we have:

Eout ≈
Ein√
2
[1 +m cos(ωRF t)] (24)

Which is exactly the modulated signal with carrier that
we need for our frequency-based methods.

B. Peucheret’s Method

For this method, we used a tunable laser (NewFo-
cus 6427) to generate our signal Mach-Zender Modula-
tor (Fujitsu FTM7921ER) to modulate our signal, and a
Network Analyzer (HP8510B), to measure the amplitude
of the S21 as a function of fRF , with a photo-detector
(HP83440D). For the measure of the 75km of fiber, we
used an EDFA to amplify our signal due to loses. We
used a wavelength of λ = 1559nm.

Figure 1: S21 amplitude for a DC-FBG.

For the measurement of the DC-FBG, with equation
(19), we obtained an average of |D| = 1316.195ps/nm

Figure 2: S21 amplitude for 75km of fiber.

For the measurement of the DC-FBG, with equation
(19), we obtained an average |D| = 1339.226ps/nm

C. MPSM

For this method, we used the same setup as with
Peucheret Method (III B), but we fixed a radiofrequency
fRF = 500GHz, and varied λ. To do this, we used GPIB
connection to control the tunable laser with a computer.

Figure 3: S21 phase-shift delay as a function of λ.

Then, by using equation (20), we obtained on average
a value of D = −1315.609ps/nm

IV. ADVANCED METHODS

Until now, we have been using the Mach-Zehnder mod-
ulator in quadrature point. Now, we will use the mod-
ulator in asymmetric mode (by controlling each branch
independently), and use the bias as a control parameter.
The resulting expression from the modulator will now be:

Eout = Ein
(
ejθm + ejθB

)
= E′

in

(
ejθm−θB + 1

)
(25)

≈ E′′
in

[
2 cos(θB/2) + e−jθB/2

jm

π
cos(ωmt)

]
(26)

Where we have made the approximation ejθRF ≈ 1 +
jθRF , and we have taken constant phases into E′′

in

The effect of dispersion over this signal is:

Ed = E′′
out ∗ h(t) ∼= Ein

[
2cos(θB/2)+

+ e−jθB/2
jm

2π

(
ejωmtejϕ

+

+ e−jωmtejϕ
−
)]

∼= Ein

[
2cos(θB/2)−

− m

2π
sin(ωmt+ϕ

+−θB/2)+
m

2π
sin(ωmt−ϕ−+θB/2)

]
(27)

Where, as before, we have synchronized the phase and
the group delay, and ϕ± = ϕ(ω0 ± ωm)
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And the detected electric signal will be:

Id ∝ E2
d ∝

[
2cos(θB/2)+

m

2π

(
− sin(ωmt+ ϕ+ − θB/2) + sin(ωmt− ϕ− + θB/2)

) ]2
(28)

And approximating to first order in m we get for Id:

cos(θB/2) sin

(
ϕ+ + ϕ−

2
− θB/2

)
cos

(
ωmt+

ϕ+ − ϕ−

2

)
(29)

Compared with the equation for the quadrature point:

Id ∝ cos

(
ϕ+ + ϕ−

2

)
cos

(
ωRF t+

ϕ+ − ϕ−

2

)
(30)

Now, we have terms with θB that depend only on

the bias voltage, and allow us to measure ϕ++ϕ−

2 (and
thus D) without changing the frequency. This allow us
to overcome the main limitation of Peucheret’s method,
which was the need of reaching high frequencies to mea-
sure small values of D. It also allows us to measure the
sign of D.

A. AMBC

AMBC stands for Asymmetric Mode and Bias Control.
For this method, we can fix fRF to obtain a good spectral
resolution, and we will vary the bias θB = VB

Vπ
π From

(29), we can see that as we change θB , we will find zeros

when θB/2 = (2n + 1)π/2, and when ϕ++ϕ−

2 − θB/2 =
nπ. This means that, as we increase VB, we will find
many zeros, some of which will depend on the dispersion
coefficient and some of which will not (mobile and fixed
zeros respectively).
By taking advantage of the mobile ones, we get the

following expression for D:

ϕ+ + ϕ−

2
− θB/2 =

πλ20D

c
f2m − θB/2 = nπ (31)

Now, we can consider the case without DUT (D ≈ 0)
and the case with DUT, and subtract the mobile zeros of
each:

πλ20D

c
f2m − θB2/2 + θB1/2 = 0 (32)

And by substituting the value of θB with equation 2, we
get the expression:

D =
c(VB1 − VB2)

2Vπλ20f
2
m

(33)

The main drawback is the slowness of the measure,
since many different voltages need to be applied. This
is paired with the effect known as Bias Drift [6]. When
using a Mach-Zehnder modulator, the values of θB ”drift”
with time. For the other measures, the drift was too slow
to affect the final results, but for this one, the bias drift
may change our measures. This can be minimized with
the use of the fixed zeros. We can impose that the zeros
that are not supposed to move with dispersion lay in the
same value of V .

B. Experimental results of the AMBC

Here, we have used the same setup as with Peucheret
(III B), but we have used the Mach-Zehnder in asymmet-
ric mode with a bias controlled by a programmable power
supply (Promax FA-851) controlled by GPIB. We used a
fixed radiofrequency of fRF = 2GHz and wave-length of
λ = 1559nm. If we look at how the output signal varies
as we change the bias, we obtained the following plots:

Figure 4: S21 amplitude as a function of Vb.

We can see that the first and third minimums are fixed,
and the second one moves as we increase the dispersion.
We will use them to calculate Vpi =

V3−V1

2 , as well as to
minimize the effect of bias drift.

The values of D obtained with equation (33) are D =
1269.748ps/nm for the fiber, and D = −1362.975ps/nm
for the FBG.

V. CONCLUSIONS

We have showed the phenomenon of CD in single-mode
optical fiber. We have reviewed the main concepts and
definitions related to it and its effects both over pulses
and RF envelop propagation. We have built the exper-
imental set ups for the most popular RF modulation
methods for measuring CD, and also for an advanced
method, called AMBC. The experimental values for the
3 methods implemented, as well as the nominal values of
the D parameter of both 75km of fiber and a DC-FBG
have good agreement.
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