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Abstract
Facultat d’Informàtica de Barcelona
Barcelona Supercomputing Center

Master in Artificial Intelligence

Handling variable shaped & high resolution images for multi-class classification
problem

by Yiannis Sotiropoulos

Convolutional Neural Networks (CNNs) are usually trained using a pre-determined
fixed spatial image size. While scale-invariance is considered important for visual
representations, CNNs are not scale invariant with respect to the spatial resolution
of the input image; since a change in image dimension may lead to a non-linear
change of their output. At the same time, there are applications (e.g. in medicine)
where images come in multiple scales and shapes not leaving any space for apply-
ing common transformations with which images are deformed and shrinked losing
important information. Leaving high-resolution information can be a big also bur-
den, resource-wise, with high computational costs, memory and time requirements.
Like that there has been a shift of focus in research from parameter optimization
and connections readjustment towards an improved architectural design of the net-
work; since different state of the art networks such as Xception, ResNext, PolyNet
and others explore the effect of different transformations on CNNs’ learning capac-
ity. Instead of modifying the internals of CNNs METavlitó project focuses mainly on
the pre-processing stage of the network in order to handle high-resolution images, as
well as, the variability in their shape. METavlitó proposes two components, one for
clustering images’ resolution into buckets and a training component for scale invari-
ant learning employing an input agnostic architecture decreasing the average GPU
memory requirements. Compared to a classic approach which follows the common
pre-processing transformations (resizing & cropping) before training, our solution,
using the same architecture controls more the overfiting, increases the accuracy by
3− 5% and decreases the average GPU memory needs by approximately 43% and
thus, the total duration of the training and validation time.

Keywords: Deep Learning, Expectation-Maximization, Clustering, KMeans, Ag-
glomeratie, Classification, Computer Vision, Bucketing, Variable shaped, High Res-
olution, Padding, Deformation, Downratio, Dynamic resize, Dynamic crop
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Chapter 1

Introduction

1.1 Motivation

There is a rapid, revolutionary change in computer vision, caused by deep convo-
lutional neural networks (CNNs) [24] and the availability of big datasets [9]. Deep
learning approaches have recently been substantially improving upon the state of
the art in image classification [23], [37], object detection [18], recognition [30] and
other tasks. Existing deep CNNs require a fixed input image size which means that
they do not take into account any variability of the shape (aspect ratio) neither of the
scale of the input image. Typically, images are resized to 224x224 since the appear-
ance of CNNs with AlexNet[23]; according to the paper this size was also used to
allow the extraction of random patches for translation invariance. At that time there
were also hardware limitations that did not allow training with larger images. Re-
searchers, though, continued using this size without any concrete theoretical basis
only because empirically it was giving good results.

This requirement needs a previous transformation which can be obtained either
via resizing and cropping [23], [37] or warping [18], [11]. Cropping may not contain
the entire object, while the warped image results in geometric distortion. Both, often
alter image composition, reduce image resolution, or cause image distortion (see
Figure 1.1) resulting most likely in a decrease in accuracy for the images or sub-
images of an arbitrary size/scale [27]. When images are deformed in cases like this,
is not desirable for a set of domains which may require attention to detail like in
autonomous cars, bio-medicine, etc.

Padding the image to a fixed shape, bigger than the biggest cropped image shape
is another option according also to [27]. However, this is not investigated thoroughly
and it is unknown if learning the extra padded area increase the performance of the
classifier or not, but in general it is a way to solve deformation.
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FIGURE 1.1: Common image transformation options

A dataset which includes variable shaped images and/or high resolution images
like the ones in the Figure 1.2, can bring many different challenges in the performance
of the CNN model not only from the perspective of accuracy and loss but also from
the perspective of required resources (i.e. memory, GPU power) [1].

• Variable shape

The variability in the shape of the image has to do with the image’s aspect
ratio (which is the fraction of width divided by the height of the image). Be-
ing able to take pictures from a wide variety of devices (like mobiles, tablets,
etc) has created a bigger demand on handling images with different orienta-
tion/shapes. Most of the current approaches interpolate all images to ensure
that they have the same shape. However, this approach leads to information
loss and/or deformation [17]. Furthermore, there are some use cases where
any form of loss of data can have multiple problems and drawbacks in some
specific use cases. For example, in segmentation or localization for brain tu-
mor classification, it is needed that proportions remain unchanged in medical
images because it plays an important role the the place and the size a tumor is
detected in [2].

• High resolution (HR)

We consider high resolution images the ones which have large pixel dimen-
sion. In METavlitó we consider high resolution images which have at least one
dimension with size larger than 1080 pixels. In the Figure1.2 the left image has
a dimension with lower resolution and one with extremely high resolution;
the right image presents the same peculiarity, however, both dimensions are in
high resolution.

The vast majority of current image recording devices are capturing images
minimum at 500x500 pixels. This resolution is almost double the size of the
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common required size of the images mentioned above. There are many use
cases based on HR images in multiple scales like in the medical domain for
breast cancer [16], [26] or in robotics for autonomous cars [8], where resizing
ends up in loss of information necessary for better predictions.

FIGURE 1.2: Horizontal (5632x944) and vertical (1920x6810)
panorama images

1.1.1 Hypothesis Space

As we saw the value of handling variable-shaped images in HR in real-case scenar-
ios, we build our project upon some hypothesis which was based on our research
and it will be used to setup the framework we want to work on.

1. Loss of information reduces CNN’s performance

By resizing images we lose some details especially in more cluttered ones.
Even in the example of the Figure 1.3 the details can not be seen creating a
confusion on what it depicts or the material is made of; in the example the
small picture may look more like it is made of rock or even ivory instead of
marble. We hypothesize that this can cause again decrease in the performance
of the CNN in terms of accuracy.
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FIGURE 1.3: Results when losing information from an image

2. Shape Deformation reduces CNN’s performance

Deforming images like the ones in the example in Figure 1.4 can affect the shape
of the object which in turn can have some negative effects not only in object
recognition but also in texture recognition. For this reason we hypothesize
that deformation can cause a decrease in the accuracy.

FIGURE 1.4: Results of deformation

3. Padding can increase CNN’s performance with a slower convergence

Padding is mostly used in CNNs inside the layers so that frames near the edges
of the image to contribute as much to the output as frames near the centre; but
it is not used so much as a pre-processing technique. Here we will use it as a
way to batch images together instead of just resizing to a pre-determined size.
From the example in Figure 1.5 we can see that here we actually add some infor-
mation, the padded (black) area. Because of this we assume that the memory
needs would probably increase, in case we batch an image with a larger one,
like in the example. Because of cases like this we hypothesize that padding will
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result in slower training convergence, but also in higher accuracy since we can
leverage this to encapsulate more information (the shape of image) and we do
not deform the images.

FIGURE 1.5: Desired padding example

4. Excessive padding can decrease CNN’s performance

In cases when large amounts of padding is applied in order to match the size
of two images like in the example in Figure 1.6 we expect to have much worse
results because the biggest part of the padded image does not contribute to
the network’s learning. When this happens we hypothesize a decrease in the
CNN’s accuracy.

FIGURE 1.6: Extreme padding example

1.2 Problem Setup

1.2.1 Challenges

Working with variable-shaped images in HR entails several challenges that need to
be addressed.

• Input agnostic architecture
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CNNs mainly consist of convolutional layers and fully-connected layers that
follow. The convolutional layers give feature maps of any size that represent
the spatial arrangement of the activations as seen in Figure 1.7. That is because
they operate in a sliding-window manner using kernel filters and that’s why
they do not require a fixed image size as input. The parameters to be found are
the convolved weights/values of the filters, regardless of the input and thus
of the amount of convolution. However, the fully-connected layers need to
have fixed size of the input. Usually, the output of the last convolutional layer
is flattened but then requires fixed input of the network. The techniques that
usually are used to overcome this and make the architecture more agnostic of
the input is through changing the dimensionality of the feature maps output
of the last convolutional layer.

– Global Average Pooling, an operation that calculates just the average out-
put of each feature map in the last convolutional layer

– Adaptive Average Pooling, is an operation where given the output size,
it takes the input and automatically calculates the stride and kernel size
to adapt the needs. This concept incetivized adaptive approaches to learn
class-specific pooling shapes [33]. Stride = (input_size//output_size)
Kernelsize = input_size− (output_size− 1) ∗ stride Padding = 0

Both are fairly simple operations which reduce the data significantly and pre-
pares the model for the final classification layer as it’s used also in [29].

FIGURE 1.7: Visualization of the feature maps. (a) Two images in Pas-
cal VOC 2007. (b) The feature maps of some convolutional filters. The
arrows indicate the strongest responses and their corresponding posi-
tions in the images. (c) The ImageNet images that have the strongest
responses of the corresponding filters. The green rectangles mark the

receptive fields of the strongest responses. Source [13], [20]

• Scale invariance

Scale invariance is needed in order to be able to handle images in multiple res-
olutions. It can be achieved by modifying the network structure [36] or artifi-
cially enriching the dataset through "data augmentation" [23] so as to increase
the CNN’s robustness to inputs of different scale. However, this gives more
challenges because HR images still require a lot of memory and a lot of oper-
ations per second because of the size of feature maps which are the outputs of
each convolutional layer.

• Memory limitations

When the input images of a CNN are larger then the resulting feature maps
of the convolutional layers are larger as well. This actually means that the
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GPU that these images reside in needs to allocate more memory and also more
power to calculate and save the activations for each image.

1.2.2 Related Work

The use of variable shaped images in high resolution contain a lot of information
and requires a lot of memory especially if they are not resized. These aspects have
been considered in the past, with some relevant contributions based on CNNs. One
approach suggests to make input agnostic architectures for scale invariant learning
through multiple scale evaluation during the post training like in the case of object
detection [25] or segmentation [19]. In these tasks, a network that was pre-trained
with fixed image size for classification is used as the backbone of a larger model that
is expected to adapt to a wide variety of image sizes. Spatial pooling [20] proposes
a new network structure for robust object deformations showing that it can improve
the accuracy for some tasks; but, it doesn’t work with high-resolution images and
it doesn’t mention the network’s requirements in memory; as a fully CNN solution
may need a lot of memory to train larger images.

Different modifications in CNNs are performed to make it appropriate for var-
ious image scales while trying to tackle resource limitations [21] too. There have
been studies which try to deal with the conflicting demands of multi-scale and full-
resolution dense prediction. The work of [26] involves repeated up-convolutions
that aim to recover loss of information while carrying over the global perspective
from down-sampled layers. Another approach involves providing multiple re-scaled
versions of the image as input to the network and combining the predictions ob-
tained for these multiple inputs [14]. However, it is not clear whether separate anal-
ysis of re-scaled input images is truly necessary.

In addition, prominent modifications of CNNs are knowledge distillation, train-
ing of small networks, or squeezing of pre-trained networks (such as pruning, quan-
tization, hashing, Huffman coding, etc.) [34],[7],[15]. GoogleNet[31] exploited the
idea of small networks, which replaces the conventional convolution with point-
wise group convolution operation to make it computationally efficient. Similarly,
ShuffleNet[12] used pointwise group convolution but with a new idea of channel
shuffle that significantly reduces the number of operations without affecting the ac-
curacy. In the same way, ANTNet[35] proposed a novel architectural block known
as ANTBlock, which at a low computational cost, achieved good performance on
benchmark datasets. No matter the advancements on that area though, there has
not been any improvements tackling all of the challenges; most of the proposed so-
lutions suggest some complex approaches addressing one or two of the challenges.

1.3 Research Objectives

The purpose of METavlitó project is to handle variable shape and high-resolution
images in a classification problem with multiple classes using deep neural networks.
The first step in that process is the pre-processing, which is about how data is fed into
the neural network. This includes all the transformations on the raw data before it is
fed to the deep learning algorithm. We will explore some dynamic transformations
which can be employed in the pre-processing pipeline of the neural network and we
evaluate them according to the performance of the classifier in terms of accuracy,
time, required resources mainly average GPU utilization and GPU memory usage.



8 Chapter 1. Introduction

The main goal is to find a way to learn better hidden patterns/feature maps
of images taking into account their initial shape and size. At the same time it is
possible to reduce the average network’s needs in resources, which can speed up
training, reduce footprint and enable larger input sizes for recognizing more and
richer details. Even if an architecture is able to process variable shapes of images,
each batch still needs to be consistent for coherency in the computational operations;
even having batches of 1 is not desirable because of computational inefficiency. For
that reason, in this project we propose padding instead of fixed-size image resizing,
as a way to batch together images of different shapes. Padding generates a space
around the image in order to make it match the others in the same batch as in Figure
1.8. Furthermore, a technique was developed to minimize these padded areas in
order to limit as much as possible this information which is added.

FIGURE 1.8: Example of how padding is used to batch together im-
ages of different sizes

Thus, the main topics which were explored towards that objective are the follow-
ing:

• Dynamic transformations which take into account the aspect ratio (width/height)
of each image without having to provide fixed-size dimensions.

• Minimize the padding area of the images in each batch.

• A technique so as to train together at the same forward and backward pass
images with similar shapes and sizes.

1.4 Structure

The document is structured in a way to follow the reasoning and the decisions made
during researching on this topic. At first, in Chapter2 we explain METavlitó project
showing the concept behind its design and implementation. Later in Chapter3 we
will show the dataset we used and the results of the experiments that we conducted
in order to test some hypothesis that we made based on our research. After that, in
Chapter4 we gather all the insights obtained and we make the conclusions and also
we show some possible future extensions to improve the current approach. Finally,
in Chapter5 is the Appendix with some theory which is provided for the reader for
better understanding of the decisions made in Chapter2.
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Chapter 2

Project: METavlitó

METavlitó comes from the abbreviation MET, the Metropolitan museum of Art of
New York, and the greek word µεταβλητó which means variable. The name was
inspired from the origin and the type/characteristics of the datasets which were fi-
nally used in this research project and includes variable-shaped and high-resolution
images.

2.1 Project design analysis

The design of a solution that can handle variable-shaped images in high resolution
has some challenges. To design the implementation of the proposed approach we
made certain hypothesis that we will try to validate later in the experiments. These
hypothesis led us to some prerequisites of the implementation and on top of that
we implemented some extra components as shown below in the Implementation
Analysis.

METavlitó project wants to leverage on the image transformation techniques to
increase the performance of the model. The research is focused more on the pre-
processing stage which can be applied independently of the architecture used in the
CNN; however, will effect the way the network learns by taking into consideration
the shape and scale of the image.

According to Jeremy Howard, a data scientist and researcher in fast.ai, padding
a big piece of the image (256x256 pixels) will have the following effect: the CNN
will have to learn that the black part of the image is not relevant and does not help
to distinguish between the classes (in a classification task), as there is no correlation
between the pixels in the black part and belonging to a given class. As this is not hard
coded, the CNN will have to learn it by gradient descent, and this might probably
take some epochs.

Thus, the main concept of the implementation is to minimize the padding area
in order to minimize the extra information and then based on that, to batch together
images with similar shapes.

Given that, METavlito is composed of 2 components. The first thing we need
to do is to minimize the padding area, which takes as input the dimensions of the
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images and outputs the images arranged in a way that they fit in different separate,
non-overlapping K buckets/groups. A bucket consists of a group of images with
similar shapes, as it can be seen in the Figure 2.4.

FIGURE 2.1: Turn datasets into buckets based on their shape & size

In these buckets we mind about the total padding area which is the total amount
of pixels needed to pad each image of the bucket so as to have the same shape and
size as seen in the Figure 2.2.

FIGURE 2.2: The way to pad images into buckets - Bucket Padding
Area definition

As Total Padding Area (TPA) we define the following:
Given a set of images I = {i1, i2, ..., in}where ∀ i ε I : i(x, y), x, y ε Z+, we define

a set of buckets B = {b1, b2, ..., bK} where ∀ i ε I : i ε bj, j ε 1, 2, ..., K.
Note that K ≤ n.
The Padding Cost (PC) of all the images of the set of buckets is:

TPA = PC(B) =
K

∑
j=1
PC(bj) (2.1)
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Finally, we relate the PC of a bucket with its size, the number of elements (im-
ages) that it contains (|bj|).

PC(bj) = |bj| · prod(max(bj)[x, y])− ∑
∀iεbj

prod(i[x, y]), (2.2)

where prod(bmax[x, y]) = bmax_x · bmax_y
Ideally, buckets are so coherent that any other arrangement or even if a single

image goes to another bucket will make the total padding area to rise. These re-
quirements refer to an NP-Hard problem which led to clustering as the task which
is aligned with these characteristics and could give an approximate solution for this
part. Thus, in this part the clusters can be also called buckets and the clustering
can be called bucketing and TPA is the replacement of the error metric (sum of the
squared errors) which is used in the classic clustering.

The second thing we need to do is to batch together the images of the buckets
during the training of the CNN. Typically, during training random batches of the
dataset of specific size are created and trained through a forward and backward
pass, (BS, ImgX, ImgY, C) where BS is the batch size, ImgX, ImgY is the image size
and C is the number of channels. Also, there is some stochasticity in this procedure
because typically, when training by (some variant of) mini-batch stochastic gradient
descent, the elements of each batch should be sampled as uniformly as possible from
the total input [6]; otherwise, it is possible that the network will overfit to whatever
structure was in the input data, and the resulting network will not have a good per-
formance. What we want to do in METavlito project is to control the way the batches
are created and also to handle the batch size itself in order not to include, for ex-
ample, a horizontal and a vertical image or a low-resolution and a high resolution
image at the same batch, since we will have extreme padding and according to our
hypothesis this can have a negative impact. Thus, large buckets may include big
variety of shapes and sizes and small buckets won’t allow to create different batches
and may contribute for the model to overfit. Note also, that TPA is worst case sce-
nario metric, thus, even if the TPA of a bucket is big, in a appropriate sized bucket,
the TPA of a batch (a subset of a bucket) can be lower. Only when the largest and the
smallest image within a bucket are batched together (something that may happen
rarely, if ever), the padding will be maximum.

At the same time we need to maintain the stochasticity of the batching creation
procedure as mentioned above. To do that we have to also disregard small buckets
(buckets with a few number of images assigned to them) because then either almost
the same batches will be created in all the epochs or a full batch can not even been
formed. Like that we designed the bucketing approach as a pre-processing stage
before training which is described in detail later in this chapter.

2.2 Bucketing

The goal of this part is to combine the right objective function with the right al-
gorithm in order to minimize the padding area which is expressed through TPA
eq.(2.1). The number of clusters K is something that it will be examined in the ex-
periment in the next Chapter3.
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2.2.1 Objective Functions

In METavlitó we used different objective functions(OF) in order to find the one that
best describes the problem, the TPA minimization. For the needs of our use case
we used 3 different functions that look at the problem of the padding minimization
from different perspectives. The objective functions in clustering express also the
dissimilarity metric based on which the clusters are formed.

• Euclidean distance

This is a classic distance used as dissimilarity metric which is the "ordinary"
straight-line distance between two points in Euclidean space. With this dis-
tance, Euclidean space becomes a metric space. With this we can align all im-
ages in a Cartesian space, as depicted in Figure 2.3. The objective function is
the same eq.(5.1) as described in Appendix in Chapter 5. We write it again here
following the same terms which were introduced in the previous section.

J =
n

∑
j=1

K

∑
k=1

wjk ·
∥∥ij − µk

∥∥2 , (2.3)

where µk is the centroid or the dimensions of an image.

• Sum of Euclidean distances

Using the euclidean distance as objective function we minimize the distance of
2 points, where the points are the upper right corners of the images when we
place them in the Cartesian space as seen in the Figure 2.3. This could make
sense since we want to find clusters with points as close as possible.

Taking this example from the figure we can see that the Im2 has the same dis-
tance d to Im1 as to Im3 and then it will be assigned randomly to any of these
to group with. For that we will investigate further what is should be done in
these cases. Before we move on we need to simplify first eq.(2.2) for the case of
2 images like the ones in the Figure 2.3:

PC(Imi, Imj) = prod(max(Imi, Imj)[x, y])− prod(min(Imi, Imj)[x, y])), (2.4)

where max(Imi, Imj)[x, y] is the max x and the maximum y of the images
Imi, Imj.

The eq.(2.4) actually gets the area of the big image and substracts it from the
area of the small one in order to find the padding cost. So,

(2.4)⇒ PC(Imi, Imj) = max(Area(Imi), Area(Imj))−min(Area(Imi), Area(Imj))
(2.5)

Specifically,

PC(Im1, Im2) = Area(Im3)− Area(Im2) = wh− (w− 1)(h− 1) = w + h− 1

PC(Im3, Im2) = Area(Im2)− Area(Im1) = (w + 1)(h + 1)− wh = w + h + 1

So, PC(Im1, Im2) < PC(Im3, Im2), which means that whenever the euclidean
distance of a point is the same to another 2, it should group together with the
one that’s closer to the beginning of the axis O(0, 0). In the case of our example,
the TPA will be smaller if Im2 will join Im1 rather than Im3 since d1 < d3.
Like that we constructed our own objective function which penalizes more
bigger distances and also follows the same concept of the objective function of
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euclidean distance in order not to change the calculations either in Expectation
or Maximization step, as they are described in the Appendix in Chapter 5 when
we talked about the Expectation-Maximization Clustering.

J =
n

∑
j=1

K

∑
k=1

wjk ·
(∥∥ij − µk

∥∥2
+
∥∥ij
∥∥+ ‖µk‖

)
, (2.6)

where µk is the centroid or the dimensions of any image in the dataset.

• Custom Padding Cost (PC)

Another way to address this minimization problem is through the areas of the
images as it’s implied by the different colors in Figure 2.3. For this we will
work directly with eq.(2.1) and because the function is more complex we will
work with different approach, trying to express the difference of the TPA when
an element is added to a group and find the group that contributes less to the
TPA.

Specifically, when an image is added to a cluster:

PC(bj, inew) = (|bj|+ 1) · prod(max(bj, inew)[x, y])− ∑
∀iεbj

prod(i[x, y])− prod(inew[x, y])

(2.7)

So, from eq.(2.2) & (2.7)⇒

J =
n

∑
j=1

K

∑
j=1

wjk ·
(
PC(bj, inew)−PC(bj)

)
(2.8)

(2.8) ⇒ J = (|bj|+ 1) · prod(max(bj, inew)[x, y])− |bj| · prod(max(bj)[x, y])−
prod(inew[x, y])
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FIGURE 2.3: Cartesian space showing possible problems for different
objective functions

2.2.2 Algorithms

For each of the above objective functions we implemented from scratch several clus-
tering algorithms in order to find the one that can better address our padding min-
imization problem. From the analysis of the problem KMeans-based clustering al-
gorithms seem to describe better the problem because of their simplicity in combi-
nation with the peculiarity of the metric (TPA) that we set to evaluate the results;
however, we want to see other approaches how they can handle this use case. The
chosen algorithms have the desirable property of allowing us to see how perfor-
mance in TPA changes as the number of buckets changes; since different number of
buckets affect differently the formation of batches during the training stage.

The algorithms that we implemented are:

• Algorithm for finding number of clusters

One of the problems that may arise is the number of clusters that needs to be
pre-defined. For that we implemented an algorithm called Improved K-means
Algorithm Based on Density Canopy[38] and it will be used as a baseline algo-
rithm. The algorithm of Density Canopy is used as the pre-processing pro-
cedure of KMeans and its result is used as the cluster number and the initial
clustering centers of K-means algorithm. We extended this approach also for
KMedoids, so we have:

– Density Canopy KMeans

– Density Canopy KMedoids
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This algorithm try to improve the accuracy and stability of Kmeans algorithm
and solve the problem of determining the most appropriate number K of clus-
ters and best initial seeds. It calculates:

– the density of sample data sets

– the average sample distance in clusters

– the inter-cluster distance between clusters

In our case we used the distances we defined above. The sampling point with
the maximum density is chosen as the first cluster center and it’s removed then
from the data sets. The paper[38] defines the metric of the weight product
which is related with the product of

– the sample density

– the reciprocal of the average distance between the samples in the cluster

– the distance between the clusters

Finally, the other initial seeds are determined by the maximum weight product
in the remaining data sets until the data sets is empty.

• KMeans clustering algorithms variations

The approach of these algorithms solves the problem that is called Expectation-
Maximization. The E-step assigns the data points to the closest cluster. The M-
step computes the centroids/representatives of each cluster. The algorithms
we implemented are different variations of KMeans, tweaking some parts and
also changing the way they are initialized to limit the randomization step of
this first stage of the algorithms.

– KMeans

– KMeans++

– KMedoids (PAM)

One of the things that this implementation adds to the standard algorithm is
the way to handle the empty clusters. There are 2 options:

– split the cluster with the highest error, given by the objective function

– set as new centroid the instance that is the furthest away from the cen-
troids

In METavlitó the second method seems to be better, especially for the cases
of many clusters (big K) because otherwise the largest images contribute a
lot in the TPA since the TPA depends on the maximum dimensions of each
cluster/bucket.

Furthermore, since the objective function is changed the E-step & M-step have
to be re-calculated; the objective function of the euclidean distance is the classic
KMeans which is analyzed in Appendix in Chapter 5.

– Define cluster formation and centroids for the Sum of Euclidean Distances
So, it’s a minimization problem of two parts. We first minimize J w.r.t.
wjk and treat µk fixed and update cluster assignments (E-step). Then we
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minimize J w.r.t. µk and treat wjk fixed and recompute the centroids (M-
step). Therefore, for the Sum of euclidean distances, E-step is:

(2.6)⇒ ∂J
∂wjk

=
n

∑
j=1

K

∑
k=1

(∥∥ij − µk
∥∥2

+
∥∥ij
∥∥+ ‖µk‖

)
= 0 (2.9)

For solving this we will break it into 2 parts because both are above zero.
The first part which comes from eq.2.9 has the following solution:

wjk =

{
1, k = arg minl

(∥∥ij − µl
∥∥2

+
∥∥ij
∥∥+ ‖µl‖

)
0, otherwise

(2.10)

Concerning the M-step we want to find the right centroids:

∂J
∂µk

= 2 ·
n

∑
j=1

(
wjk · (ij − µk + 1)

)
(2.11)

The small constant that’s added in the distance when we differentiate
ends up as a constant added in the centroid and it is a residue from the
penalization we added. However, in the centroids calculation it doesn’t
give any value as we can see. It only implies a very small shift towards
the direction of the new added image’s dimensions, but for the sake of
simplicity we will ignore it. So,

∂J
∂µk

= 0⇒ µk =
∑n

j=1 wjk · ijk

∑n
j=1 wjk

(2.12)

Which is the exactly same centroid as with the case of the euclidean dis-
tance described in Chapter5. That was also the thought behind the inspi-
ration the Sum of Euclidean Distances objective function as it was men-
tioned above, to be as simple as the classic euclidean distance but over-
come some of its shortcomings because of our use case.

– Define cluster formation and centroids for the Padding Cost
For this objective function we worked differently since we already had
determined implicitly the centroid. The maximum of the dinstances of
the cluster is already part of the objective function in eq.(2.8) representing
the bucket as it’s shown in eq.2.2. Also, since we calculate the difference
of padding between an initial bucket (which means that it could also con-
tain 1 image) and another new image we imply again that we want the
minimum value of the objection function in order to assign an image to a
cluster/bucket.

– Define cluster formation and centroids for KMedoids
KMedoids forms the clusters the same way KMeans does but the cen-
troids are determined according to are the member of the cluster with
the minimum sum of squared distance. This can work for the Euclidean
and the Sum of Euclidean but not for the Padding Cost because depends
heavily on the maximum dimensions of the cluster’s elements as well as
its size and thus, it’s very computationally inefficient. So, following the
same concept as before the centroids for Padding Cost will be the points
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with the maximum dimensions but in this case they have to be points
which exist in the cluster. To approximate this we calculate the maximum
area, where area = width ∗ height and we assign as new centroid the point
of the cluster with the maximum area.

• Hierarchical algorithms

For the sake of completion we also included in this research project different
ways to cluster as hierarchical clustering.

– Agglomerative using Single Linkage

– Agglomerative using Complete Linkage

We worked with a distance matrix which had the pair distances. We use pair
distances using Padding Cost as well without taking into account the size of
the cluster, because of the complexity and the intensive computation of ag-
glomerative algorithms in combination with the complexity of the Padding
Cost equation eq.(2.8) that needs to find for each iteration the maximum di-
mensions between the formed clusters (note that the agglomerative algorithm
is a bottom-up algorithm where each instance is considered a single cluster in
the beginning).

• Custom algorithm

This approach was inspired on genetic algorithms. A generic description of
the clustering objective is to maximize homogeneity within each cluster while
maximizing heterogeneity among different clusters, in a way that objects that
belong to the same cluster are more similar than objects that belong to differ-
ent clusters. However, a pure genetic solution is inefficient and infeasible for
a large number of instances because of the time of the convergence; thus, it
doesn’t make sense for this implementation design given our use case. How-
ever, our approach is to refine clusters using the TPA as objective function
(eq.(2.8) trying to re-allocate images in different clusters. With this idea in mind
we define the Random Padding Refinement (RPR) Clustering.

RPR implements the following steps:

– initializes the very first single-image-buckets either randomly or accord-
ing to a distribution like in KMeans++

– shuffles the order of the images in each iteration

– assigns the images to the clusters/buckets one-by-one that contribute less
to the TPA. In other words, adding the image to a bucket or re-assigning
it to another bucket decreases the TPA.

– since each bucket grows bigger after assigning each image, the largest
dimensions are calculated and their corresponding PC

– when all images are assigned, they are shuffled again and they revisit
all the new formed clusters in order to find to which bucket it has to be
assigned in order to contribute less to the TPA

– again after each image the maximum and the PC is calculated

– this refinement process is continued until the TPA doesn’t change and it
reaches to a convergence

The pseudocode looks like this:
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TPA_previous <- 0
TPA_current <- 0
tolerance <- 0.001
initiliaze_buckets
while abs(TPA_previous - TPA_current) > tolerance

TPA_previous <- TPA_current
Ss <- shuffle the order of the images in each iteration

for i ε Ss:
l <- argminl (PC(bl , i)− PC(bl))
if i ε bj:

bj.remove(i)
bj_maxdim <- maxx,y(bj)

bl .add(i)
bl_maxdim <- maxx,y(bl)

TPA_current <- TPA(B)

The shuffling is needed in order not to assign in each iteration the same images
to the same buckets because then the process will finish immediately with a
higher value of TPA. Like that we ensure that we don’t depend on the order
of the dataset and we can minimize the objective function as long as instances
change from one bucket to the other. So, RPR can reach to a closer approxi-
mation of the best TPA given the initial buckets(intial points). The reason the
images had to be parsed sequentially is because the eq.(2.8, 2.2) depends on
the size of the bucket which changes every time an image is assigned to one.

2.3 Training

Training leverages on the buckets created in the previous stage. As first step here it is
needed to prepare the images for training, through the pre-processing step. For that
some specific dynamic transformation were employed to help our cause without
interfering as much as possible with the way the network learns, using a specific
architecture. The goal is to be able to make the network to learn feature maps of
different images sizes (shape & scale).

2.3.1 Pre-processing options

• Dynamic Resize/DownRatio: It’s the classic resize of the image but instead of set-
ting constant dimensions, we introduce a ratio with which the image is resized
with respect to the aspect ratio of the image in order not to deform it.

• Dynamic Cropping: We use this transformation as a data augmentation tech-
nique in order to make the network more resilient, and produce the same pre-
diction even if the object is partly visible. This (hopefully) increases robustness
against partial occlusions [32]. In our case we don’t set again a constant size
of the cropped image since the resized size of the image depends on its initial
size. For that, we follow the same approach and we multiply the dimensions
of each image with a pre-defined ratio. The bigger the ratio the more possibil-
ity not to fully crop out important parts of the image, which may lead to some
unwanted false positives.
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• Normalization: This is a classic step which ensures that each input parameter
(pixel, in this case) has a similar data distribution. It makes the network to
converge faster during training. The distribution of such data would resemble
a Gaussian curve centered at zero.

• Gamma Correction: It performs a full color characterization according to the
standard color correction pipeline. This was a more unconventional transfor-
mation that according to the literature [4] and also some experiments [10], it
can be used for increasing the data or also for intensifying patterns and thus
the activations later in the training. In general, this is able to normalize the
images with respect to the color of the illumination.

• Fourier Transformation: It performs a transformation that can expand accessible
information about the analyzed sample [5]. This was used as an alternative
transformation of the representation of the image.

2.3.2 Bucketing Technique

In Figure 2.4 we present the idea behind the training part of METavlitó project.

• According to the Clustering part above we split the dataset into a specified
number of buckets.

• Each bucket consists of a number of images with similar sizes, which mini-
mizes the eq.(2.1). We need to disregard the buckets with low number of mem-
bers/images otherwise we won’t be able to create very different batches, losing
stochasticity and generalization capacity

• Then, it’s the turn of the Input Pipeline Figure 2.4:

– A random bucket is picked

– A number of images equal to the batch size is picked randomly in each
step of each epoch. The batch size can be dynamic, which means that it
can change and be bigger for buckets with smaller images and lower for
images which include high resolution images. Like that it’s possible to
accelerate the training by maximizing the use of the GPU memory.

– The specified transformations are applied. There can be a plethora of dif-
ferent ones from the classic one to more unconventional ones that affect
the representation of the image. However, we chose to modify some of the
classic ones in order to match the prerequisites we set and to help towards
validating our assumptions without affecting a lot the representation of
the input.

– Padding is applied to each batch so that every image in there to match
the maximum size of the dimensions of all the images in the batch, as it’s
depicted in the Figure 2.4 below. This step is essential in order to avoid
any size mismatch error during training. The smaller the difference in the
size of the image the less padding is needed.

• The above steps end up being the final input of the CNN which is trained with
a specific architecture for each given batch.
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FIGURE 2.4: Bucketing technique design
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Chapter 3

Experiments

This research project was built incrementally making some hypothesis, testing them
and then building on top of them. As in [28] the various facets of the CNN archi-
tecture were kept constant while the pre-processing module was varied for different
alternative approaches following the hypothesis presented in Chapter1 in the Hypoth-
esis Space section.

3.1 Dataset

The dataset used for experimentation is obtained from the open image and data
resources of the Metropolitan Museum of Art in New York [met-resources]. The
High Performance Artificial Intelligence (HPAI) group of the Barcelona Supercom-
puting Center (BSC) collected this data and created labeled datasets for different
tasks [meth-dataset].

The specific dataset we are using for these experiments is the Medium dataset
(MetH-Medium) Figure 3.1. This targets the identification of the medium a piece
of art is made of (i.e., the main material of the piece). The dataset has 23 different
classes, including Gold, Silver, Woodcut, Limestone, Silk and others.

FIGURE 3.1: Example images of the Medium MET dataset

All the images are balanced across the 23 classes, each containing 1,000 images
for training, 100 images for validation and 100 images for test. That means that the
entire dataset contains a total of 27,600 images:
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• 23000 images for training with 1000 instances per class

• 2300 images for both validation with 100 instances per class

• 2300 images for both testing with 100 instances per class

This dataset has all the characteristics that we want to experiment with in order
to evaluate our hypothesis:

• big range of variable shaped images. As seen in Figure 3.2 most of the images
are horizontal (the aspect ratio is below 1) with some extreme cases of horizon-
tal and vertical panoramas like the ones in Figure 1.2.

• big proportion of high resolution images. As seen in Figure 3.2 most of the
pictures are in HR and there are some which even surpass 4K definition.

FIGURE 3.2: Distribution plots of the aspect ratio and the number of
pixels to show the variance in shape and the number of HR images

Furthermore, there are 10 classes within the dataset which are quite hard to dis-
criminate, even for humans like soft or hard types of porcelain (Figure 3.3). In these
cases HR images may provide more information to distinguish the right class.

FIGURE 3.3: Samples of hard-paste, soft-paste and generic porcelain.

3.2 Bucketing Experiments

As first experiment we want to test our research on the objective functions and
our implemented algorithms. What we want from these experiments is to measure



3.2. Bucketing Experiments 23

which objective function and algorithm minimizes the TPA. We will also consider
their computational time, to make sure that the found solution is practical.

The KMeans-based algorithms contain some random operations when they are
initialized and for that reason we ran the experiments 3 times and here we present
the results of the average of these 3 runs.

3.2.1 Configuration

In these experiments we set the number of clusters K for the experiments in the range
[3, 20] in order to see the progression of the value of TPA as well as the time it takes.
The reason behind this range is to manage to have as big clusters as possible where
we can have different random batches with big batch size for the training which will
be used in the experiments, as it was expained in the Chapter2.

The dimensions of the images in our dataset are between [500, 6000], so the nor-
malization is not necessary because one attribute is not disproportionately more im-
portant in its computation with respect to the other. However, the experiments were
run with both configurations (normalized & non normalized) and here we present
the ones without normalization after seeing that there was not significant difference.
The maximum repetitions of each algorithm are set to 100 to let the clusters to con-
verge especially for the experiments with high K. In addition, the tolerance set as a
threshold for the convergence of the clusters is set to 0.001; if the difference of TPA
or if the distance between the new centroid and the previous one of each cluster is
less than the tolerance we assume that the algorithm has converged. Lower values
of the tolerance did not change the results.

3.2.2 Objective Function Comparison

Here for each pair of objective function and algorithm we observe the progression of
the TPA over the range of number of clusters K. At first, we will use as baseline the
results from the Density Canopy which is used as a pre-processing step for KMeans
and we also used it for KMedoids. We want to see the number of clusters discovered
by the pre-processing and the TPA and time duration for each objective function.

Our baseline already gives us quite a few insights (Figure 3.4) of how our objec-
tive functions behave compared with each other. At first, apart from the euclidean
objective function (OF) with which the Density Canopy finds 7 clusters for the rest
it finds 6 clusters which is very close to each other. So, from that level we can see
our custom objective functions work in terms of minimizing the defined disimilarity
metric; even though the Density Canopy algorithm does not depend only on the dis-
tance, we can see that all the cases can find similar number of initial centroids which
describe best the dataset, according to the Density Canopy algorithm.
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FIGURE 3.4: TPA of each objective function for the discovered num-
ber of clusters by Density Canopy. The number of clusters can be seen

in the figure

Concerning the TPA which is used here as the error metric we can see an ob-
vious dominance of our proposed Custom algorithm which uses the padding cost
objective function with 6 clusters. KMedoids and KMeans at least for the discovered
number of clusters have very similar results for the 2 euclidean based objective func-
tions. However, padding objective function does not perform well with KMedoids
while it gives much better results with KMeans. This has to do also with the way
this objective function was designed and how it was used in KMedoids as it was
described in Chapter2

After that we continued experimenting with how the different number of clusters
effect the TPA for the different objective functions per algorithm. In Figure 3.5 we can
observe the same thing we saw above across all the different number of clusters. The
padding cost based OF can minimize better the TPA since it is also derived directly
from there. In addition, the sum of euclidean distance can actually give almost all the
times slightly better results than the euclidean (in another scale the difference could
be more apparent). The fluctuations mainly are due to the random initialization
procedure.



3.2. Bucketing Experiments 25

FIGURE 3.5: TPA over K for KMeans (left) & KMeans++ (right)

In the KMedoids we see different results Figure 3.6. The centroid assignment
makes the 2 euclidean based objective functions to be close to each other over the
different K. The Padding Cost OF cannot give the same results as above most prob-
ably because of the way the centroids are assigned. Nevertheless, for higher values
of K the TPA reduces much faster and approaches the other results. The reason for
this is that the clusters are more fine grained, thus, the way the new centroids are
assigned make more sense but it can leave empty clusters throughout the training
which are handled as mentioned in Chapter2.
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FIGURE 3.6: TPA over K for KMedoids

Finally, in the case of the Agglomerative algorithm we see again a bit different
results. For the single linkage the 2 euclidean OF are a little bit better but after a
certain K all OFs give almost the same results but because of the scale of the plot
the result seem to be the same. Probably because of the density of the dataset (Fig-
ure 3.14,3.15,3.16) at a certain point the single linkage cannot really get informative
clusters with many members probably because very close pairs are already found,
which is what single linkage relies on. On the other hand, the complete linkage can
work better and finds more distinctive clusters in comparison with the previous case
because the TPA will depend on the largest pair between 2 clusters. Here since we
work with pair distances the Padding Cost has lost big part of its advantage that is
why in this case the Padding Cost gives the worst results. The Sum of Euclidean
distances though, can again give better results than the Euclidean.
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FIGURE 3.7: TPA over K for Agglomerative with Single Linkage (left)
& Agglomerative with Complete (right)

In general, the TPA decreases as the number of clusters increase. Nevertheless,
the baseline (given by the Density Canopy aglorithm) gives slightly better results
for the specific number of clusters because the algorithms (KMeans & KMedoids)
where initialized with more representative of the actual clusters centroids. So, given
the number of clusters found from Density Canopy we see that RPR algorithm (our
custom clustering implemention) gives better results.

Furthermore, concerning the way the TPA decreases, we notice that:

• in KMeans after K = 8 the TPA starts decreasing quite slower

• in KMedoids the decrease rate of TPA is lower after K = 10

• in Agglomerative it seems that the TPA’s decrease rate does not change much
even in the biggest number of clusters (20)

Finally, from the comparison of the OFs we can see the following:

• Sum of Euclidean performs better than the Euclidean OF

• Padding Cost outperforms both using KMeans & KMeans++

– it gives worse results in the KMedoids and in Agglomerative (with com-
plete linkage)

– however, converges and approaches a lot (almost the same) the other 2 as
K becomes bigger

Finally, in order to visually check the differences between OFs we present below
the outcome of the clustering for KMeans with 6 clusters. As we can see from the
Figure 3.8,3.9,3.10 the different OFs provide different clusters using the same algo-
rithm (KMeans). Specifically, the Sum of Euclideans seems to better separate the
dense areas where there are many cases where an image can have the same distance
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over 2 different clusters. The main difference between the 2 euclidean based OFs can
be apparent in the upper right corner where there are many images with the same
resolution and by splitting the clusters it achieved a lower TPA. On the other hand
Padding cost did the same "trick" with the Sum of Euclidean distances for the large
images, but it decided to have a big middle cluster for images between 2000− 3000
pixels and have a separate cluster for the outliers which have more than 4000 pixels
in both dimensions which contribute a lot in the TPA. This can be an issue, since
it does not guarantee stochasticity and as it was discussed in Chapter2 when we
introduced the bucketing technique for first time, it should be handled appropri-
ately. Note that TPA is a worst case scenario metric; in practice is going to be less,
since the instances with maximum dimensions will not be used on all batches during
the training stage, so a cluster which does not include just large images can create
batches with less padding needed.

FIGURE 3.8: KMeans clustering using euclidean distance as OF with
K=6
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FIGURE 3.9: KMeans clustering using the sum of euclidean distance
as OF with K=6

FIGURE 3.10: KMeans clustering using the padding cost as OF with
K=6

3.2.3 Time & Algorithm Comparison

What follows is the comparison between the algorithms. Sarting again from the
Density Canopy with the purpose to examine the time duration using KMeans &
KMedoids for the discovered number of clusters. The duration seems to favor more
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KMeans algorithm as depicted in Figure 3.11. This was expected from the theory be-
cause KMedoids has a much more complex way for calculating the new centroids.
Concerning the OFs, the Euclidean OF seems to converge much faster than the oth-
ers. The Sum of Euclidean follows next and the padding is the slowest; however that
was also expected because it runs through all images sequentially to assign them in a
cluster. The custom objective function seems to need much further time to converge
which is mainly because of the refinement process of the clusters which is also the
reason of having lower TPA.

FIGURE 3.11: Duration of each objective function for the discovered
number of clusters by Density Canopy

Since now we know which OF performs better for each algorithm we will com-
pare the average time that each algorithm needs to converge to its final formed clus-
ters. As depicted in Figure 3.12 the results of the comparisons from Density Canopy
seem appropriate and coherent. In addition, it seems like the Custom Algorithm
does not change much its convergence time with more clusters probably because the
number of iterations for a higher K are more or less similar as the ones with a lower
K but with more elements going from one cluster to another, during the refinement
process.
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FIGURE 3.12: Average duration of the best performed OF for each
algorithm

Overall, the time even of the slowest algorithm, our custom implementation
(RPR), doesn’t give a too much overhead since it takes less than 2 minutes to train.
However, what is more interesting are the comparisons of the best results for each
algorithm as seen in Figure 3.13.

FIGURE 3.13: Comparison of TPA value between the algorithms us-
ing their best results from the OF comparison
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As seen the best results are given using the Padding Cost as OF with our pro-
posed RPR clustering algorithm and with KMeans++ being relatively close with the
former being between 0-35% lower accross the different number of clusters. KMeans
is approaching KMeans++ in higher values of K and Agglomerative algorithm us-
ing complete linkage follows with Sum of Euclidean distances as OF. Agglomerative
using single linkage gives the worst results compared with the others by far.

Given the results above and since the TPA decreases over the number of clusters
K we will use the results of our custom implemented algorithm RPR in the next
component of METavlitó to experiment with different values of TPA.

Finally, the differences between the clustering algorithms using the same OF are
not substantial visually, so, to see a more tangible example of how the different TPA
looks like we present below 3 different clustering results of the dataset of images
with K = 6, 13, 20 using our Custom Clustering Algorithm using Padding Cost as
OF Figure 3.14,3.15,3.16.

FIGURE 3.14: Clustering with K=6
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FIGURE 3.15: Clustering with K=13

FIGURE 3.16: Clustering with K=20
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3.3 Training Experiments

After finding a good candidate for bucketing of variable-shaped & HR images as in-
put in a CNN, in this section we evaluate their impact on the training component to
validate our hypothesis as they were described in Chapter1. METavlitó project effects
the pre-processing stage of a CNN without interfering with the internals of how the
network learns. For that reason we use one architecture in our experiments with
specific initial parameters explained below. Having this set we continue with some
experiments testing the proposed approach of bucketing and its possible advantages.

Our experiments were incremental building upon the results of the previous one,
in a sense that we take 3-4 different pre-processing settings and we compare the
results between them, the best result is the one we will continue with. The main key
aspects to compare our experiments are the:

• Train & Validation Accuracy

• Train & Validation Loss

• Train & Validation duration per epoch (in seconds)

• Average Image Size per batch (in pixels) in order to see the computational over-
head of using larger images given the other metrics. Also, this metric implies
the padding needed at each batch, for example small average image size re-
quires means that there was need of less padding

• Train & Validation Average GPU Utilization (%) in order to get a hint of the
energy needed. Note that the utilization when the batch is loaded into the
GPU is 100%, but what we measure is the average GPU utilization per step

• Train & Validation Average GPU Memory Used (MB) in order to get a hint of
the GPU memory capacity needed

• Train & Validation Average CPU Load (%) we convert this into a percentage
to see the backlog of jobs the CPU creates because of the pre-processing of the
batches

• Train & Validation Average CPU Memory to see any potential needs in terms
of CPU which is related also to pre-processing

3.3.1 Initial Parameters & Architecture

Before starting training we had to set some of the parameters of the network and of
the pipeline we described before.

• We let the model to overfit in order to see all the progression of how it learns
and it starts decreasing its capacity to generalize. For that we let the model
learn for 20 epochs or 40 depending on the experiment and the baseline that
the models are compared with.

• We validate the data at every epoch since theoretically we should also train
our entire dataset at every epoch, each epoch yields:

– steps_per_epoch = TotalTrainingSamples/TrainingBatchSize: we train ex-
actly the entire training set
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– validation_steps = TotalvalidationSamples/ValidationBatchSize, we vali-
date exactly the entire validation set

• Concerning the optimizer, we used Adam, an adaptive gradient descent algo-
rithm like Adagrad, RMSprop and others which provide an alternative to the
classical SGD. These methods do not use the same learning rate for all param-
eter updates, but they provide heuristic approach without requiring expensive
work in tuning hyperparameters. Adam adjusts the Adagrad method in a very
simple way in an attempt to reduce its aggressive, monotonically decreasing
learning rate.

– The learning rate was set to 1e− 4 which gave some good results.

– The learning rate decay over each update was correlated with the epochs
like this: learning_rate/#epochs

• The transformations which will be finally used in the experiments from the
ones mentioned in Chapter2 are the following:

– Dynamic Resize/DownRatio: the ratio is changed according to the exper-
iments

– Dynamic Cropping: we let the ratio of the cropping dimensions constant
to 0.875 because in most of the images of the dataset the information is in
the middle of the image and the background doesn’t provide any infor-
mation (see Figure 3.1.

– Normalization

The rest of the transformations were discarded because they were not finally
providing any added value and they were messing more with how the image
is represented.

• Because of the different image sizes we want to experiment with, we need to
change the batch size in order to fit in the memory of the GPUs. The batch
sizes that are used throughout the experiments are 256, 104, 32.

• We will experiment with |B| = 6, 13, 20 as options of different number of buck-
ets. The idea behind these choices is to see the effect of different value of TPA
when there is a big difference between them, like between 6 and 20 buck-
ets or a smaller difference like between 13 and 20 where the TPA does not
change as much (see Figure 3.13). As we can see from the images above (Figure
3.14,3.15,3.16) the outliers, the very large sizes of the images either group with
the largest image in the top right corner as depicted in Figure 3.14 or they are
distributed among 2 Figure 3.15 or 1 cluster Figure 3.16 all together. In the latter
case the cluster is formed by just 10 images which opposes to the requirements
set in Chapter2 so we will need to try to include them in another cluster or to
discard these images since they are not that many. In these experiments we
decided to group them with another cluster. We remind here that images in
a bucket are picked randomly for a batch to be created, so, the impact of in-
cluding the very large images should be minimal since they are only 10 which
means that can affect maximum 10 batches when the total amount of batches
is more than 100 per epoch.

An important factor that affects the parameters above is also the capacity of
the architecture, the depth and the length and so the complexity of the architecture
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which adds more to the memory constraint in the training stage. The architecture
chosen to experiment with is the VGG16. However, since our use case has to do with
variable sizes we intervened in the architecture and in the last convolutional layer
we replaced the Max Pooling layer which is the input to the fully connected layers
with an Adaptive Average Pooling layer Figure 3.17, which depends on just the input
and the expected output size of the layer.

FIGURE 3.17: VGG-16 Architecture used in the experiments

3.3.2 Hypothesis #1: Loss of information

In the first experiment we want to evaluate Hypothesis 1; so when we want to see
the effect of resizing high resolution images to a small one or to a bigger one. For
this case we train all cases with the same batch size of 104 this number is defined by
the memory needs of the most demanding case, where images are in size 400x400.
In Table 3.1 there are the results of the runs resizing the images to 100, 256, 400 and
cropping them with ratio = 0.875, so we will refer directly to the dimensions of the
cropped image. Here we use the model with the 256x256 images as baseline.

Information Loss
Experiments

BS=104

Resize(256, 256)
Crop(224, 224)

Resize(100, 100)
Crop(80, 80)

Resize(400, 400)
Crop(350, 350)

Train / Val
Accuracy (%)

95.2 / 63.7 93.4 / 63.1 94.3 / 66.2

Train / Val
Loss

0.14 / 1.89 0.21 / 1.71 0.17 / 1.62

Train / Val
Duration per

epoch (s)
244.5 163.5 383.8

AvgImageSize
per batch
(pixels)

150528 19200 367500



3.3. Training Experiments 37

Train / Val
AvgUtilization

GPU (%)
60.89 / 44.27 47.36 / 32.14 60.02 / 42.12

Train / Val
AvgMemUsed

GPU (MB)
22,350.25 / 11,986.25 10,192.81 / 7,469.89 38,226.06 / 14,692.06

Train / Val
AvgLoad
CPU (%)

20.54 / 14.16 25.37 / 20.44 11.77 / 6.79

Train / Val
AvgMemUsed

CPU (MB)
6,084.06 / 6,003.06 6,002.46 / 5,978.41 3,180.87 / 3,017.81

TABLE 3.1: Results from the loss of information experiment

FIGURE 3.18: Loss of Info Experiment: Accuracy & Loss over the
epochs

According to our hypothesis in Chapter1 loss of information can cause a decrease
in accuracy. This is supported by this experiment, where the validation accuracy for
the biggest resolution is the highest. However, results are not entirely conclusive, as
the same does not happen with the loss the network learns more difficult with the
100x100 resized images as it can also be seen in the Figure 3.18.

When we resize the images to 100x100 it needs more time to converge that is
why we increased the number of epochs up to 30. All of the models overfit a lot as
we can see however, the 3rd model, which resizes the image to 400x400, as we can
see arrives to 66% of accuracy with less loss than the one it has at the end, when it
reaches the 30th epoch. Concerning the rest of the metrics we can see that the bigger
the image the more time needed for each epoch to be completed as well as the image
size per batch which reflect in some way the GPU needs in terms of memory and
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power; even though the GPU utilization for the images of 256x256 and 400x400 is
almost the same which shows that both utilize the GPU more intensively per step.
The CPU load describes the amount of active tasks requesting CPU resources to
perform an action, but since the images of each batch are loaded slower in CPU
memory when the images are bigger then this does not let many batches to wait to
be served by the CPU and then by the GPU.

Following these results we will increase even more the image size, but to do that
we needed to reduce the batch size to 32. So, we increased the image size to 600x600
and 800x800 with cropped images of 525x525 and 700x700 respectively. In the Table
3.2 we can see that the 2 big sized images as input give almost the same results in
terms of accuracy and loss but the one with smaller size is less resource-hungry.
Because of the big dimensions it is easy to reach to overfit as we can see from the
Figure 3.19. The baseline as expected needs less resources but also performs worse
since as the size of the input increases so does the GPU memory and utilization. The
CPU on the other hand seems to be quite low in resource needs. Note also that the
600x600 corresponds to the 20% of a 3000x3000 image and the 800x800 to the 30% of
bit of smaller image. That is why later we will prefer to continue our experiments
using ratio of 20%.

Information Loss
Experiments

BS=32

Resize(256, 256)
Crop(224, 224)

Resize(600, 600)
Crop(525, 525)

Resize(800, 800)
Crop(700 700)

Train / Val
Accuracy (%)

96.1 / 64.6 95.3 / 67.8 95.5 / 67.9

Train / Val
Loss

0.14 / 1.88 0.15 / 1.58 0.16 / 1.58

Train / Val
Duration per

epoch (s)
381.7 967.9 1601.3

AvgImageSize
per batch
(pixels)

150528 826,875 1,470,000

Train / Val
AvgUtilization

GPU (%)
52.71 / 46.41 64.71 / 70.50 50.72 / 74.47

Train / Val
MaxMemUsed

GPU (MB)
12538.33 / 8,188.06 33,908.6 / 14,286.0 55,758.4 / 19,560.0

Train / Val
AvgLoad
CPU (%)

9.02 / 6.34 4.61 / 2.66 3.24 / 2.24

Train / Val
MaxMemUsed

CPU (MB)
3037.27 / 3009.00 3,131.45 / 3,020.12 3,232.88 / 3,043.03

TABLE 3.2: Results from information loss experiments (batch size 32)
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FIGURE 3.19: Loss of Info Experiment with bigger images: Accuracy
& Loss over the epochs

3.3.3 Hypothesis #2: Shape Deformation

In the deformation experiments (see Hypothesis 2 we want to see the effects of
changing more drastically the shape of the images in each batch using as baseline
the model which uses images of dimensions 256x256. In these experiments we ex-
periment with resizing images to:

• 1000x65 and then crop them to 900x55 making the images to stretch vertically
increasing a bit the total area of the images of the baseline

• 100x1000 and then crop them to 50x900 in order to stretch this time the im-
ages horizontally and also decreasing this time a bit the total area of the image
compared with the baseline

• 1300x60 and then crop them to 1200x40 which stretches more the images ver-
tically and they they have almost the same area with the baseline

Deformation
Experiments

Resize(256, 256)
Crop(224, 224)

Resize(1000, 65)
Crop(900, 55)

Resize(100, 1000)
Crop(50, 900)

Resize(1300, 60)
Crop(1200, 40)

Train / Val
Accuracy (%)

95.29 / 62.3 93.75 / 67.82 84.8 / 67.61 93.75 / 67.91

Train / Val
Loss

0.14 / 1.86 0.18 / 1.11 0.44 / 1.06 0.28 / 1.14

Train / Val
Duration per

epoch (s)
247.3/ 27.3

Image Size
per batch
(pixels)

150,528 148,500 135,000 144,000
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Deformation
Experiments

Resize(256, 256)
Crop(224, 224)

Resize(1000, 65)
Crop(900, 55)

Resize(100, 1000)
Crop(50, 900)

Resize(1300, 60)
Crop(1200, 40)

Train / Val
AvgUtilization

GPU (%)
65.8/41.3

Train / Val
AvgMemUsed

GPU (MB)
19,350 / 9,986 19,352 / 9,942 18,186 / 9,586 18,924 / 9,850

Train / Val
AvgLoad
CPU (%)

20.54/ 14.16 17.69 / 12.33 19.58 / 13.5 16.48 / 11.54

Train / Val
AvgMemUsed

CPU (MB)
6084.1 / 6007.1

TABLE 3.3: Results from the deformation experiments

The results from the Table 3.3 show quite unexpected compared with our hy-
pothesis and apparently this is caused because of the nature of the problem which
includes high-resolution images. We didn’t actually stretch the images but we ap-
proached the actual size of the image (since most of the images are above 800x800).

FIGURE 3.20: Deformation Experiment: Accuracy & Loss over the
epochs

The results with images of 256x256 are very similar with the ones before but
in this case we changed the batch size to 256 since now the images for all the ex-
periment could fit in the GPU memory. The overfit though affected a bit more the
accuracy of the model that is why it is 1% less.

In general, it looks like that the results we get depend on the dimensions they
have and their aspect ratio. More specifically, we observe that bigger dimensions
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give better results. Nevertheless, in the case of the wider image with cropped image
size 50x900 we obtain the best potentially results (less overfiting) and most probably
because of the aspect ratio distribution of the dataset; there are more horizontal im-
ages than vertical. However, because it has the smallest area and dimension (which
is reflected by its image size per batch and thus the GPU memory needs) the ac-
curacy does not even reach 85% after 30 epochs but it reaches a surprising 67,61%,
compared with the other results.

Even though it overfits more the model with the final cropped image size of
900x55 provides slightly bigger images (in terms of the total number of pixels) and
as we saw in the previous experiments this can give a potential advantage in terms
of accuracy which we can see it here where it reaches 67.91%. The rest of the metrics
are quite similar apart from the GPU memory as it was commented above.

An important gained insight that we did not anticipated was the regularization
capacity of deformation. Even though the area provided as input in the training is
similar in all the cases the deformation we applied affect the convergence of the mod-
els. It seems that this type of deformation works like a data augmentation technique
since the training accuracy and loss (Figure 3.21) converge slower and it balances the
variance and bias of the model in all the deformed cases. This means that for tasks
where deformation may not be an issue (where the proportion of visual patterns is
not important, like with this dataset), implementing it may be beneficial.

Another insight we gained is having HR in at least one axis is more important
than avoiding deformation. The benefits of one compensates the inconveniences of
the other. The problem is, we can not experiment with extreme deformation without
causing big dimensions. In hindsight, we probably should have tested with medium
deformations that did not result in HR in an axis. Thus, we can not reject the hypoth-
esis and probably another dataset should be found for better exploring this area.

3.3.4 Hypothesis #3, #4: Padding

In this part of our work we want to experiment with padding (see Hypothesis 3,
4) as a way to group together images of different sizes. We want to test different
paddings and the effect they have finally in the CNN’s performance. For that we
use bucketing, which was explained earlier, as a way to minimize padding and no
bucketing to see the effects of extreme padding when we batch randomly together
images of different size. So, we have no or extreme padding (Buckets = 0), big
padding (Buckets = 6), medium padding (Buckets = 13), small padding (Buckets =
20).

• We use dynamic resize (downratio) by keeping its aspect ratio (downratio)
and set the max size of the images in order to fit them in the GPU memory
with batch size of 256. Like that most of the images will have similar sizes
maintaining their aspect ratio.

– The baseline is again the case with the normal resizing of the image to
256x256 and crop it to 224x224

– We apply a down ratio of 10% setting the maximum image size to 256x256
and then we crop with a ratio of 0.875 (which in the case of 256x256 it
gives again 224x224). We use simple padding to batch the images to-
gether.

– The same as above but we use the bucketing technique to batch the im-
ages together using specifically 6 buckets.
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Padding
Experiments

BS=256

Resize(256, 256)
Crop(224, 224)

DownRatio=0.1
MaxSize(256, 256)
CropRatio=0.875

Buckets=0

DownRatio=0.1
MaxSize(256, 256)
CropRatio=0.875

Buckets=6
Train / Val

Accuracy (%)
94.0 / 63.4 95.0 / 64.44 91.1 / 65.2

Train / Val
Loss

0.17 / 1.76 0.14 / 1.70 0.26 / 1.77

Train / Val
Duration per

epoch (s)
204.12 216.56 222.02

AvgImageSize
per batch
(pixels)

150,528 148,430 145,534

Train / Val
AvgUtilization

GPU (%)
58.34 / 46.98 57.41 / 46.62 51.9 / 48.63

Train / Val
AvgMemUsed

GPU (MB)
43,478.0 / 41,098.25 43,478.0 / 42,602.0 40,748.0 / 40,108

Train / Val
AvgLoad
CPU (%)

13.78 / 9.78 16.24 / 10.91 11.02 / 7.41

Train / Val
AvgMemUsed

CPU (MB)
6165.23 / 6009.60 6532.31 / 6106.15 6172.87 / 6010.94

TABLE 3.4: Results from the padding experiments (batch size
256)

The experiments supports the hypothesis. However, its not entirely conclu-
sive because the results as expected are quite close to each other with a small
1% improvement in the accuracy in each case. As we can see the little added
information from bucketing (using 6 buckets) contributes to a higher training
loss and lower training accuracy while the validation is more or less the same,
giving an advantage to this solution because it overfits less than the others, as
seen in Table 3.4. That is also evident from the accuracy and loss curve shown
below Figure 3.21.
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FIGURE 3.21: Padding experiment with max size set: Accuracy &
Loss over the epochs

In our hypothesis we clarified that bigger padding should result in more mem-
ory needs in GPU. The padding is implied by the image size per batch and the
memory needs from the average GPU memory. The correlation between these
two in this case can be more obvious since the image size changes in every step;
also, seeing the plots over the steps below we can start extracting conclusions.
For presenting better the results without lines hiding behind fluctuations we
smoothed a bit the lines over a window of 101 to limit the extreme fluctuation.
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FIGURE 3.22: Padding experiment with max size set: CPU Load &
Memory over steps (smooth fluctuations over a window of 101)

FIGURE 3.23: Padding experiment with max size set: GPU Utilization
& Memory over steps (smooth fluctuations over a window of 101)

From the plots above in Figures 3.22, 3.23 we can observe the following:

– In CPU memory there is very little difference between padding and no
padding
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– At the very beginning of the computation the CPU the memory is used
quite heavily because of the image preparation adding padding to each
of them to batch them together

– Less padding needs less CPU during data preparation and more padding
needs more CPU during computation. With the bucketing technique we
need to pad less so that is why we need less CPU memory compared
without using it. However, the CPU memory needs are not big

– In the load of the CPUs we can see something different. Padding without
bucketing is more computationally intensive but when we use bucketing
we can see that the load in CPUs is less.

– Concerning the GPU we can see an apparent benefit over using bucketing.
Less padding needs less GPU in average because it loads batches with
smaller images. We need to note though that as we have set the same
maximum size in all the cases here the real values of the GPU memory
can fluctuate up to the baseline model.

– Finally, the average GPU usage over steps seems also to favor more the
bucketing technique since in general can give more often batches with
smaller images. Note that the GPU is measured over a step, from loading
the images in GPU until the network updates its weights in a pass.

Padding
Experiments

Buckets
BS=256

DownRatio=0.1
CropRatio=0.875

Buckets=6

DownRatio=0.1
CropRatio=0.875

Buckets=13

DownRatio=0.1
CropRatio=0.875

Buckets=20

Train / Val
Accuracy (%)

91.1 / 65.2 96.1 / 65.9 96.3 / 66.7

Train / Val
Loss

0.24 / 2.44 0.07 / 2.05 0.09 / 1.88

Train / Val
Duration per

epoch (s)
222.2 215.7 209.3

AvgImageSize
per batch
(pixels)

145534 139363 138041

Train / Val
AvgUtilization

GPU (%)
59.91 / 49.63 52.8 / 40.61 50.21 / 39.57

Train / Val
AvgMemUsed

GPU (MB)
39,807.40 / 40,708.25 37,407.32 / 37,512.25 35,587.23 / 34,476.06

Train / Val
AvgLoad
CPU (%)

10.98 / 7.41 11.24 / 7.77 11.91 / 8.77

Train / Val
AvgMemUsed

CPU (MB)
6,202.62 / 6,021.56

TABLE 3.5: Results from the padding experiments (batch size
256) using the bucketing technique with buckets=6, 13, 20
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After observing the benefits of the bucketing technique we continue with com-
paring the different bucketings with B = 6, 13, 20. As we can see from the
results in the Table 3.5 we can see that with bigger number of buckets you can
get better potentially results, since through the accuracy and the loss curves
Figure 3.24 we can see less overfitting and in terms of duration we manage
to decrease it and approach the duration of the baseline. This validates our
hypothesis3 that we can get better accuracy with less padding as well as that
it needs more epochs to converge. This reinforces the idea of regularization
through variable shaped images with little padding.

FIGURE 3.24: Padding experiment with max size set - Bucketing: Ac-
curacy & Loss over epochs
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FIGURE 3.25: Padding experiment with max size set - Bucketing: Im-
age sizes per batch & GPU Memory over steps

In the Accuracy & Loss plot in Figure 3.24 we can see also that even though the
final accuracy and loss of the largest number of buckets is better, it takes more
time for it to converge. The reason behind this effect is the way we force the
network to learn with variable sized images grouped in buckets which may
result in more steps than in the other runs (because each bucket may not be
divided exactly with the batch size). In general, in the whole bunch of experi-
ments we conducted the bucketing could give 1− 3% more in accuracy.

Also, in this experiment we can get the information of the padding needed at
each batch checking the average image sizes per batch. As we can see in the
table above (Table 3.5) the more buckets we have the smaller the average image
size and thus, the padding needed in each batch. We can also see that in the
plot Figure 3.25 that this links to a much better memory usage in average that
is at the end 4GB less than the initial baseline.

• In this set of experiments we use downratio of 10%. Like that we let all images
to be resized but we don’t set the maximum size of the image as before (where
we forced to have maximum an image of 256x256). For that reason we decrease
a bit the batch size for the experiments with larger images to fit in the memory.
So, here we want to actually decrease the size of the images by 10% (with
respect to the aspect ratio) and evaluate the performance of the CNN when we
feed it with various input sizes.

Our baseline for this set is again the same as before with resize of 256x256 and
cropped final image 224x224. In the beginning we compare the baseline with:

– resized image to 400x400 and cropped image of 350x350

– we down ratio the image with ratio of 0.1 without using the bucketing
technique
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We can see the results in the Table 3.6, where the case with the 400x400 resized
image seems to give the best results. The non-bucketing technique can cause
large image sizes per batch (extreme padding) with extra computing power
and time needed to pad the much bigger images. So, here it seems that a bit of
loss of information in the images gives better results than extreme padding.

It needs to be noted that the 400x400 image size is close to the 10% of the
largest image of the dataset. However, despite the benefits that padding can
have, because the batches are created randomly we cannot really benefit from
that in this case. This can be an evidence that extreme padding does decrease
CNN’s performance.

Padding
Experiments

BS=104

Resize(256, 256)
Crop(224, 224)

Resize(400, 400)
Crop(350, 350)

DownRatio=0.1
CropRatio=0.875

Buckets=0
Train / Val

Accuracy (%)
95.2 / 63.7 94.3 / 66.2 92.2 / 64.4

Train / Val
Loss

0.14 / 1.89 0.17 / 1.62 0.22 / 1.83

Train / Val
Duration per

epoch (s)
244.5 383.8 400.3

AvgImageSize
per batch
(pixels)

150528 367500 361704

Train / Val
AvgUtilization

GPU (%)
60.89 / 44.27 60.02 / 42.12 60.19 / 40.79

Train / Val
AvgMemUsed

GPU (MB)
22350 / 11986 38226 / 14692 38872 / 20087

Train / Val
AvgLoad
CPU (%)

20.54 / 14.16 11.77 / 6.79 15.66 / 8.46

Train / Val
AvgMemUsed

CPU (MB)
6084 / 6003 3180 / 3017 3265 / 3988

TABLE 3.6: Results from the padding experiments (batch size
104)

Since the experiment with the largest initial image 400x400 gave better results
we will continue with that to compare it with other number of buckets (B =
6, 13, 20) and any benefits we can get through this technique.

Padding
Experiments

BS=104

Resize(400, 400)
Crop(350 350)

DownRatio=0.1
CropRatio=0.875

Buckets=6

DownRatio=0.1
CropRatio=0.875

Buckets=13

DownRatio=0.1
CropRatio=0.875

Buckets=20
Train / Val

Accuracy (%)
94.3 / 66.2 90.5 / 66.8 89.18 / 67.8 89.01 / 68.4

Train / Val
Loss

0.17 / 1.62 0.33 / 1.13 0.32 / 1.15 0.30 / 1.16
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Padding
Experiments

BS=104

Resize(400, 400)
Crop(350 350)

DownRatio=0.1
CropRatio=0.875

Buckets=6

DownRatio=0.1
CropRatio=0.875

Buckets=13

DownRatio=0.1
CropRatio=0.875

Buckets=20
Train / Val

Duration per
epoch (s)

383.8 325.4 299.7 285.5

AvgImageSize
per batch
(pixels)

367500 225692 198794 180300

Train / Val
AvgUtilization

GPU (%)
60.02 / 40.12 71.46 / 49.75 72.42 / 59.37 69.20 / 49.18

Train / Val
AvgMemUsed

GPU (MB)
38226 / 14692 25987 / 24557 23552 / 22031 21494 / 22243

Train / Val
AvgLoad
CPU (%)

11.77 / 6.79 15.85 / 10.17 16.61 / 10.93 17.14 / 11.56

Train / Val
AvgMemUsed

CPU (MB)
3180 / 3017 2988 / 2988 3205 / 3036 3229 / 3138

TABLE 3.7: Results from the padding experiments (batch size
104) resizing to a bigger scale of the image and using the buck-

eting technique with buckets=6, 13, 20

In Table 3.7 we can observe that adding more buckets provides an accuracy
improvement from 13 to 20 that according to Figure 3.13 gives results relatively
close to each other. The loss seems to be very close between the models which
use the buckets, but there is a difference in accuracy; however that was not the
case all the time since we observed an improvement of 0− 2% over different
runs. This can be seen also in the Figure 3.26 where we see that the bucketing
contributes to balance more the overfitting and that in accuracy the results are
close to each other and fluctuate a bit.

In terms of time there is a quite big difference as we increase the number of
buckets because of the smaller average image size per batch which in turn im-
plies the total padding needed in each case Figure 3.27. Because the values of
the memory of CPU don’t seem to be a burden we present also the progress of
memory over the steps during training. In both cases we see that the bigger
number of buckets, the less needs for padding the less memory requirements
during training. In addition, the utilization of GPU at this stage is more or
less the same since it’s quite heavily used using this kind of batch size with
this kind of images. Finally, note again that through this bucketing technique
throughout our experimentation we were getting between 3− 5% more in ac-
curacy compared with the initial baseline of size 256x256.
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FIGURE 3.26: Padding experiment with 10% downratio - Bucketing:
Accuracy & Loss over epochs

FIGURE 3.27: Padding experiment with 10% downratio - Bucketing:
Image size per batch & GPU Memory over epochs

• Finally, we use down ratio of 20% without any thresholds on the sizes. That
means also that we increase the image size which force us to reduce the batch
size to 32. In this setup we used our conclusions from the previous exper-
iments, so here we first compare with the baseline (with initial image size
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256x256 and cropped size 224x224) the effect of even bigger images per batch.
The results using padding without the bucketing technique were not compa-
rable in this experiment and also as a solution didn’t perform very well, espe-
cially compared with the models using bigger resized images. For that reason,
we didn’t include it in these results and at the same taking the insights from the
results from loss of information experiments Table 3.2 we used here as baseline
the one with resized images of 600x600. Note that an image of 600x600 corre-
sponds to the 20% resize of an image of 3000x3000, which is a bit smaller than
the biggest one.

In Table 3.8 we can see here that the more information that the baseline in-
cludes gives it an advantage, however the results are quite close with each
other in accuracy and loss. The advantage of the bucketing technique are is
the decreasing amount of time needed to train the network as the number of
buckets increases.

Padding
Experiments

BS=32

Resize(600,600)
Crop(525,525)

DownRatio=0.2
CropRatio=0.875

Buckets=6

DownRatio=0.2
CropRatio=0.875

Buckets=13

DownRatio=0.2
CropRatio=0.875

Buckets=20
Train / Val

Accuracy (%)
95.5 / 67.8 94.3 / 67.6 92.1 / 67.3 94.5 / 67.9

Train / Val
Loss

0.15 / 1.58 0.17 / 1.46 0.24 / 1.32 0.18 / 1.28

Train / Val
Duration per

epoch (s)
967.9 905.2 830.6 802.7

AvgImageSize
per batch
(pixels)

826,875 738,072 645,132 622234

Train / Val
AvgUtilization

GPU (%)
64.71 / 70.50 66.25 / 56.17 64.86 / 50.75 63.52 / 49.83

Train / Val
AvgMemUsed

GPU (MB)
33,908 / 14,286 30,850 / 35,856 27,786 / 37,693 26,890 / 36,246

Train / Val
AvgLoad
CPU (%)

4.61 / 2.66 6.05 / 3.27 6.34 / 3.56 6.54 / 3.66

Train / Val
AvgMemUsed

CPU (MB)
3,131.45 / 3020.12 3,181 / 3,084 3,155 / 3,069 3,232 / 3,149

TABLE 3.8: Results from the padding experiments (batch size
32) using the bucketing technique with buckets=6, 13, 20

In addition, compared with the previous set of experiments (Figure 3.7) the re-
sults here are not improved. Specifically, the models now overfit more and
don’t show so much of an improvement in accuracy. Probably the reason
would be the much smaller batch size which can affect the performance; that
was also the reason that led to a lower learning rate according to [22],[6]. The
results of bucketing are quite close even in the average padding needed (im-
plied through the image size per batch) and the memory needs (see Figure
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3.29. This is also depicted in the Figure 3.28 where the differences throughout
the steps is much smaller compared with the previous set of experiments.

FIGURE 3.28: Padding experiment with 20% downratio- Bucketing:
Accuracy & Loss over epochs

FIGURE 3.29: Padding experiment with downratio - Bucketing: Im-
age size per batch & GPU Memory over epochs
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Chapter 4

Conclusions

Throughout our work on METavlitó we wanted to find an approach to tackle chal-
lenges when we train variable-shaped images in high-resolution. Our proposed ap-
proach adopted some dynamic transformations and padding. Through this tech-
nique we made all images the same size maintaining their aspect ratio and then we
put them together in the same batch. In order to overcome negative effects of ex-
treme padding, when the sizes of the images differ a lot, we found a way for better
padding minimization, through clustering.

To do that, we experimented with some different algorithms using classic and
custom objective functions. We found that in average Padding Cost objective func-
tion eq.(2.8), proposed in this thesis, provides the lowest TPA and when we use it
along with our custom Random Padding Refinement (RPR) clustering algorithm could
surpass all the other combinations (Figure 3.13.

RPR clustering, seemed to be able to minimize better the TPA because of its clus-
ter refinement procedure which can approach better a global solution given the ini-
tial starting points which are the initial buckets (like the initial centroids in KMeans).
For this reason it takes more time than the other tested algorithms to finish, however,
the total duration is less than two minutes for 23k images.

Using these results, we tested our initial hypothesis.

1. Loss of information reduces CNN’s performance (Hypothesis 1)

There is some evidence that larger images can give better accuracy and lower
the loss value. In general, in extreme cases where we have very small or large
images there is less overfitting (Figure 3.18, 3.19) because it’s harder for the
network to extract patterns since on the one side we have less information
and on the other hand there is much more information. This happens because
of we used images in HR, so when we reduce a lot their size the CNN can
still find distinguishable feature maps. However, providing bigger images we
noticed an improvement in the accuracy between 2 − 4% and 16% in loss.
These improvements follow a pattern that may be useful for understanding
the relationship between different input sizes and the accuracy as it can be
seen in Figure 4.1.
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FIGURE 4.1: Linear Regression for the results of the experiments on
Loss of Information

2. Shape Deformation reduces CNN’s performance (Hypothesis 2)

The results of this experiment were more unexpected. We ended up deform-
ing extremely just one dimension leaving the other more or less untouched.
This approach was necessary in order to test fairly the different models since
all of them had very similar inputs in terms of number of pixels. The previ-
ous conclusion can be applied also here, where the network needs more time
to learn larger images. A very interesting insight which came out of the ex-
periments was that regularization capacity of deformation. The experiments
showed similar results to data augmentation since we add prior knowledge
(deformed images with the same labels) decreasing at the same time the vari-
ance of the model Figure 3.21.

In more details, from deforming the images we managed around 4% of im-
provement in the accuracy and more than 43% in loss compared with the base-
line (Table 3.3. However, we can not reject our hypothesis because the nature
of the dataset included pictures in HR and very neutral background as can
be seen for example in Figure 3.1. Thus, for better exploration of that topic is
needed another dataset.

3. Padding can increase CNN’s performance with a slower convergence (Hypothesis 3)

When we use padding, limiting the maximum dimensions of the image to be
the same with the ones of the baseline, we spotted 2% improvement in the
accuracy with a very small overhead per epoch in time (see Table 3.4). Also,
using bucketing we reached to approximately 3% of improvement in accuracy
(see Table 3.5).

Across the rest of the experiments we saw that the larger number of buckets
the less time needed in each epoch during training and the less average mem-
ory needed. Furthermore, we could also notice that the more buckets we had
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during training the less overfit we ended up having and in general terms we
could see also some improvement in the accuracy (see Table 3.7; which again
shows some regularization effects just from efficiently rearranging the batches
validating our hypothesis.

In general, across these experiments we saw a better accuracy of 5% more than
the baseline and 2% more than the model which takes the same input size.
The loss is also improved lowering it by 37%. In different runs the accuracy re-
sults could fluctuate±1− 2%. Finally, using our bucketing technique the GPU
memory require in average 3− 7GB less memory than using pre-determined
larger resized images accelerating the training time.

4. Excessive padding can decrease CNN’s performance (Hypothesis 4)

In the case of having really large images we saw that padding without buck-
eting (thus, with extreme padding) had really bad results, validating that ex-
treme bucketing can actually decrease CNN’s performance. When we set the
maximum size of images even though it was giving similar accuracy and loss
as the other models but it didn’t improve the GPU nor the CPU memory,
because most of the times because of the stochasticity in creating batches, it
would include large images (see Table 3.4).

We noticed the same when we resized the images with respect to the aspect
ratio (with 10% and 20%) because there was an even bigger variability of image
sizes with a lot of differences in their shapes and thus it required much more
time for training and at the same time couldn’t give good results (Table 3.6).
For that reason we can validate our hypothesis and say that when we have
many different shapes and scales of images the bucketing technique should be
preferred more.

In Figure 4.2 we can see the relationship of the accuracy and the different num-
ber of buckets we tried in the experiments (note that Buckets = 0 corresponds
to extreme padding). Also, we can compare the evolution of accuracy between
setting a constant maximum image size and using dynamic resizing (down ra-
tio) of 10% which implies the benefits of using larger images as we saw in the
experiments of Loss of information above. With this we can get an idea of the
effect of different number of buckets is each case.
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FIGURE 4.2: Linear Regression for the results of the experiments on
Padding

In conclusion, the proposed Random Padding Refinement clustering algorithm com-
bined with the bucketing method, that we introduced in this work, reduces the padding
and avoids deformation better than all considered alternatives. The relevance of this
contribution is highlighted by the validation of the hypothesis made and evaluated.
Our proposed method can actually be used and replace other options that use large
images as input in a CNN. Our approach can take into account variable-shaped im-
ages in high-resolution giving some improvements in the performance and at the
same time, requires in average less memory. By forcing bucketing to have maxi-
mum image size the same one we would use as pre-determined one (i.e. 224x224),
bucketing can also be used as a way to incorporate in the model the information of
the different shape of images with the trade off of more time needed per epoch and
more time to converge because of the bigger number of batches. At the same time, it
can work as a regularization technique lowering the variance of the model.

4.1 Future work

As a future work of METavlitó we can include more sophisticated methods of buck-
eting which takes into account the size of the bucket. Also, something that could be
interesting as a future extension of the METavlitó project is the dynamic assignment
of the batch size based on the bucket or the image size of the batch changing appro-
priately the learning rate. Apart from that we need to do more experiments with
different image processing tasks like regression, superresolution or object detection
which may show bigger advantages of our approach.

Apart from that we need to do some more experimentation with some more so-
phisticated architectures in order to see also if this approach can indeed be applied
globally no matter of the architecture. Finally, some more work is needed in resiz-
ing extreme cases like panoramas which can bring many troubles when we tried to
resize them with either technique.
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Chapter 5

Appendix

5.1 Clustering Essentials

Clustering can be used as a pre-processing mechanism to cluster together images
and control the batches during the training or validation stage. The general goal
of clustering is, given the number of clusters, to find meaningful groups of data
points that share common characteristics and are more similar to the ones in the
group than with the ones out of the group. This group can be called cluster or
bucket. Each algorithm uses some kind of dissimilarity metric (usually the Euclidean
distance/L2-norm) to distinguish not related groups and differs in the way it parti-
tions the groups. In our use case the measure of similarity has to do with the images’
shape.

5.1.1 KMeans based clustering

KMeans algorithm is an iterative algorithm that tries to partition the dataset into
K predefined distinct non-overlapping subgroups (clusters) where each data point
belongs to only one group. It tries to make the inter-cluster data points as similar
as possible while also keeping the clusters as different (far) as possible. It assigns
data points to a cluster such that the sum of the squared distance between the data
points and the cluster’s centroid (arithmetic mean of all the data points that belong
to that cluster) is at the minimum. The less variation we have within clusters, the
more homogeneous (similar) the data points are within the same cluster.

The way KMeans algorithm works is as follows:

• Specify number of clusters K.

• Initialize centroids by randomly selecting K data points for the centroids with-
out replacement.

– The version of KMeans++ picks just the first centroid randomly and the
rest from a weighted probability distribution where a point x is chosen
with probability proportional to the squared distance D(x)2, in order to
be as different as possible [3]

– There is a version of Improved Canopy KMeans[38] (also developed in
this work) where the centroids are pre-defined by an algorithm which is
based on some density metrics.

• Compute the sum of the squared distance between data points and all cen-
troids.

• Assign each data point to the closest cluster (centroid).
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• Compute the centroids for the clusters by taking the average of the all data
points that belong to each cluster.

– The version of KMedoids the new centroids are the member of the cluster
with the minimum sum of square distance to the rest of the cluster.

• Keep iterating until there is no change to the centroids. i.e assignment of data
points to clusters isn’t changing or is under a specified range of a tolerance
value

The approach KMeans follows to solve the problem is called Expectation-Maximization.
The E-step is assigning the data points to the closest cluster. The M-step is comput-
ing the centroid of each cluster. The objective function is the Euclidean distance:

J =
n

∑
j=1

K

∑
k=1

wjk ·
∥∥xj − µk

∥∥2 (5.1)

where wjk = 1 for data point xj if it belongs to cluster k; otherwise, wjk = 0. Also,
µk is the centroid of xi’s cluster.

The way to find the clusters and calculate each time the representatives of the
clusters the centroids, is as follows for the given objective function which actually is
the euclidean distance:

∂J
∂wjk

= 0⇒ wjk =

{
1, k = arg minl

∥∥xj − µl
∥∥2

0, otherwise
(5.2)

Concerning the M-step we want to find the right centroids:

∂J
∂µk

= 0⇒ µk =
∑n

j=1 wjk · xjk

∑n
j=1 wjk

(5.3)

5.1.2 Hierarchical Clustering

In this project we also study different techniques of hierarchical clustering where
the clusters are tree-organized which infers that each cluster consists subclusters so,
in this type of clustering we have overalapping clusters, as can be seen in Figure 5.1.
Each technique uses different dissimilarity metric to calculate the proximity between
the new cluster and the original clusters and finally form another sub-cluster.
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FIGURE 5.1: Hierarchical clustering example

Whereas KMeans tries to optimize a global goal (variance of the clusters) and
achieves a local optimum, agglomerative hierarchical clustering aims at finding the
best step at each cluster fusion (greedy algorithm) but resulting in a potentially sub-
optimal solution. Agglomerative hierarchical clustering is easy to understand but it
rarely provides good solutions and also is high in time complexity, generally, if the
number of elements to be clustered is represented by n and the number of clusters is
represented by K, then the time complexity of hierarchical algorithms is O(n2logn).

Its general concept is to merge items into clusters based on a distance/similarity
usually based on best pairwise similarity. Typically the steps are:

• each element is a cluster on its own

• compute similarity between all pairs of clusters and store the results in a simi-
larity matrix

• merge two most similar clusters according to the linkage metric

– Single (minimum distance between 2 pair of examples between two clus-
ters)

– Complete (maximum distance between 2 pair of examples between two
clusters)

• update the similarity matrix

• repeat until everything belongs to the same cluster
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