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Abstract. In this paper high-order triangular elements are implemented in the framework of 
the Arbitrary Lagrangian-Eulerian method for the analysis of large strain consolidation 
problems in geomechanics. The theory of consolidation, as well as details of the high-order 
elements, including cubic (10-noded), quartic (15-noded), quantic (21-noded) and sextic (28-
noded) elements are discussed. The accuracy and the efficiency of high-order elements in the
analysis of consolidation problems are demonstrated conducting a small deformation analysis of 
the soil under a strip footing as well as a large deformation analysis of a vertical cut subjected to a 
surcharge loading. Based on the numerical results, it is shown that high-order elements not only 
improve the accuracy of solution but can also significantly decrease the required 
computational time. It is also demonstrated that assuming identical order for displacement 
shape functions and the pore water pressure shape functions does not affect the stability of the 
time-marching analysis of consolidation nor the accuracy of the numerical predictions.

1 INTRODUCTION
The theory of linear consolidation was first proposed by Biot in 1941. However, it took 

several years before researchers applied the finite element method to solve Biot’s 
consolidation equations, e.g., Sandu and Wilson (1969). The works of Christian and 
Boehemer (1970) and Kraus (1978) are the good examples of employing the finite element 
technique to solve elastic consolidation problems. Later, Small et al. (1976) proposed the first 
extension to Biot’s theory to accommodate elastoplastic behaviour of the soil. Works of 
Carter et al. (1977) and Carter et al. (1979) are further extension of the theory of consolidation 
for elastic and elastoplastic soil subjected to large strains.

The finite element method has proven to be very effective for dealing with consolidation 
problems in geomechanics. However, simultaneously minimising the computational time 
while maximising the accuracy of numerical solution, is still a research subject of some 
interest. One of the ways to achieve this goal is to apply high-order elements in which 
increasing the order of the nodal polynomial functions may result in more accurate results in 
less computational time. The 15-noded triangular elements have already been applied by a 
few researchers to improve the solution of some well-known geotechnical problems. 

1209



Mina Kardani, Majidreza Nazem and John P. Carter.

2

Examples include study of the collapse load of an incompressible soil under strip and circular 
footings by Sloan and Randolph (1982), investigation of the collapse load of soil with a non-
associated flow rule with small strains by De Borst and Vermeer (1984), and the 
consolidation problem of composite soft clay by Horpibulsuk et al. (2012). Recently, Kardani 
et al. (2013) compared the efficiency of high-order triangular elements such as quartic and 
quadratic elements by investigating the large deformation of an undrained soil under a 
footing. Later Kardani et al. (2014) compared the performance of the same set of high-order 
elements in analysing large strain coupled problems. When dealing with large deformation 
problem, the Arbitrary-Lagrangian-Eulerian (ALE) formulation presented by Nazem et al.
(2008) has been applied to refine the mesh in order to prevent the occurrence of mesh 
distortion during the analysis.

In this work, the performance of 28-noded triangular elements in analysing the coupled 
problems of geomechanics is compared with the outcomes of 10-, 15- and 21-noded elements. 
The comparison will be shown by investigating the bearing capacity of the soil under a strip 
footing assuming small deformations as well as the stability of a vertical cutting in an 
undrained soil subjected to large deformations.

2 GOVERNING EQUATIONS

In geotechnical problems the deformations of the solid phase are usually coupled with the 
pore fluid pressures. In order to analyse these consolidation problems, the governing 
equations are obtained by coupling the conservation of mass and the equilibrium resulting the 
governing finite element equations (see Nazem et al. 2008):

(1)

where K is the stiffness matrix, L represents the coupling matrix, H denotes the flow matrix, 
u and p are respectively the vectors of nodal displacements and pore water pressures, and Fext
and Qext represent the external force vector and the fluid supply vector, respectively. A
superimposed dot in Equation (1) represents the time derivative of a variable. It is noted that 
the Arbitrary Lagrangian-Eulerian method proposed by Nazem et al. (2006) is employed for 
solving the large deformation problems in this study. The implicit backward Euler method is 
used to numerically integrate the coupled differential equation in (1). For further details, see 
Nazem et al. (2008).

3 HIGH-ORDER ELEMENTS

In this paper, high-order triangular elements including the 10-, 15, 21- and 28-noded elements 
are applied to discretise the problem domain. In triangular elements, the order of the 
polynomial shape function, p, is directly related to the number of nodes, m, according to 
(Dunavant, 1985)

1 ( 1)( 2)
2

m p p= + + (1)

In dealing with the coupled problem, it is generally accepted that the order of the pore 
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water pressure shape functions should be one degree lower than the order of the displacement 
shape functions. For the 6-noded elements this can easily be achieved by only considering 
pore pressure degrees of freedom at the corner nodes. However, with higher order elements 
such consideration is not feasible. To overcome the problem in this study, the same order of 
shape function is assumed for both displacement and pore water pressure. Later, through some 
numerical examples, it is demonstrated that this assumption is satisfactory. Table 1 contains 
the characteristic information for each type of high-order element considered, including 
number of nodes on each side of the element, the number of internal nodes, the polynomial 
order and the minimum number of quadrature points.

Table 1: Characteristic information for high-order triangular elements

Element 
type

No. of 
nodes

per side

No. of 
internal 
nodes

Order of 
shape 

function

Plane strain Axi-symmetric
Order of 
Integrand

Gauss 
points

Order of 
Integrand

Gauss 
points

10-noded 4 1 3 6 6 7 12
15-noded 5 3 4 8 12 9 16
21-noded 6 6 5 10 16 11 25
28-noded 7 10 6 12 25 13 37

4 NUMERICAL EXAMPLES
In this study, the accuracy and efficiency of high-order elements in tackling coupled 

problems is investigated by analysing two geotechnical problems. In the first example, a soil 
layer under a strip footing is analysed to find its undrained bearing response while assuming 
small deformations. In the second example, the loading of a vertical cutting is studied 
assuming large deformations. In both examples, the study is focused on the possibility of 
achieving a prescribed accuracy with fewer degrees of freedom while increasing the order of 
the elements.

It is noted that the high-order elements have been implemented in SNAC, a finite element 
program developed for analysing geotechnical problems at the University of Newcastle.

4.1 Elastoplastic analysis of a soil layer under a strip footing
In this example, the efficiency of high-order element in dealing with geotechnical coupled 

problems is shown by small deformation analysis of the undrained bearing response of a soil 
layer under a rigid strip footing. Small (1977) showed that for a weightless soil the drained 
and undrained strength parameter must satisfy

2 1 sin
1 1 sin

u Nc where N
c N

φ
φ

φ

φ
φ
′+

= =
′ ′+ −

(1)

in which φ′ and c′ are respectively the drained friction angle and cohesion, and cu denotes 
the undrained shear strength of the soil. In a coupled analysis, the excess pore water pressure 
will not have sufficient time to dissipate provided that the loading rate is relatively fast rate
(see Small 1977). Based on Prandtl’s plasticity solution, the undrained bearing capacity of 
soil under a strip footing is obtained by
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u c uq N c= (1)

where Nc=2+π represents the bearing capacity factor.  The Mohr-Coulomb material model is 
used to predict the soil behaviour in this example. To avoid an artificial increase in shear 
strength of soil due to the suppression of any dilation under undrained (constant volume) 
conditions, it is important to assume that dilation angle is zero. The problem domain, 
boundary conditions and material properties are illustrated in Figure 1. Note that only the 
right half of the problem domain is considered in the analysis due to symmetry. Also, plane 
strain conditions are assumed.

Figure 1: An undrained layer of soil under a strip footing

To provide a comparison of the efficiency of the high-order elements, two fixed grids were 
used to discretise the problem domain. For a meaningful comparison it is important to use
more or less an identical number of degrees-of-freedom regardless of the element type. First,
the problem domain is discretised by an uniform 60x60 grid which provides a relatively 
coarse mesh with 3721 nodal points, noting that 60 is the least common multiple of 3, 4, 5 and 
6 (number of segments on one side of 10-, 15-, 21-, and 28-node elements, respectively). The 
second grid is relatively fine, including 120x120 uniform divisions and 14641 nodal points.
Both uniform grids are used to form triangular meshes by applying 10-, 15-, 21- and 28-node 
elements.

Table 2 presents the number of elements and integration points in each mesh as well as the 
numerical results including the error in predicted Nc and the CPU time normalised by the CPU
time of the fastest analysis. The plots of error versus the order of the shape functions, as well 
as the plots of error versus the normalised CPU time, are presented in Figures 2a and 2b,
respectively. According to Table 2, the coarse mesh of 28-noded elements provides the most
accurate estimation of the undrained bearing capacity of the soil and hence there is no need to
repeat the analysis using the fine mesh of 28-noded elements.
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Table 2: Finite element meshes and numerical result

Element Type Mesh Number of 
elements

Number of 
Gauss points Nc

Error in Nc

(%)

Normalised 
CPU time

10-noded Coarse 800 4800 5.80 12.84 1
Fine 3200 19200 5.279 2.7 10.85

15-noded Coarse 450 5400 5.50 7.0 1.4
Fine 1800 21600 5.186 0.77 19.43

21-noded Coarse 288 4608 5.301 3.13 1.84
Fine 1152 18432 5.141 0.18 24.8

28-noded Coarse 200 5000 5.140001 1.9E-7 1.6
Fine 800 20000 - - -

 
a.  Error versus order of shape functions

 

b.  Normalised CPU time versus order of shape functions

Figure 2: Numerical results
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Based on the result presented in Table 2 and Figure 2, the coarse mesh with cubic elements
represents the fastest analysis, but the bearing capacity of the soil is considerably 
overestimated. On the other hand, the analysis with 28-noded elements with a CPU time just 
1.66 times the fastest analysis, achieves the most accurate result. Also in this example, by 
comparing the analysis results of 21-noded and 28-noded elements, it is concluded that the 
28-noded elements are more efficient than 21-noded elements as they not only improve the 
final solution but decrease the computational time.

4.2 Vertical cut
In this example, the efficiency of high-order element in dealing with coupled geotechnical 

problem is studied by large deformation analysing of a weightless soil under a uniform 
vertical load applied adjacent to a vertical cutting.

To model the undrained soil behaviour, the drained material properties are considered and
a coupled pore water pressure-displacement analysis is carried out with a rather fast loading 
rate. The problem domain, material properties and boundary condition are shown in Figure 3. 
Based on the theoretical solution, the maximum vertical pressure which can be applied on an 
undrained soil is equal 2cu. The analyses were conducted using a trial and error strategy. For 
each type of high-order elements, the first analysis employed a very coarse mesh and the error 
was calculated. The analysis was then repeated by gradually increasing the density of the 
mesh, specifically in the area under the load, with the aim of approaching the exact solution. 
The characteristics of the discretisation as well as the error and CPU time of each analysis are 
summarised in Table 3. For each analysis, the errors versus number of elements as well as the 
error versus normalised CPU time are plotted in Figure 4. According to Figure 4a, by
increasing the number of elements the error decreases, whereas the computational time 
increases. According to the Figure 4b, the performance of the high-order element improves as
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the order of element is increased. The 28-noded element achieved the same accuracy of the 
other type of elements with the lowest computational time. This given accuracy can be 
achieved in the fastest time using the 28-noded element.
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a. Error versus number of elements in the vertical cut. 
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b. Error versus normalised computational time 

Figure 4: Analysis results of vertical cut 
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5 CONCLUSION
In this study, high-order finite elements are applied for coupled problems in a finite 

element framework, using the Arbitrary Lagrangian-Eulerian method. The accuracy and 
efficiency of these elements were examined by analysing two typical geotechnical 
problems including the undrained bearing capacity of soil under a rigid footing and the 
behaviour of undrained soil under a vertical pressure applied adjacent to a cutting.

For the coupled problems investigated in this study, applying high-order elements was
proven to be very effective in improving the computational time. This means that 
increasing the order of elements leads to a decrease in the number of degrees of freedom 
required to achieve a given accuracy and therefore a significant drop in the computational 
time. Also, it was demonstrated that considering the same order of shape functions for 
both displacement and pore water pressure does not affect the accuracy of the numerical 
results. In dealing with the coupled problems studied in this paper, the 28-noded triangular 
elements prominently outperformed the other high-order elements.

Table 3: Descritisations in vertical cut problem

Element type Number of 
Elements

Degrees of 
freedom

Gauss 
points Error (%) Normalised CPU 

time

10-node

416 5790 2496 17 9.8
792 10938 4752 7 29.97
1289 17697 7734 2.0 222.58
1894 25878 11364 0 471.8

15-node

59 1533 708 12.35 3.2
231 5733 2772 7 26.98
416 10215 4992 2 164.78
792 19335 9504 0 485.59

21-node

59 2367 944 6.5 4.58
164 6333 2624 4 46.98
305 11733 4880 1 159.79
416 15888 6656 0 430.396

28-node

22 1317 550 12.8 1.0
42 2415 1050 8.5 4.2
59 3360 1457 2.1 7.0

108 6051 2700 0 19.6
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