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Abstract. Actuator is a mechatronic system that transforms one type of energy (e.g.
electric energy) into the mechanical displacement and mechanical force (mechanical en-
ergy). Nowadays, these actuators can be made of Functionally Graded Materials (FGM)
to ensure simple shape of the actuator and to improve its effectiveness, particularly for
micro systems. FGM is built as a mixture of two or more constituents which have almost
the same geometry and dimensions. The variation of macroscopic material properties can
be induced by variation of both the volume fractions and material properties (e.g. by a
non-homogeneous temperature field) of the FGM constituents.
The paper deals with a new approach in analysing of the systems made of FGM us-
ing our new beam finite elements. Multiphysical analysis (weak coupled electro-thermo-
mechanical analysis) and spatial continuous variation of material properties are supported.
The analysis of the micro actuator with constant cross section made of FGM is presented
in the paper. This simple-shaped actuator is supplied by electric current and the efficiency
of the actuator is optimised. The solution results will be compared with those obtained
by using solid elements of a FEM commercial program.

1 INTRODUCTION

Nowadays, the scientific and technological progress are already at such level that for
the development of new systems in classical way (such as mechanical and heating sys-
tems, systems in construction industry, etc.) it is not enough to propose new shapes of
components and their optimization, but it requires use of new materials with the desired
properties that lie outside the parameters of materials commonly used for that purpose.
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New materials like Functionally Graded Material (FGM) are necessary for sophisticated
structures like Micro-Electro-Mechanical Systems (MEMS), advanced electronic devices,
etc. In all these applications, using new materials like FGM can greatly improve efficiency
of a system e.g. classic shape of actuator (Fig. 1a) can be replaced by new type – simply-
shaped actuator (Fig. 1b) where functionality is caused by varying material properties.

Figure 1: (a) Classic shape of MEMS actuator, (b) New shape of FGM actuator

FGM is built as a mixture of two or more constituents which have almost the same geom-
etry and dimensions. From macroscopic point of view, FGM is isotropic in each material
point but the material properties can vary continuously or discontinuously in one, two
or three directions. The variation of macroscopic material properties can be caused by
varying the volume fraction of the constituents or with varying of the constituents’ ma-
terial properties (e.g. by non-homogeneous temperature field). The methods based on
the homogenization theory have been designed and successfully applied to determine the
effective material properties of heterogeneous materials from the corresponding material
behavior of the constituents (and of the interfaces between them) and from the geomet-
rical arrangement of the phases.
Coupled electro-thermo-mechanical analysis of actuator made of FGM using our new
beam finite elements will be presented.

2 FEM EQUATIONS FOR COUPLED ELECTRO - THERMO - MECHAN-
ICAL ANALYSIS

Derivation process of the new FEM equations for coupled electro-thermo-mechanical
element is based on differential equations for electric thermal and structural fields for 1D
type of analysis, respectively. All quantities in following equations are the polynomial
functions of x. Homogenization process of the varying material properties and the cal-
culation of other effective finite element parameters have been done by extended mixture
rule [1] and multilayer method is fully described in [2],[3].

2.1 Differential equations

Homogeneous 1D static differential equation for FGM (with non-constant coefficients
on on the left-hand side) for electric field with boundary conditions has a form:

−σ(x)
d2ϕ(x)

dx2
−

dσ(x)

dx

dϕ(x)

dx
= 0

ϕ(0) = ϕ0 J(L) = JL

(1)
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where ϕ(x) [V] is the electric potential, σ(x) [S/m] is the specific electric conductivity
and J(x) [Am−2] is the current density.

Static differential equation for heat transfer with non-constant auxiliary thermal source
Q(x) [Wm−3] in the volume, with non-constant convective heat transfer coefficient αt(x)
[K−1] and with coupled to the electric field has a form (2). One-way coupling between the
electric and thermal field is provided by Joule heat PJ1(x) [W/m3], that can be calculated
as one of the outputs from electric analysis and it enters the thermal analysis as volume
heat (beside or instead of Q(x)).

−λ(x)
d2T (x)

dx2
−

dλ(x)

dx

dT (x)

dx
+ αt(x)T (x)

o

A
= PJ1(x) +Q(x) + αt(x)Tamb

o

A
(2)

with boundary conditions, e.g.:

T (0) = 0 q(L) = qL (3)

where λ(x) [Wm−1K−1] is the thermal conductivity, T (x) [K] is the temperature, o [m] is
the perimeter, A [m2] is the cross section area, Tamb [K] is the ambient temperature and
q(x) [Wm−2] is the heat flux.

Homogeneous differential equation for structural analysis with effect of thermal expan-
sion (coupling with the electro-thermal analysis) for pure tensile and compressive stress
has a form:

ENH
L (x)

d2u(x)

dx2
+

dENH
L (x)

dx

du(x)

dx
=

=
n(x)

A
+ αt(x)∆t(x)

dENH
L (x)

dx
+∆T (x)ENH

L (x)
dαt(x)

dx
+ ENH

L (x)αt(x)
d∆t(x)

dx

(4)

with boundary conditions, e.g.:

u(0) = u0 σs
N (L) = σs

N,L (5)

where ENH
L (x) [Pa] is the Young modulus for tension/compression, u(x) [m] is the dis-

placement, n(x) [Nm−1] are the distributed axial forces, N(x) [N] is the normal force and
αt [K

−1] is the coefficient of thermal expansion.
Homogeneous differential equation for structural analysis for bending has a form:

d2w(x)

dx2
=

M(x)

EMH
L

(x)Iy (6)

with boundary conditions, e.g.:

w(0) = w0 σy(L) = σy,L (7)

where w(x) [m] is the transversal displacement, M(x) is the bending moment, EMH
L (x)

is the Young modulus for bending, ϕy(x) [rad] is the angle of the cross section rotation
(around y axis), Iy [m4] is the quadratic moment of the cross section.

The solution of these differential equations is based on numerical method for solving
1D differential equation with non-constant coefficients and with right-hand side described
in [4] in detail.
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2.2 New beam/link FGM finite element equations

The finite element equations for electric analysis in FGM link have a form:


c0(L) −1

−

�
c0(L)−

c1(L)c
′

0(L)

c′1(L)

�
1


 ·



ϕ0

ϕL


 =




c1(L)

σ0
J0

c1(L)

c′1(L)σL

JL


 (8)

FEM equations for thermal analysis considering the convective effect, generated heat and
Joule heat (coupling between the electric and thermal field) have a form:




c0(L) −1

−

�
c0(L)−

c1(L)c
′

0(L)

c′1(L)

�
1


 ·



T0

TL


 =

=




c1(L)

λ0
q0 −

g�
j=0

εjbj+2(L)

c1(L)

c′1(L)λL

qL −
c1(L)

c′1(L)

g�
j=0

εjb
′

j+2(L) +

g�
j=0

εjbj+2(x)




(9)

Derived FEM equations for the structural analysis for pure tensile and compressive stress
with coupling to the electro-thermal analysis (thermal expansion coefficient ) have a form:




c0(L) −1

−

�
c0(L)−

c1(L)c
′

0(L)

c′1(L)

�
1


 ·



u0

uL


 =

=




c1(L)

ENH
L A

N0 − c1(L)αt0∆T0 −

g�
j=0

εjbj+2(L)

c1(L)

c′1(L)

�
NL

ENH
L A

+ αtL∆TL −

g�
j=0

εjb
′

j+2(L)

�
+

g�
j=0

εjbj+2(L)




(10)

and FEM equations for bending of the beam have general form:

K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44


 ·




w0

ϕy,0

wL

ϕy,L


 =




Tz,0

M0

Tz,L

ML


 (11)

where Tz(x) [N] is the transversal force.
The terms ci(x), c

′

i, bi(x), b
′

i(x), i ∈ �0, 1� are the transfer functions (for particular solution
and for uniform solution) of the differential equations (1) - (6) which can be calculated
by simple numerical algorithm [4].
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3 NUMERICAL EXPERIMENT

Let us consider actuator with constant cross section made of FGM according to Fig. 2.
It consists of 3 parts (beams) that lengths are: L1 = 5 mm, L2 = 0.25 mm and L3 = 5
mm. Their constant rectangular cross-section is b = 0.2 mm and h = 0.1 mm.

L3

b

h

L2

L1

A B

CD

Figure 2: FGM microactuator

Actuator is made of FGM that consist of two components: NiFe - named as matrix and
denoted with index m and Tungsten - named as fibre and denoted with index f . Material
properties of the components are constant (not temperature dependent): Nife (matrix):
Young modulus Em = 255 GPa, thermal conductivity λm = 100 W/mK, electric conduc-
tivity γm = 1.31×107 S/m, thermal expansion coefficient αm = 1.5×10−5 K−1; Thungsten
(fibre): Young modulus Ef = 400 GPa, thermal conductivity λf = 160 W/mK, electric
conductivity γf = 2.84 × 107 S/m, thermal expansion coefficient αm = 5.3× 10−5 K−1.
The variation of material properties is caused by varying volume fraction. Variation of
the fibre’s volume fraction has been chosen as the polynomial function of x, y.

- Part 1

vf (x, y) =1/10 + 220× 103x2 − 232× 106x3 + 73600× 106x4 − 6912× 109x5

− 112× 1012x2y2 + 108800× 1012x3y2 − 33280× 1015x4y2

+ 3072× 1018x5y2 − 112× 1015x2y3 + 108800× 1015x3y3

− 33280× 1018x4y3 + 3072× 1021x5y3 + 22400× 1018x2y4

− 21760× 1021x3y4 + 6656000× 1021x4y4 − 614400× 1024x5y4

+ 44800× 1021x2y5 − 43520× 1024x3y5 + 13312× 1027x4y5

− 1228800× 1027x5y5

- Part 2
vf (x, y) = 0.766683
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- Part 3

vf(x, y) =0.766683 + 4.26633× 106x2 − 1.84858× 1010x3 + 3.89101× 1013x4

− 4.99269× 1016x5 + 4.25073× 1019x6 − 2.49749× 1022x7

+ 1.0285× 1025x8 − 2.96182× 1027x9 + 5.83847× 1029x10

− 7.49901× 1031x11 + 5.64709× 1033x12 − 1.88879× 1035x13

Variation of the fibres volume fraction vf (x, y) for part 1 and 3 are shown in Figure 3.
The same variation of the fibres volume fraction at the points B and C has been assumed.

Figure 3: Variation of the fibres volume fraction, left - part 1, right - part 3

The effective material properties (Young modulus for tension/compression ENH
L (x) [Pa],

Young modulus for bending EMH
L (x) [Pa], thermal conductivity λH

L (x) [Wm−1K−1], elec-
tric conductivity ρHL (x) [S/m], thermal expansion coefficient αH

TL [K−1]) of the homoge-
nized beam have been calculated by multilayered method [2], [3] and the results are:

- Beam 1 (the local axis x begins at node A and ends at point B - see Fig. 2):

ENH
L =2.695× 1011 + 2.24267× 1016x2 − 2.44373× 1019x3

+ 7.85707× 1021x4 − 7.424× 1023x5

EMH
L =2.695× 1011 + 1.70473× 108x+ 1.62396× 1016x2

− 1.84272× 1019x3 + 6.01868× 1021x4 − 5.72704× 1023x5

λH
L =106 +

135868725000

14641
x2 −

148050030000000

14641
x3

+
47600892000000000

14641
x4 +

4497721920000000000

14641
x5

ρHL =1.463× 107 + 2.3664× 1012x2 − 2.57856× 1015x3

+ 8.29057× 1017x4 − 7.83361× 1019x5
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αH
TL =0.00001356− 0.000286032x− 1.52203x2 + 1923.69x3

− 649717x4x5 − 6.34908× 107x5

- Beam 2 (the local axis x begins at node B and ends at point C - see Fig. 2):

ENH
L = 3.66169× 107

EMH
L = 3.66169× 107

λH
L = 146.001

ρHL = 2.48302× 107

αH
TL = 0.0000118

- Beam 3 (the local axis x begins at node C and ends at point D - see Fig. 2):

ENH
L =3.66169× 1011 + 6.18618× 1017x2 − 2.68044× 1021x3

+ 5.64197× 1024x4 − 7.2394× 1027x5 + 6.16356× 1030x6

− 3.62135× 1033x7 + 1.49132× 1036x8 − 4.29464× 1038x9

+ 8.46578× 1040x10 − 1.08736× 1043x11 + 8.18829× 1044x12

− 2.73875× 1046x13

EMH
L =3.66169× 1011 + 6.18618× 1017x2 − 2.68044× 1021x3

+ 5.64197× 1024x4 − 7.2394× 1027x5 + 6.16356× 1030x6

− 3.62135× 1033x7 + 1.49132× 1036x8 − 4.29464× 1038x9

+ 8.46578× 1040x10 − 1.08736× 1043x11 + 8.18829× 1044x12

− 2.73875× 1046x13

λH
L =146.001 + 2.5598× 108x2 − 1.10915× 1012x3

+ 2.33461× 1015x4 − 2.99561× 1018x5 + 2.55044× 1021x6

− 1.49849× 1024x7 + 6.17099× 1026x8 − 1.77709× 1029x9

+ 3.50308× 1031x10 − 4.49941× 1033x11 + 3.38826× 1035x12

− 1.13328× 1037x13

ρHL =2.48302× 107 + 6.52749× 1013x2 − 2.82832× 1017x3

+ 5.95325× 1020x4 − 7.63882× 1023x5 + 6.50362× 1026x6

− 3.82115× 1029x7 + 1.5736× 1032x8 − 4.53158× 1034x9

+ 8.93286× 1036x10 − 1.14735× 1039x11 + 8.64006× 1040x12

− 2.88985× 1042x13

αH
TL = 6.87608× 10−6 − 0.000186889x
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L

H
( )x

Figure 4: Homogenized thermal conductivity

The homogenized thermal conductivity λH
L (x) at part 1 and 3 is shown in Fig. 4.

The applied constrains and loads:

- electric potential and current: VA = 0 V, ID = 5 A;

- temperatures: TA = 25 ◦C, TD = 25 ◦C;

- fixed support: uA = 0 m, uD = 0 m,
fixed support: wA = 0 m, wD = 0 m,
fixed support: ϕA = 0 rad, ϕD = 0 rad;

The coupled electro-thermo-mechanical analysis of FGM actuator has been done using
our new FGM beam/link finite elements. The calculation has been done using software
MATHEMATICA [5]. Only three our new finite elements have been used (one for each
part). The same problem has been solved using a fine mesh - 12998 of PLANE223 ele-
ments of the FEM program ANSYS [6]. The average relative difference ∆ [%] between
quantities calculated by our method and the ANSYS solution has been evaluated.
Electric analysis was performed as the first solution and the nodal electric variables ϕ
have been obtained (see Table 1).

Table 1: The results of electric analysis

electric potential [V] new element ANSYS ∆ [%]
ϕB 0.077782 0.0775569 0.28
ϕC 0.080298 0.0796372 0.82
ϕD 0.131995 0.131098 0.67
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Thermal analysis was performed as the second one. Distributed thermal load - Joule
heat caused by electric current, was included into the analysis. The results of thermal
alalysis are presented in Table 2.

Table 2: The results of thermal analysis

temperature [◦C] new element ANSYS ∆ [%]
TB 346.33 340.42 1.71
TC 342.08 336.77 1.55

Structural analysis is performed as the last analysis, where thermal forces caused by ther-
mal expansion were included into the model. The solution of structural analysis are the
displacements u for longitudinal direction and w for transversal direction (see Table 3).

Table 3: The results of structural analysis

displacement [m] new element ANSYS ∆ [%]
uB 0.13713 ×10−4 0.13588 ×10−4 0.91
wB -0.70975 ×10−4 -0.72665 ×10−4 2.38
uC 0.67744 ×10−5 0.65903 ×10−5 2.71
wC -0.71917 ×10−4 -0.73204 ×10−4 1.78

As it can be seen in Tables 1 - 3, a very good agreement of both solution results has been
obtained. The comparison of total deformation of the FGM actuator calculated by our
new approach and comercial FEM program ANSYS is shown in Fig. 5.

ANSYS new elementundeformed shape

Figure 5: Total deformation of the FGM actuator
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4 CONCLUSIONS

New FEM equations for weak coupled static electro-thermo-mechanical analysis of the
FGM beam structures have been presented in this contribution. The numerical experi-
ment – multiphysical analysis of micro actuator made of FGM has been done using our
new approach and obtained results have been compared with ones obtained by solution
with software ANSYS. The effectiveness and accuracy of the new finite elements have
been shown.
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Grant Agency VEGA No. 1/0228/14, Grant Agency VEGA No. 1/0453/15 and Agency
KEGA No. 007STU-4/2015.
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