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Abstract. Electroelastic field in an semi-infinite body with D  symmetry subjected to a 
locally uniform electric potential on its surface is investigated. By extending a potential 
function method for transversely isotropic bodies, the electroelastic field inside the body is 
formulated. Furthermore, numerical calculation is performed to investigate the field 
qualitatively and quantitatively. 

1 INTRODUCTION 
The concepts of carbon neutrality have attracted considerable attention recently because of 

an increasing demand for a reduction in environmental loads. From the viewpoint of 
engineering production, wooden materials are one of the most promising candidates for 
achieving carbon neutrality. 

To ensure the quality of wooden materials, nondestructive evaluation techniques need to be 
developed.  In particular, the detection of local defects such as cracks, knots, and pith are of 
great importance for ensuring structural integrity. Wood has been known as a piezoelectric 
material since the middle of the 20th century, when Fukada succeeded in experimentally 
verifying the direct and converse piezoelectric effects of wood[1]. These effects are expected 
to be employed for nondestructive evaluation techniques[2-4].

From a mesoscopic viewpoint, woods are considered to belongs to point group D [1],
which is characterized by an  -fold rotation axis and a two-fold rotation axis perpendicular 
to it[5]. The nonzero components of the piezoelectric constant are 14d  and  1425 dd   only, 
allowing the  -fold rotation axis be the third axis. In that case, the electric field 
perpendicular to the  -fold rotation axis (third axis) induces shear strain in the plane 
perpendicular to the direction of the electric field. 

The elastic problems of transversely isotropic bodies, which correspond to a special case in 
the absence of the piezoelectric effects in body with  D  symmetry, were extensively 
analyzed[6―8]. On the other hand, electroelastic problems of bodies with  D  symmetry were 
investigated experimentally[9-12]. However, for sound operation of nondestructive evaluation 
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techniques, not only the input/output relationship but also the electroelastic field inside the 
material must be elucidated. 

In this paper, therefore, we analyze the electroelastic field in a body with D  symmetry. 
As an example, we treat a semi-infinite body subjected to a locally uniform electric potential 
on its surface. First, the displacement and electric field are expressed in terms of the potential 
functions. The governing equations for these functions are obtained by the equilibrium 
equations of stresses and the Gauss law. By solving the governing equations, the electroelastic 
field quantities are formulated. Moreover, by performing numerical calculation, the stress and 
electric field are investigated qualitatively and quantitatively, which helps us to understand 
the electroelascit field inside a body with D  symmetry. 

2 THEORETICAL ANALYSIS 

2.1 Problem 

We consider a semi-infinite piezoelectric body belonging to point group D , as shown in 
Fig. 1, where the z  axis is parallel to the  -fold rotation axis of the body. The surface of the 
body is subjected to a locally uniform distribution of electric potential and free from traction. 
The displacements and electric potential are assumed to be zero at infinity. Thus, the 
boundary conditions are given as 
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In Eq. (1), ij , iu , and   denote the stress, displacement, and electric potential, respectively, 
 H  denotes the Heaviside step function, and   denotes the half-length of the square where 

the uniform electric potential is applied. 

Figure 1: Analytical model 

2.2 Governing equations 

Let ij , iE , and iD  yxji ,,   be the the strain, electric field, and electric displacement, 
respectively. The constitutive equations of the body are given as 
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where ijc , kl , and kje  denote the elastic stiffness constant, dielectric constant, and 
piezoelectric constant, respectively. The displacement-strain relations are given as 
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The equilibrium equations of stresses and the Gauss law are given, respectively, by 
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Referring to a solution technique for elastic problems of transversely isotropic bodies[6],
the displacement potential functions i  and i  are introduced as 
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where
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1  and 2  are the roots of a quadratic equation for  :

  02 44334413
2
133311

2
4411  ccccccccc  . (9) 

The components of the electric field are expressed by the electric potential function as 
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Substituting Eqs. (4), (7), and (10) into Eqs. (2) and (3) and the results into Eqs. (5) and (6), 
we have 
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where 1  and 2  are the roots of a quadratic equation with respect to  :
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2.3 Electroelastic field quantities 
By considering the symmetry of the electroelastic field and Eq. (1) and applying the 

Fourier transform techniques[13] to Eq. (11), the solutions to Eq. (11) are obtained as 
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where
2222 ,   iiii  ; (15) 

  ,iA  and   ,iC  2,1i  are unknown constants to be determined by the boundary 
conditions described by Eq. (1). The distribution function for surface electric potential is 
expressed in the Fourier integral form[13] as 
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By substituting Eq. (14) into Eqs. (2)－(4), (7), and (10), the electroelastic field quantities are 
formulated, for example, as 
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By substituting Eqs. (14), (16), and (17) into Eq. (1),   ,iA  and   ,iC  2,1i  are 
obtained as 
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where
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and   ,*
2A  and  ,*

2C  are obtained by interchanging subscripts "1" and "2" in   ,*
1A

and   ,*
1C , respectively. 

3 NUMERICAL CALCULATION 
To illustrate the numerical results, the following nondimensional quantities are introduced: 
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Numerical parameters are chosen as 

    1.0,5.1,15,6.0,4.0,2.1,,,
couple

44

33131211  k
c

cccc  . (21) 

Figures 2－4 show the distributions of the electric fields and the resulting shear stresses in 
x , y , and z  directions, respectively.  Figure 2 shows that the electric field xE


 decreases 

monotonically toward zero with x  and that the resulting shear stress yz  exhibits similar 
behavior. Figure 3 shows that the electric field xE


 and shear stress yz  are maximum on the 

x -axis and, roughly speaking, decrease toward zero with y  and that, on the other hand, the 
electric field yE


 and the resulting shear stress zx  are zero on the x -axis, reach their maxima 

around the periphery of the surface electric potential, and decrease toward zero with y . From 
Fig. 4 it is found that the distributions of the electric field xE


 and shear stress yz  in z

direction exhibit similar behavior to those in y  direction. 

Figure 2: Distrubution of electric field and stress in x  direction  0,0  zy 
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Figure 3: Distrubution of electric field and stress in y  direction  0,1  zx 

Figure 4: Distrubution of electric field and stress in z  direction  0,1  yx 

4 CONCLUSIONS 

- The analytical solution of the electroelastic field in an semi-infinite body with D
symmetry subjected locally uniform electric potential is formulated. 

- For the analytical model above-mentioned, the electroelastic field inside the body, 
which is of great significance for sound operation of nondestructive evaluation 
techniques, is elucidated. 
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