
Design, Optimization and ControlA sensitivity based optimization approach for aeroacoustic problems

VI International Conference on Computational Methods for Coupled Problems in Science and Engineering
COUPLED PROBLEMS 2015
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Abstract. This paper proposes an approach for the sensitivity computation of an aeroa-
coustic problem via the solution of the continuous sensitivity equations. The equations are
derived by differentiating the coupled system (Navier-Stokes equations and the linearized
Euler equations) with respect to design parameters. The obtained acoustic sensitivity in-
formation can be used to analyze the flow control variable’s influence on the acoustic field
or to calculate the gradient of an objective functional within aeroacoustic optimization
problems. The components of the coupled sensitivity solver are systematically verified.

1 INTRODUCTION

The prediction and optimization of noise generated by fluid flow is of high interest in
numereous fields in industry and current research. Many occurances in the aeroacoustics
field are related to low-speed flows, e.g. wind turbines or automobile’s noise. Numerical
simulations of aeroacoustic problems support practical experiments and provide eligible
measurements for noise reduction.
The sound prediction can be based on the simulation of the compressible Navier-Stokes
equations (direct noise computation, DNC). DNC is inefficient for low Mach number flows,
because of the different spatial and temporal scales in the fluid flow and the acoustics.
Hybrid approaches consider the flow and the acoustic field separately and, therefore, are
cost saving. Lighthill’s acoustic analogy [1] and his further work [2] were important mile-
stones in the aeroacoustics discipline. Alternatively to the acoustic analogies splitting
approaches are considered. In [3] the acoustic/viscous splitting is introduced. Here, the
compressible field is considered as the superposition of an incompressible flow with an
acoustic perturbation. The flow is computed via the incompressible Navier-Stokes equa-
tions. Shen and Sørensen proposed a modified version of the method in [4], where the
sound field is obtained with the linearized Euler equations.
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However, not only the behavior of the flow and the originated sound is of interest, but
how to affect the flow and consequently the sound to reach given aims. An objective could
be, for instance, to minimize the sound intensity in a given area.
Optimization methods for the resolution of minimization problems can be divided into
strategies without and with determination of the cost functional’s derivative. An efficient
possibility of computing this gradient is to solve the continuous sensitivity equations
(CSE). These equations arise from differentiating the state equations with respect to a
design parameter. In [5] an outline of sensitivity analysis of flow problems is presented
and Gunzburger [6] discusses sensitivity analysis in the context of flow control and op-
timization. In addition to the CSE method, there is the discrete sensitivity equation
approach, in which the total derivative of the flow approximation with respect to the
design parameter is calculated. In Kleiber et al. [7] a discussion of the two approaches is
found.
A method for computing transient flow sensitivities with the CSE method is presented
by Ilinca et al. [8] and Hristova et al. [9]. After extensive research the authors have not
found any application of the continuous sensitivity equation method for the LEE in any
scientific contents.
This paper presents the theoretical background of the CSE of a coupled aeroacoustics
problem. The coupling of the sensitivity equations and verification test cases of each
component of the coupled solver are considered.

2 GOVERNING EQUATIONS

The aeroacoustic equations are derived via employment of the expansion about incom-
pressible flow proposed by Shen and Sørensen [4] and are further developed by Kornhaas
[10]. Here the compressible flow field at low Mach numbers is composed of an incom-
pressible backround flow (superscript inc) with a superimposed acoustic perturbation
(superscript ac). The Einstein summation convention is used throughout the paper. The
composition is given by

ρ = ρinc + ρac, ui = uinc
i + uac

i , p = pinc + pac, (1)

with density ρ, velocity ui and pressure p. The following paragraphs describe the models
for the incompressible flow and the acoustics.

Flow equations The incompressible and unsteady fluid flows are modelled by the
Navier-Stokes equations (NSE) [11]. The conservation equations of mass and momen-
tum can be written as

∂uinc
i

∂xi

= 0, (2)

ρinc
∂uinc

i

∂t
+ ρinc

∂uinc
i uinc

j

∂xj

=
∂τ incij

∂xj

−
∂pinc

∂xi

+ ρincfi, (3)
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with the time t, Cartesian coordinates xi and the external body forces fi. With the
dynamic viscocity µ the stress tensor is given by

τ incij = µ

(
∂uinc

i

∂xj

+
∂uinc

j

∂xi

)
. (4)

Acoustic equations Under the assumption that the acoustic variables are small com-
pared to the flow variables, the linearized Euler equations (LEE) [12] are used to obtain
the acoustic variables.

The LEE are given by

∂ρac

∂t
+ ρinc

∂uac
i

∂xi

+ uinc
i

∂ρac

∂xi

= 0, (5)

ρinc
∂uac

i

∂t
+ ρincuinc

j

∂uac
i

∂xj

+
∂pac

∂xi

= 0, (6)

∂pac

∂t
+ c2ρinc

∂uac
i

∂xi

+ c2uinc
i

∂ρac

∂xi

=
∂pinc

∂t
, (7)

with the speed of sound c.

3 GRADIENT BASED OPTIMIZATION

A general aeroacoustic optimization problem is composed of a given objective func-
tional J depending on flow state variables φ, for example, fluid velocity or pressure and
acoustic state variables ψ, for example, the sound pressure or the particle velocity. Both
state variables depend on the design variables a, for example, the inlet velocity of the
flow or shape parameters. Mathematically an aeroacoustic optimization problem can be
formulated as

min
a∈Rn

J (ψ(a), a) subject to

{
F(φ(a), a) = 0

A(ψ(a), φ(a), a) = 0.
(8)

Here, the constraints F = 0 and A = 0 are the governing equations of the fluid and the
acoustics. Other side constraints are possible, like restrictions to the inlet velocity. The
objective function J is an essential concept in optimization problems. It describes what
is to be optimized, for instance, the sound intensity. J is usually not directly dependent
on the design variables, but via the acoustic state variables J depends indirectly on the
design variables.

Calculation of the objective function’s gradient Gradient-based optimization meth-
ods use information about the objective function’s gradient and its evaluations. The i-th
component of the gradient of the objective function can be written as

dJ

dai
=

∂J

∂ψi

∂ψj

∂ai
+

∂J

∂ai
. (9)
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dJ /dai denotes the total derivative of the objective function with respect to the design
parameter ai. In this case, the objective function depends only on the acoustic variables
and the control variables. In Eq. (9) the term ∂ψj/∂ai, the sensitivity with respect to
a design parameter ai, is rather complicated to compute. There are several procedures
for computing the sensitivities of flow and acoustics. The next section shows one of
these methods for the continuous sensitivities, starting with the theoretical background
of the coupling, and thereafter, the derivation of the continuous aeroacoustic sensitivity
equations.

4 COUPLED SENSITIVITY EQUATION SYSTEM

To obtain the CSE system the constraints in (8) have to be differentiated with respect
to the design parameters. This leads to the following equations

∂F

∂a
+

∂F

∂φ

dφ

da
= 0, (10)

∂A

∂a
+

∂A

∂φ

dφ

da
+

∂A

∂ψ

dψ

da
= 0. (11)

For the purposes of simplicity, the following abbreviation is introduced

φk =
∂φ

∂ak
. (12)

Differentiation of the unsteady Navier-Stokes equations (2)-(3) with respect to the k-
th design parameter ak results in the unsteady continuous sensitivity equations of the
unsteady NSE. In consideration of the chain rule, permutation of the differential operators
and notation (12) the equations are given by

∂uinc
j,k

∂xj

= 0, (13)

ρ
∂uinc

i,k

∂t
+

∂

∂xj

(
ρuinc

i,k u
inc
j + ρuinc

i uinc
j,k

)
−

∂

∂xj

[
µ

(
∂uinc

i,k

∂xj

+
∂uinc

j,k

∂xi

)]
=

∂pinck

∂xi

, (14)

assuming, that the material properties ρ and µ are constant and the volume force is
insensitive to external influences. The boundary conditions for the CSE are obtained by
differentiation of the corresponding boundary conditions for the NSE with respect to the
design parameter a.
The sensitivity equations of the linearized Euler equations are obtained via differentiation
of the linearized Euler equations with respect to the k-th design variable ak. Hence
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differentiation of (5)-(7) yields to

∂ρack
∂t

+ ρinc
∂uac

i,k

∂xi

+ uinc
i

∂ρack
∂xi

= −uinc
i,k

∂ρac

∂xi

, (15)

ρinc
∂uac

i,k

∂t
+ ρincuinc

j

∂uac
i,k

∂xj

+
∂pack
∂xi

= −ρincuinc
j,k

∂uac
i

∂xj

, (16)

∂pack
∂t

+ c2ρinc
∂uac

i,k

∂xi

+ c2uinc
i

∂ρack
∂xi

=
∂pinck

∂t
− c2uinc

i,k

∂ρac

∂xi

. (17)

The obtained equations have the same form as the LEE. Additional terms can be consid-
ered as additional source terms. The coupling between sensitivity equations for flows and
acoustics is realized by these terms using flow sensitivities and acoustic variables.

5 NUMERICAL METHODS

The numerical solution of the coupled system is realized as an integrated procedure,
see Figure 1. The acoustic sensitivities do not influence the flow sensitivities.

Figure 1: Numerical realization of the coupled approach as an integrated procedure

Before computing the flow sensitivities and the acoustic sensitivities, the NSE (2)-(3)
and LEE (5)-(7) have to be solved. This is done by using our in-house solver FASTEST
which applies a fully conservative finite-volume approach to solve the incompressible NSE
and the linearized Euler-equations on a collocated, block structured and cell centered
grid [12, 13]. After each time-step the flow and acoustic quantities are transferred to the
sensitivity solver via MPI (Message Passing Interface).

Flow sensitivity solver Analogously to the Navier-Stokes equations the spatial dis-
cretization of the sensitivity equations utilizes the finite-volume method. The discretiza-
tion of the sensitivity equations of the NSE for steady problems can be read in detail in
[15] and [16]. The unsteady sensitivity equations contain one additional term:

ρ
∂uinc

i,k

∂t
. (18)

The time discretization is performed with an implicit Euler scheme of first and second
order.
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Acoustic sensitivity solver Analogously to the linearized Euler equations the acoustic
sensitivities are computed via a high-resolution scheme, which solves a Riemann problem
at the cell faces. The high-resolution scheme combines the second-order Lax-Wendroff
method and the first order Godunov method with the help of flux-limiters. Kornhaas
presents the high-resolution scheme in detail [10]. The time discretization is done with
first and second order implicit Euler scheme.

6 VERIFICATION

To verify the implemented method, the numerical order achieved is compared to the
analytical order for each method of the coupled code. At first, the order of the unsteady
continuous sensitivity equation’s discretization method is presented followed by the order
of the sensitivity equations of the linearized Euler equations method.
To assess the solution quality, the error

eh = pacnum,h − pacana (19)

is considered, where pacnum is the numerically computed sound pressure and pacana is the
analytical sound pressure. The discrete L2-norm of the error is defined by

�e�h,L2
=

√√√√ 1

N

N∑
i=1

e2h, (20)

where N is the number of control volumes.

6.1 Verification of the acoustic sensitivity equations

The first verification test case is calculated without background flow (uinc
i = 0). The

computational domain and the initial location of the sound wave are presented in Figure
2. The computations are done on four grid levels with 16384, 8192, 4096 and 2046 control
volumes in x-direction.
The initial values of the acoustic quantities are as follows:

pac = 2−1200(x−0.25)2 , (21)

uac = 0.001 · 2−1200(x−0.25)2 , (22)

vac = 0, (23)

ρac = 0. (24)
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Figure 2: Domain and initial location of
the sound wave.

16h8h4h2hh

10−5

10−4

10−3

10−2

grid
er
ro
r
�
e�

L
2

Upwind

Lax-Wendroff

second order

first order

Figure 3: L2-error depending on the grid
for different methods

The wave starts at x = 0.25 m. The density is ρinc = 1000 kg/m3 and the dynamic
viscosity is µinc = 10−5 kg/ms. The corresponding speed of sound is c = 1 m/s. The
resulting orders are illustrated in Figure 3. One can see that the upwind-scheme converges
to an order of one, whereas the Lax-Wendroff scheme converges to an order of two.

6.2 Verification of the flow sensitivity equations

In this section the time discretization scheme implemented in the flow sensitivity solver
is verified using the method of manufactured solutions (MMS) [17]. The order of the
spatial discretization for the steady NSE is presented in [15]. Direct differentiation of the
manufactured solution for the flow provides closed-form expressions for the sensitivities.
A time convergence study is performed to assess the temporal accuracy of the sensitivity
solutions.
We choose the following exact solution of the unsteady NSE, which is also the inflow
boundary condition and depends on the design parameter a:

uin(x, y) = a cos(5t) sin
(πx

2

)
cos

(πy
2

)
, (25)

vin(x, y) = −a cos(5t) cos
(πx

2

)
sin

(πy
2

)
. (26)

(27)
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Differentiation with respect to the design parameter a gives the sensitivities

uk(x, y) = cos(5t) sin
(πx

2

)
cos

(πy
2

)
, (28)

vk(x, y) = − cos(5t) cos
(πx

2

)
sin

(πy
2

)
. (29)

(30)

The computational domain and the sensitivities are shown in Figure 4 and Figure 5.

Figure 4: Domain and pressure sensitiv-
ity for t = 0 s.

Figure 5: Domain and flow sensitivity in
x-direction for t = 0 s.

Table 1 shows the time step sizes and the results for the order of the flow sensitivities for
the first order implicit Euler scheme. The order of the pressure computation is illustrated
at the left side, whereas on the right sight the order of the velocity computation is shown.
The order of the pressure and the order of the velocity converge to one. In Table 2 the
orders of the pressure and the velocity for the second order implicit Euler scheme are
presented. Both orders converge to two.

Table 1: Order of accuracy of the flow sensitivities for the first order implicit Euler scheme

time step size pressure order
0.005 0.46531836731
0.0025 0.47096579783
0.00125 0.47380853834 0.9903
0.000625 0.47523497813 0.995
0.0003125 0.47594950138 0.998

time step size u velocity order
0.005 -0.78628698376
0.0025 -0.78631729909
0.00125 -0.78633378171 0.89
0.000625 -0.78634240443 0.93
0.0003125 -0.78634681860 0.97
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Table 2: Order of accuracy of the flow sensitivities for the second order implicit Euler
scheme

time step size pressure order
0.005 0.47917358818
0.0025 0.47838279892
0.00125 0.47846168824 2.43
0.000625 0.47847809934 2.27
0.0003125 0.47848192570 2.10

time step size u velocity order
0.005 -0.78633065815
0.0025 -0.78636059225
0.00125 -0.78636832215 1.95
0.000625 -0.78637006368 2.15
0.0003125 -0.78637047477 2.08

6.3 Comparison of the acoustic sensitivities with the corresponding differ-

ence quotient

The acoustic sensitivity solver can be verified by estimating the gradients of the acoustic
quantities with respect to a using finite differences (FD). When computing FD the design
parameter a is changed by a small amount δa and the solution is recomputed. In this test
case only the sensitivity of the acoustic pressure and its difference quotient with respect
to a are considered. As a first step, the flow sensitivities are left out. A pressure pulse
and its sensitivities are prescribed as input for the sensitivity equations of the LEE:

pinc =103e−102(x2+y2)cos(200πt) a, (31)

pinck =103e−102(x2+y2)cos(200πt). (32)

The reference FD acoustic sensitivities are estimated by

(
∂pac

∂a

)

FD

=
pac(a + δa)− pac(a− δa)

2δa
+O(δa2). (33)

In the following comparison δa = 10−3 is chosen. The computational domain is illustrated
in Figure 6. As boundary conditions an acoustic outlet is used on each boundary. The
grid consists of 128 control volumes in x- and y-direction. The Courant number for the
acoustic computation is 0.1. The acoustic pressure sensitivity and the acoustic pressure
are monitored at point P(0, 0.5). The difference quotient and the sensitivity of the acoustic
pressure in P are shown in Figure 7. The comparison shows a good agreement between
the sensitivity and the difference quotient. Only minor differences of the gradients are
perceptible.
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Figure 6: Domain and pressure sensitivity for t = 0 s.
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Figure 7: Difference quotient and the sensitivity of the acoustic pressure in P after t = 0.05
s.

7 CONCLUSION

A general sensitivity based optimization approach for aeroacoustic problems has been
presented. We introduced the basic equations describing flow and acoustics, a general
optimization problem, and the gradient computation with a coupled sensitivity solver.
Furthermore, we presented the mathematical background for the derivation of the un-
steady sensitivity equations from the Navier-Stokes equations, and the linearized Euler
equations. Hereafter, the mathematical coupling of the solver was shown. In a first step
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the numerical results of the sensitivity computation could be verified for each component
of the coupled solver via investigation of the order and the comparison with a finite dif-
ference approach. The obtained sensitivity values enable a deeper understanding of the
whole system and provide information about the influence of all flow parameters on the
acoustics. For further investigations, a test case of acoustic sensitivities based on flow
sensitivity computation will be considered and an optimization test case with sensitivities
will be computed.
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