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Abstract. Self healing materials are becoming more and more important for the construction of

mechanical components due to their ability to detect and heal failures and cracks autonomously.

Especially in polymers and polymer-composites, where the component can loose a high rate of

strength and durability due to micro cracks, those damages are nearly impossible to repair from

outside. Thus, self healing ability is a very effective approach to extend the lifetime of polymer-

made components.

In view of the numerical simulation of such self healing effects we develop a thermodynam-

ically consistent macroscopic 5-phase model within the theoretical framework of the Theory of

Porous Media. The model consists of the following different phases: solid (matrix material)

with dispersed catalysts, liquid (healing agents), healed material and gas (air inside the cracks).

The increase of damage is driven by a discontinuous damage evolution equation. Furthermore, a

mass exchange between the liquid-like healing agents and the solid-like healed material, i.e. the

change of the aggregate state from liquid healing to solid healed material, describes the healing

process. The onset of the healing process is associated with the break open of the microcapsules

in connection with the subsequent motion of the liquid healing agents. A numerical example of

the simulation of damage and healing processes in polymers, is presented in order to show the

applicability of the model.

1 INTRODUCTION

Self-healing materials have the ability to repair damages autonomously, i.e., no manual in-

tervention is necessary. Such a behavior can be realized for example with a multiphase material,

which consists of a solid matrix material (epoxy) with dispersed catalysts (Grubbs’ catalysts)

and microcapsules, which are filled with liquid healing agents (dicyclopentadiene). If a crack

propagates through the body, the capsules break open and release the healing agents into the

crack, where they react with the catalysts, polymerize and close the crack, cf. [1]. Such a self-

healing approach is very useful for components where the detection and repair is very difficult
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and/or very costly like in aerospace applications. For an overview of different self-healing ma-

terials can be found in [2], whereas [3] and [4] show the different principles of self-healing.

In view of the numerical simulation of self-healing materials, several examples can be found

in literature. Some of these publications are listed in the following:

Self healing effects of polymers in an analytical manner where analyzed by [5]. Regarding

fiber reinforced composites the self healing behavior was investigated and simulated by [6–8].

In view of the development of thermodynamically consistent models it is referred to [9–11]. In

[12] the simulations base on Continuum Damage Mechanics (CDM), and [13] taking continuous

damage and healing variables into account. The model of [14] is based on the Mixture Theory.

In this contribution we focus on the numerical simulation of self-healing materials using the

Theory of Porous Media, as described in the following.

2 THEORY

For the description of coupled multiphase problems, the Theory of Porous Media (TPM) can

be used. This macroscopic continuum mechanical approach is basically a combination of the

Mixture Theory and Concept of Volume Fractions.

Using the the Mixture Theory, one is able to describe, for example, all κ constituents ϕα

of a multiphase problem by their own independent motion function. Furthermore, the super-

position of the phases is assumed, i.e., all different constituents appear in a spatial point x
simultaneously, see Figure 1. Due to that, all geometrical and physical quantities are defined as

statistically averages of the real quantities in the observed body.

microstructure ”smeared” model

Solid (S)

Catalysts (C)

Healed Material (H)

Liquid Healing Agents (L)

Gas/Crack (G)

homogeni-

zation

Figure 1: Homogenization of the microstructure.

Additionally, with help of the concept of volume fractions, the different constituents ϕα in

a material point x can be identified by the volume fraction of the corresponding phase, which

relates the real quantities with the partial quantities. For example, the partial density ρα of a

certain constituent can be directly related to its real density ραR using the corresponding volume
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fraction nα = dvα/dv, such that ρα = nαραR. The sum over all κ volume fractions nα in a

material point x is restricted by the so called saturation condition
κ∑

α=1

nα = 1 . (1)

For a detailed introduction into the Theory of Porous Media, the interested reader is referred

to the publications [15–20].

3 SIMPLIFIED FIVE-PHASE MODEL

In the following the developed five phase model for the description of the considered self

healing material will be presented. It consists of the solid matrix material (S) with dispersed

catalysts (C), the liquid healing agents (L), the solid like healed material (H), and the gas phase

(G), which represents the air. In order to build up the model, some assumptions and simplifi-

cations are made: 1) the whole is treated as isothermal; 2) dynamic effects are neglected; 3)

mass transition will be considered only between the liquid like healing agents and the solid like

healed material, in order to describe the phase transition of the healing material; 4) all phases

are assumed to be incompressible (ραR = const.), except the gas phase which is compressible

(ρGR �= const.); 5) the volume fraction of the catalysts is neglected with respect to the satu-

ration condition, due to the fact that it is very small in comparison with the other phases; 6)

the velocities of the solid and the solidified healed material are assumed to be identical, ex-

cept at an initial solid motion, i.e., before the healing mechanism is activated. This leads to a

multiplicative decomposition of the deformation gradient, depicted in Figure 2, in the form

FS = Grad χS =
∂χS

∂XS

= FH FS0 , (2)

which can be found in [21–23]. Due to the multiplicative decomposition of the deformation

gradient, three different right Cauchy-Green deformation tensors (corresponding to the whole

deformation, the deformation before and after the healing is activated) are available,

CS = FT

S
FS , CS0 = FT

S0
FS0 , ĈH = FT

H
FH . (3)

3.1 Field Equations

Considering the above mentioned assumptions and simplifications, the field equations are

given by the balance equation of mass for the solid, healed material, liquid healing agents,

catalysts and gas,

(nS)′
S
+ nS div x′

S
= 0 , (nH)′

S
+ nH div x′

S
=

ρ̂H

ρHR
, (4)

(nL)′
L
+ nL div x′

L
= −

ρ̂H

ρLR
, nS (cC)′

S
− div (nS cC wCS) = ρ̂C ,

(nG)′
G
+ nG div x′

G
+

nG

ρGR
(ρGR)′

G
= 0 ,
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FS0 nS0 , n
L
0

Bi

FH

healing

nS , nL

B

FS = FHFS0

reference config.

B0

nS0S , n
L
0S

intermediate config.

actual config.

Figure 2: Illustration of the multiplicative decomposition of the deformation gradient of the solid phase.

the balance equations of momentum for the mixture as well as for the liquid and gas phases,

div TSHLCG + ρSHLCG b = − ρ̂H wLS , div TL + ρL b = − p̂L , (5)

div TG + ρG b = −p̂G ,

and the material time derivative of the saturation condition with respect to the solid phase,

div ( nLwLS + nGwGS + x′

S
) +

nG

ρGR
( ρGR )′

G
− ρ̂H (

1

ρHR
−

1

ρLR
) = 0 . (6)

With the symbol (. . . )′α, the material time derivative of the expression with respect to the

corresponding constituent ϕα is indicated and ˆ(. . . ) denotes the direct production terms, in this

case of mass and momentum, respectively. The relative velocities wζS = xζ −xS (ζ = L,C,G)
are the difference velocities between the phases ζ and the solid phase. The value cC ∈ [0, 1]
indicates the concentration of catalysts and Tα = (Tα)T are the symmetric Cauchy stress

tensors for the different constituents. The expressions TSHLCG and ρSHLCG describe the sum of

the corresponding Cauchy stresses and partial densities, respectively, of the individual phases.

3.2 Constitutive Relations

In order to be able to solve the problem, constitutive relations for the stresses and the total

production terms of mass and momentum are needed. In the following, just the final equations

are given. For the derivation of these equations, it is referred to [24].

The constitutive relations for the Cauchy stresses read

TSH = − nSH λ I +
1

JS
{ ( 1 − DS ) [ 2µSKS + λS ( log JS ) I ] + (7)

+ ǫH nH JS ( 1 − DH ) [ 2µHKH + λH ( log JH ) I ] } ,

TL = − nL pLR I , TG = − nG pGR I , TC = − nC pCR I .
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In Eq. (7)1, the variables JS = detFS and JH = detFH represent the volume deformations

of the solid and healed material, respectively. The expressions KS = 1

2
(BS − I) and KH =

1

2
(BH − I) are the Karni-Reiner strain tensors, whereat BS = FSF

T

S
and BH = FHF

T

H
are the

left Cauchy-Green strain tensors of the solid and healed material, and I is the identity tensor.

The material parameters µS, µH and λS, λH are the Lamé constants. In order to ensure that the

healed material part of the Cauchy stresses get its full influence only if the liquid is completely

transformed into healed material, the parameter ǫH is chosen such that the product ǫHnH is equal

to one if nH reaches its maximum. The variables DS and DH are damage variables in order to

describe the isotropic discontinuous damage behavior of the solid and also the healed material.

The so called (1 − D) approach was originally introduced in [25] and further discussed, e.g.

in [26, 27]. The Lagrange parameter λ in Eq. (7)1 is defined as

λ = pGR − ph , (8)

where pGR is the real gas pressure given by the nonlinear gas law

pGR = −ΘRG ρGR

0G
log

ρGR

0G

ρGR
+ pGR

0
, (9)

and an additional pressure ph, which is alligned to the capillary pressure presented in [28],

ph = kL

h
sL

[
log

(
sL0
sL

− sL
0

)
− log (1 − sL

0
)

]
. (10)

The absolute temperature is given by Θ, RG denotes the specific gas constant, ρGR

0G
and pGR

0
are

initial real gas density and the initial real gas pressure. The constants kL
h

and sL0 are material

parameters and the liquid saturation sL = nL/(nL + nG) is the ratio of liquid with respect to

the whole hollow space inside the observed body. Furthermore, the real liquid pressure pLR,

appearing in Eq. (7)2, is given by

pLR = pGR + kL

h

[
log

(
sL
0

sL
− sL0

)
− log

(
1 − sL0

) ]
, (11)

see also [28]. The pressure part of Eq. (7)3 is the real pressure of catalysts,which is given by

pCR = −kC log
1

cC
+ pCR

0 , (12)

whereat the concentration cC is defined as the quotient of the volume fraction of the catalysts

with respect to the volume fraction of the solid cC = nC/nS.

For the description of mass exchange between the liquid healing agents and the solid healed

material ρ̂H, see equation (4)2,3, the production function proposed in [29] is used and modified

such that it depends on the concentration of catalysts,

ρ̂H = ρ̂H
m

(
cC − cC0

cCm

)2

exp

[
1 −

(
cC − cC0

cCm

)2
]
. (13)
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Therein, ρ̂H
m

is the maximum value of ρ̂H, and cC
0

is the maximum value of the concentration.

The parameter cC
m

defines the value of concentration where ρ̂H becomes its maximum. Due to

the fact that the amount of catalysts decreases in areas where healing occur, the total production

term of mass for the catalysts ρ̂C in Eq. (4)4 is set to be a negative and constant value.

Furthermore, due to the evaluation of the entropy inequality, the direct production terms of

momentum for liquid and gas are given by

p̂L = λ grad nL − ph grad nG + p̂L

E
, (14)

p̂G =
(
λ + ph

)
grad nG − p̂G

E
.

In Eq. (14) the vectors p̂L

E
and p̂G

E
denote the effective parts of the direct production terms of

momentum, which are defined as

p̂L

E
= − γL

wLS
wLS − γL

wGS
wGS , p̂G

E
= − γG

wGS
wGS − γG

wLS
wLS , (15)

whereat the occurring material parameters are restricted by

γL

wLS
≥ 0 , γG

wGS
≥ 0 , γL

wGS
+ γG

wLS
= 0 . (16)

4 NUMERICAL EXAMPLE

In order to show the applicability of the developed model, a numerical simulation of a real

experiment, cp. [30], is carried out. The dimensions of the specimen and the damaged virtual

specimen are depicted in Figure 3. It is discretized with 142 linear eight-nodular brick elements

and the total number of degrees of freedom is 2492. On both flanks a displacement of u = 0.6
mm is applied in y-direction. Moreover, the boundary surface at the beginning of the notch is

open for the gas phase, i.e., air can flow in and out.

25.4

92

31.75

2
8

6
1

21.8◦

2.5

6.25

45◦

7
6

.2

Figure 3: TDCB geometry, cp. [30] (left); damaged virtual specimen (right).

During the loading the TDCB fails. After the loading process the specimen is unloaded,

because in the real experiment the specimen is able to heal, only if the crack faces come into
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contact. Then, the TDCB gets 48 hours resting time before it is reloaded. As it is depicted in

Figure 4, the results of the numerical simulation is qualitatively in a very good agreement to the

experimental results of [30].

Table 1: Initial material parameters.

S H L G C unit

Young’s modulus Eα 3.0e+9 3.0e+9 – – – Pa

Poisson’s ratio να 0.2 0.2 – – – –

real density ραR0α 1200.0 980.0 980.0 1.0 – kg/m3

Darcy parameter kα
Darcy – – 9.0e-9 5.0e+2 – m4/N s

Parameter associated with healing kL

h – – 5.0e+1 – – Pa

initial volume fraction nα 0.7 0.0 0.2 0.1 – –

initial concentration cα
0

– – – – 1.0 ×100%

initial saturation sL0 – – 0.9 – – –

η = 88.1%

Figure 4: Experimental result, cp. [30] (left); result of the numerical simulation (right).

5 CONCLUSION

The presented work concentrates on the numerical simulation of damage as well as heal-

ing effects in a self-healing polymer composite. As the underlying theoretical framework the

Theory of Porous Media is used. The developed multiphase model consists of the solid matrix

material with dispersed catalysts, the liquid like healing agents, the solid like healed material,

and the gas phase. For the separate description of damage for the solid and the healed material,

two different damage functions are introduced based on the (1 −D) approach. In order to de-

scribe the healing mechanism, a phase transition between the liquid healing agents and the solid

healed material is considered.
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To show the applicability of the developed model, the numerical simulation of a tapered

double cantilever beam (TDCB) is compared with the experimental result from [30]. The sim-

ulation shows a qualitatively good agreement with the experimental observation, even for the

healing efficiency. The divergence between both results can be explained, e.g., due to the fact

that the healing of the real specimen depends on different factors, like wetting, different distri-

butions of microcapsules and catalysts in the damaged area, etc.. Hence, it can be assumed that

the resulting load-displacement curves of different specimens vary.
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