
Fimite memory devices 

in CSP 

l .

Joaquim Gabarró 
Marí a J osé Serna 

Report LSI-90-40 

J' 

i2.03 

, • l 

.. ----

• )40()()0 '&i�i?

C�fc.. J



Finite Memory Devices in CSP 

J. Gabarró * M.J. Sema*

Dept. de Llenguatges i Sistemes Informàtics 
Universitat Politècnica de Catalunya 

Pau Gargallo 5 , 08028 Barcelona 
Spain 

Abstract: It is often said that a state based approach to CSP is inadequate, 
however we present here some ( theoretical) hints against t his assertion. A new 
class of processes modelled by finite memory devices are considered. These de­
vices ( called here CSP au tomata) allow both: deal with the different kinds of 
nondeterminism at a state level and model misbehaviours due to divergences. 
They are well adapted to the semantics of failures plus divergences. As CSP is 
independent of branching time CSP-automata can be determinized. Furthermore 
we show that an extension of the classical automata's morphism is equivalent to 
refinement between processes. That allow us to define canonical forms through 
minimization. These processes can also be characterized by a set of recursive 
equations so called linear systems. These processes are stable under nondeter­
minism, change of symbol, prefixing and interleaving. 

Keywords: CSP, failures model, normal forms, state-based-approach, finite 
automata, minimization, refinement, morphism, linear systems. 

* Research supported by the ESPRIT II Basic Research Actions Program of the EC under

contract No. 3075 (project ALCOM). 

1 



l. In t rod uction

It is well known that CSP semantics is based on traces ( or failures) and often it is s aid 
that a state based approach seems to be inadequate. We give here some hints against 
this assertion. We present a finite memory device so called finite CSP automata matching 
adequately with the semantics of failures and divergence. These au tomata have remarkable 
properties like determinization and minimization. The techniques developped are very dose 
to those of finite automata. This is a good phenomenon that permits to obtain short and 
intuitive proof of some facts. Let us present in more detail our work. 

To build a bridge between failures semantics and finite state automata we take some 
shortcuts on notations describing processes. Let us explain them over an example. Let 
P = (A, F, D) be a process [Hoa85] such that: 

• The events are the set A = { a, b, e}.
• The failures F are given by the union of the following sets:

{s,X l s E a* and XE P({b,c})} 

{s,X l s E a*b+ and XE P({a,b}) U P({a,c})} 

{ s, X l s E a+ A* and X E P( { a, b, e})} 

{s,X \ s E a*b+ cA* and XE P({a,b,c})} 

• The divergences are D= a+ A*+ a*b+ cA*.

First of all we adopt a more condensed notation describing failures. For example the set 
{s,X l s E a* andX E P({b,c})} is represented without ambiguity as a*bc, with this 
notation: 

F= a*bc + a*b+(ac + ab) + a+ A* A+ a*b+ cA* A 

Second, we can "mark" explicitely the divergences with an T as: 

D = a+ A* T +a* b + c.4. i 

Finally the whole process P can be noted without any ambiguity as: 

P = a*bc + a*b+(ac + ab) + a+ A* A+ a*b+ cA* A+ a+ A* T +a*b+ cA* T 

As Chaos = A* A+ A*T the process can be rewritten as: 

P = a*bc + a*b+(ac + ab) +(a+ + a*b+ c)Chaos 

As we are interested in a state based approach to CSP, let us recall some definitions of 
automata theory [Eil74]. A nondeterministic automaton is a tuple M =< A, Q, T, Qu >. 
The set A is a finite set of events, Q is the set of states, T Ç Q x A x Q is the set of 

2 



transitions and Qu Ç Q are the initial states. As every procees contains < > as a trace we 
assume Qo i=- {}. Given two states p and q we note: 

L(p, q) = { w l (p, w, q) is a path from p to q}

In the case of deterministic au toma ton the set of transitions become a partial function ( we 
note (p, w, q) as p · w = q) and there is only one initial state as q0• 

There are works modelling CSP processes by state devices [Jos88, HeJ89]. In order to 
explain carefully our model, we consider briefl.y the approach taken by Josephs [Jo88] 
( dealing only with divergence free processes). A process is modelled by a nondeterministic 
automaton M =< A, Q, T, Q0 >- Fixed an state and an environment, the system blocks 
iff it cannot evolve in the direction given by the environment. Formally we attach to any 
state q a unique maximal set of refusals 

R(q) = next(q) = {x l ,::!q': (q,xq') E T}

and with the previous notations the process defined by M is: 

failures(M) = u L(q,p)R(q)
(q,p)EQoxQ 

This model has two limitations. Firstly, it seems difficult to have a clear treatement of 
the different kinds of nondeterminism at a state level. Secondly, we cannot deal with 
misbehaviours due to divergences. 

To improve these limitations we define a new class of finite memory device called CSP­
automata. The states of these automata have additional information about possible 
deadlocks and misbehaviours due to divergences. Formally a CSP-automata is a triple 
P =< M, R, D > where M is an usual nondeterministic fini te au tomata and: 

• The treatement of possible deadlocks match closely the states of M through a refusals
function R from Q in to PP( A). The function R associa tes to every state q a set of
refusals R( q) = { R1 , R2 , ... }, t his function permits a careful and economic t rea tement
of the two different classes of non determinism at a state level.

• The misbehaviours due to divergences are treated explicitely. The automaton M can
have some pathological states D Ç Q called divergent states. These states are very
strong an when the process come in never can get out. The possibility of recovery is
impossible. Of course the non divergent process satisfies D = {}.

Adding this additional structure to the states, specified by R and D, we obtain au tomata 
well adapted to model phenomena of deadlo-:k, nondeterminism and divergence. Note that 
in general the set Q does not need to be finit e. Processes that can be modelled ( as above) 
using a finite state automaton will be called regular. Thus we identify regular processes 
with finite state nondeterministic CSP-automata. 

3 



As the failures semantics is independent of branching time regular processes can be de­
terminized. Furthermore we show that an extension of the classical automata's morphism 
is equivalent to refinement between processes. That is, given two regular process P and 
P' we have that P Ç P' if and only if there is a CSP-morphism from P to P'. Then the 
notion of refinement is equivalent to a classical notion of automata theory. It is well known 
that refimement are used to obtain canonical forms [Jos88]. In our case these ideas can be 
implemented through minimization of CSP-automata. Of course minimal CSP-automata 
can be of considerable size, but at least they exists. 

It is possible to extend the classical theory of linear systems [Eil74] to describe processes. 
U sing this approach we get a compact process description. Furthermore we can apply the 
Arden's lemma to solve recursive equations and we obtain a second approach to define 
processes. As these processes can be described by linear equations we call them rational 
proces3e3. We prove that both classes are equal, then we can use a CSP-automata or a 
linear system to describe a regular ( or rational) process. Furthermore, the class of regular 
processes enjoys of interesting closure properties. It is stable under nondeterminism, change 
of symbol, prefucing and interleaving. 

2. Regular processes

We are interested in defining a finite memory device well adapted to describe CSP pro­
cesses. A process P will be modelled by a CSP-automaton. Formally a process P is a 
triple P =< M,R,D > where a non deterministic automaton M=< A,Q,T,Qu >, called 
the base automaton, models the finite control structure. The set of events is A, the states 
are the set Q, the transition relation is T Ç S x A x S and the nonempty set of initial 
states is Q0 • The traces can be described as: 

traces(P) = u L(q,p)

(,1.p)EQux(J 

To extend the trace model we consider the refusa/s mapping R : Q -----> PP(A). In this 
mapping A is a marked copy of A. For each state q E Q the refusal set of q is denoted as 
R(q) = {R, R', ... }. This function verifies 

• {} E R(q).
• If R E R(q) and R' Ç R then R' E R(q).
• Given a E A and R E R(q) then RU {a} E R(q) or exists q' such that (q,a,q') E T.

W ith the refusals mapping it is easy to prove that the following set is really a set of failures. 

Jailures(P) = u L(q,p)R(p)
(q,p)E(¿oxQ 

To consider divergences we mark some states D C Q as divergent ones. Every divergent 
state q verifies 

4 



• For every a E A, (q, a, q) belongs to T and these are t he only t r ansi tions ou t of q.
• R(q) = P(A)

Then the divergences set of P can be written as 

divergences(P) = u L(q,p)

(q,p)EQoxD 

When the alphabet of events A is known the process P = (A,failures(P), divergences(P)) 
can be described shortly as: 

P= u L(q,p)R(p) + u L(q,p)Chaos

(q,p)EQoxQ (q,p)EQoxD 

Note that in general the set Q does not need to be finite. We say that a CSP process P is 
regular if P can be modelled (as above) using a finite state automaton M. Thus regular 
processes are identified with finite state nondeterministic CSP-automata. Let us give some 
examples of regular CSP processes 

Examples l: In figure l we show some CSP-automata. All the processes have A = { a, b }. 
lnital and divergent states are marked with a nonlabelled arrow and with a nonlabelled 
dotted arrow respectively. 

• The first two automata corresponds to process Chaos and Stop. The automaton P1 

models the process Pi =Q+ a Chaos defined by the equation

X 1 = a -t Chaos 

• The automata P2, P3 and P4 model the different kind of nondeterminism. P2 corre­
sponds to t he process A = ( a + b) * { } and can be defined by

X2 =a-t X2 0 b -t X2 

P3 corresponds to P3 = (a+ b )*(g+ Q) and is the solution of 

X3 = a -t X3 n b--- -➔ X3 

Finally P4 corresponds to P4 = ( a + b )* ab. It is the solution of 

X4 = a--- -➔ X4 n b --- -➔ X4 n Stop 

• We could try to represent X 5 = a -t ( b -t S top n Chaos) as the device Ps. However Ps
is not a CSP automaton. Just note that there is an arc going from a divergent state
to a nondivergent state. This kind of transitions are not allowed in our formalism.

5 



Chaos {a, b} (
) a, b 

ab 

P2 
� a, b

{} 

Stop {a, b}

ï ab 

Some elementary CSP-automata 

½ 
( 1 a,b

.a + b. 

Different kinds of nondeterminism 

Ps a, b 

A non CSP automaton 

Figura l 

0 ••

b 

ab 

¼ ( ) a, b 

.ah 

.ah 

A CSP regular process will be called determinis tic if the base automaton is deterministic. It 
is important to remark that deterministic regular CSP processes are not forcely determinis­
tic process in the sense of [Hoa85]. Furthermore, as CSP process are independent of branch­
ing time, we can extend the general determinisation algorithm [Eil74] to CSP-automata as 
follows. Let P be the CSP-automaton < M, R, D > with M =< A, Q, T, Qu >. The states
of det(P) are elements of P( Q) denoted as Q0 , Q1 , . . .  The initial state is Qu. An state Qi 

6 



is divergent if Q ¡ n D =/=- {} otherwise is non-divergent. Given a divergent state Q¡ the only 
transitions out of Q¡ are (Q¡, a, Q¡ ) for every event a. For a non divergent state Q¡ we 
have the transition (Q¡ ,a,Qi) iff it exists q E Q¡ and q' E Qj such that (q¡,a,qj) E T. The 
refusals mapping is defined as R(Qi) = U

q
EQ;R(q). Then we have the following result. 

Theorem 2: For every CSP regular process, P, there is a CSP deterministic process, 
det(P), such that P = det(P). 

Thus the class of processes that can be modelled using nondeterministic CSP automata 
equals the class of processes defined by deterministic CSP automata. 

3. Refinement and canonical forms

We record the refinement of a process P into a process P' by writing P Ç P' ( P is 
less defined than P'). The first condition that must be met is that both processes have 
the same alphabet. The second one can be stated informally as: every behaviour that 
is possible for P must be also possible for P'. In order to deal in a formal way with 
refinement we introduce the notion of CSP morphism. This notion extend the classical 
idea of automata morphism [Eil74]. As in classical automata theory, CSP morphisms 
together with minimization techniques give us minimal process that are canonical forms. 

Through the section, we shall assume that regular processes are given as deterministic CSP 
automata. Thus we assume that the base automaton is deterministic, it has an unique 
initial state and the transition relation is given by a transition function. 

Let us introduce the notion of CSP morphism. Let assume that P =< M, R, D > with 
M =< A, Q,*, qo > and P' =< lv[', R', D' > with lvf' =< A, Q', o, qb > are two regular 
processes. A partial mapping <P : Q -t Q' is called a CSP morphism and is denoted by 
<P : P -t P' if the following holds: 

1. <l>( qo) = qb.
2. If </J(q) o a is defined then q* a is defined and </J(q) o a= </J(q * a)
3. For each q E Q, if R' is a refusal set for <P( q) then R' is a refusal set for q. Formally,

R'(</>(q)) Ç R(q).
4. If </>(q) is a divergent state in M' then q is a divergent state in M. Formally 1- 1 (D 1 ) Ç

D.
As a direct consequence of the detinition we have: 

Lemma 3: CSP morphism compasse. 

Let us now characterize refinement for the class of CSP regular processes through CSP 
morphism. 

7 



Lemma 4: G i ven two regular CSP processes P, and P'. If there is a CSP morphism 
from P into P' then P Ç P'. 

Proof. First note that as the base automaton is deterministic, we can extend condition 2 
of the definition of CSP morphism to words, that is: G i ven s E A* if </J( q) o s is defined 
then q* s is defined and </J(q *s)= </>(q) o s. Thus when sR is a failure of P' we have that 
qb o s is defined. That means that qo * s is defined and </J( qo *s) = </J( qo) o s = qb o s. Then 
by condition 3 of the definition of CSP morphism we have that sR is a failure of P. 
The same argument applies to divergences using condition 4 of the definition of CSP 
morphism. Thus we conclude P Ç P' .D 

Lemma 5: Given two regular CSP processes P, and P'. Whenever P C P' there is a 
CSP mOrphism from P into P'. 

Proof. We define a mapping ep inductively as </J( qo) = qb, and for every state q E Q there is 
a s E A* such that qo *s= q. As P Ç P' s is a trace of P', thus qb o s is defined, we define 

4>( q) = </>( qu * s) = </>( q0) o s = q� o s 

Trivially ep is a CSP morphism, and the lemma holds. D 

Putting together bot h results we get a characterization of refinemen t in terms of CSP 
morphism for the class of regular CSP processes. 

Theorem 6: Given two regular CSP processes P, and P' the following two conditions 
are equivalent 

• Pis a refinement of P'
• There is a CSP morphism from P into P'.

In order to characterize process equality we introduce a stronger notion of CSP morphism. 
Given two regular processes P and P', a CSP morphism from Pinto P' is said to be proper 
if the following hold: 

lp. If q* a is defi.ned and </>(q) is defined then </>(q) o a is defined. 
2p. R'(<p(q)) = R(q) 
3p. </>(D) Ç D' 

Theorem 7: Given two regular CSP processes P, and P'. There is a proper CSP 
morphism from P into P' if and only if P = P'. 

Proof. First suppose that P = P', considering the CSP morphism given in the proof of 
lemma 5 it is trivial to check that the morphism is proper. Suppose now that there is a 
proper morphism from Pinto P'. Using condition (l) of the definition of CSP morphism 
and condition (lp) of the definitiorrof proper morphism we have traces(P) = traces(P') 
working in the same way as in the proof of lemma 4 we get P = P'. O 

8 



We introduce canonical forms for regular processes using general automata minimization 
techniques [Eil74]. Let us first recall the definition of P / s where s is a trace of P for a 
given CSP process P = (A,F,D). P/s is defined as P/s = (A,F /s,D/s) where F/s is 
defined as {tR \ stR E F} and D/s= {t l st E d}. 

Given a regular process P we consider the automaton can(P) =< M(P), R(P), D(P) > 
where: 

l. The base automaton M(P) =< A,Q,*,qo > has Q= {P/s l s E traces(P)}. The
initial state qo is P. The transition function is defined as ( P /s) * a = P / (sa) if
sa E traces(P) otherwise is undefined.

2. The refusal mapping is defined as R(P)(P/s) = refusals(P/s).
3. If there is somes in traces(P) such that P/s = Chaos then D(P) = { Chaos} (the

canonical form has at most one divergent state).
As P is a regular process it is given by a determinstic CSP automaton. The mapping 
defined by <p: P - can(P) defined by </>( qo * s) = P / s is a proper CSP morphism, thus we 
have: 

Theorem 8: Given a regular process P we have P = can(P). 

Thus can(P) is the canonical form of process P. Furthermore this form is unique and has 
mínimum number of states over all other automata recognizing the same process. 

4. Rational processes

In this section we consider a new class of CSP processes. This class will be defined in terms 
of CSP linear systems. We call these processes rational processes. CSP linear systems are 
in many aspects similar to the usual linear systems in automata theory. In linear systems 
the approach via least fixpoint in a CPO can be changed by the well known Arden's lemma. 
Let us give a formal definition of CSP linear functions. 

Given n process identifiers X 1, X 2, . . .  X 11 o ver t he alphabet A, the class of linear functions 
is defined inductively as: 

• StopA and Chaos.-1 are linear.
• Xi and ( a - Xi) are linear, for all i and for all event a E A.
• Let F(X1, .. • ,Xn ) and G(X1, . . . ,Xn ) be two linear functions, then FnG and FOG

are linear.
Given n linear funcions F1,F2,- .. , Fn over n process identifiers X1, X2, ... Xn , a CSP 
linear system is formed by the equations Xi = F¡(X1 , . . .  , Xn ) for i= l, ... , n. In general 
we denote a CSP linear system as X = F(X). A CSP process will be called rational if it 
can be obtained as a solution of a CSP linear system. 

Our first result shows that any CSP linear system can be written in some "standard" way. 
We ilustrate the procedure with an example. We consider the following system: 

X = (a - X □ b - Y) n b - Z 

Y = Chaos 

Z=c-Xnb-Ync_¡Y 

9 



The system can be rewritten as: 

X = ae + a X + b Y + b Z 

Y = Chaos 

Z = ab + ae + e X + ( b + e) Y 

Defining the following matrix 

and the vector R 

F= l·l 
b 

{} 
(e+ b)

R= ( c;:os)
ab + ae 

the process can be expressed as X = F X + R. 

!}) 
{} 

The ideas given in this example can be formalized to get the following 

Lemma 9: Every CSP linear system can be written as X = F X + R where F is a matrix
formed by subsets of A and R is a vector formed by subsets of P(A) or Chaos.

Recall that given an equation X = F(X). The solution of the equation can be obtained as
µX.X = LJ¡�0Fi (Chaos). When X is defined by a linear system, the "fix point" approach
can be replaced by the "Arden's lemma" approach. By a simple substitution we get 

Proposition 10: Let X be a CSP linear system defined by the equation X = F X + R 
then µX.X = F* R where F* denotes the reflexive and transiti ve closure of F. 
Looking at the previous example, the reflexive and transitive closure of F is:

( 
(a+ be)* F*= {} 
c(a+bc)"'

Finally the processes are: 

( a + be)� ( b + b
2 

+ be)

> 

e( a+ be)* ( b + b
2 

+ be) + b + e 

(a+ be)*b ) 
{} 

e(a +be)*+<> 

X =(a+ bc)*ae +(a+ bc)*(b + b
2 

+ be)Chaos +(a+ be)*b(ab + ac) 

Y =Chaos 

Z =c(a + be)*ae + (c(a + be)*(b + b2 +be)+ b + e)Chaos 

+ (e(a +be)*+<> )(ab + ac)

10 



Note that the description of processes X and Z obtained by this method is rather convo­
luted. lt can be proved that: 

X = a*(ac + b Chaoll) 
Z = ab + ac + ( b + e) C ha o J 

Finally we prove the equivalence between rational and regular processes. 
Theorem 11: The class of rational CSP processes equals the class of regular CSP 
processes. 

Proof. Let X1 be a process described by a linear system X = F X + R. Let us construct 
a CSP automata P =< M,R,D > with M=< A,Q,T,Q0 > such that P = X1 . The 
automaton will have an state qi for each variable Xi and the set Q0 is { qi}. The divergent 
states correspond to those variables that are just Chaos. The refusals mapping is R( q¡) =
refusals(Xi). The transition function is defined as follows. When qi is divergent the 
only transitions are (qi, a, qi) for every a E A. When qi is nondivergent, the process X¡ 

is U15:j5:nFij Xj + Ri, then we add (qi,a,qj) to T for every a E Fij and j. Trivially, the 
au tomat on P recognizes X 1. 

Let P =< M, R, D > be a regular process, with M =< A, Q, T, Q0 , >. We consider a 
variable X¡ for each state q¡. There are fou r different cases gi ving every one a different 
equation. 

• When qi is a divergent state we add the equation X¡ = Chaos.
• When qi has no outgoing arcs, we add the equation X¡ = Stop. Note that in this case

R(qi) = A.
• When q¡ has some outgoing arcs and R( q¡) = A, for every event a we consider the set

Ta = {j l (q¡,a,qi) E T} and the family T= {Ta l a E A and Ta e/{}}. We define
the process

Arcs; = Dr,,ET(DjET.(a � XJ))

Finally, we add the equation X; = Arcs¡ n Stop. 
• When qi has some outgoing arcs and R( qi) e/ A. Considering only maximal elements

under inclusion, the set of refusals can be writ ten as R( qi) = { Ri1, ... , Rik}. As every
R¡f. -# A every Rie = A \ R¡e is different from the empty set. For every a E R¡¡_ we
define R;t. = {j l (qi,a,qj) E T}. As R;t is maximal the set {a} U Rie is not a refusal.
That implies the existence of a state qj such that (q¡, a, qj) E T, then R¡e is non empty.
We consider the following process

Re fus als¡ = ne(D ER (O ·ETIª ( a � X i)))U ,l J ,l 

By construction refusals(RefuJals;) = R(q;). The final equation is X; 
RefuMlll¡, where A rcl!i is defined as before. 

11 

Arcs¡ n



The final process P is defined as P = X 1 n ... n X 
P 

where q1, ... , q
p 

are the initial states.0 

5. Closure properties

In this section we study under which CSP operations the class of regular ( or rational) 
processes remains unchanged. By definition CSP linear systems are closed under prefixing 
and interna! and externa! nondeterminism. Let us now consider other operations. 

Lemma 12: Regular CSP processes are closed under concealment. 

Proof. Suppose that a regular process P is given by a CSP-automaton. That is P is 
given by a set of linear equations of the forros described in the proof of theorem 11. We 
want to find a linear system for P\b, for a given b E A. Concealing b in the linear system 
defining P give us a second system of equations in which we have some unguarded variables. 
Thus our problem is to find a way to remove such equations. To do this we consider an 
auxiliar graph, with a node for each variable, such that (i,j) is an arc iff Xj appears as 
an unguarded variable in the equation defining X¡ . When the graph has no cycles, the 
unguarded equations can be avoided by substitution. When the graph contains a cycle, 
the least fix point for the variables involved in it is just Chaos. Then we can substitute 
these variables by C haos. Once all cycles are removed all other unguarded variables can 
be avoided by substitution. Note that equations like X¡ = Chaos n Xj . . .  can appear after 
substitution, in this case we equal X; to Chaos. Thus P\b is linear.O 

Given a regular process P and a one-to-one function f : A - B. It is easy to see that the 
process f(P) is recognized by the same automaton changing every event a by f(a). Then 
we have 

Lemma 13: Regular CSP process are closed under a change of symbols under one-to-one 
functions. 

Lemma 14: Regular CSP process are closed under interleaving. 

Proof. Consider two regular process P' and P". Let us construct a CSP automaton P 
recognizing P' 11 P". The base au toma ton has as alphabet the union of alphabets. The 
states set is the cartesian product. One state [q',q"] is divergent whenever q' or q" is 
divergent, for these states the refusal set is the whole alphabet. For nondivergent states 
the refusal set is R([q',q"]) = R'(q') + R"(q"). The transition function is defined in order 
to consider the different ways of interleaving. As usual a divergent state loops to itself. 
When [q', q"] is non-divergent we have two cases. First, when both states evolve using a 
common event for P' and P", the automaton needs to evolve to the corresponding pair of 
states. Second, when one of the states evolves using a noncommon event, the other state 
remains unchanged. D 

Putting together the precedent lemmas we get: 

12 



Theorem 15: The class of CSP regular pr0cesses is stable by internal nondetermin­
ism, external nondeterminism, change of symbol under one-one functions, prefixing and 
interleaving. 

6. Conclusions and open questions

Our motivations to study CSP-automata were primarly theoretical. Roughly speaking 
failures semantic seems to be a sophisticated formal language, thus our aim was to provide 
it with an adequate state device. We have shown that CSP-automata follows closely the 
semantic of failures. For example a law as (x -t P) n (x -t Q) = (x -t (P n Q)) is 
implícit in the determinization algorithm and laws like P n P = P or P n Chaos = Chaos 
is implícit in the minimization routine. By all these facts CSP-automata are an interesting 
and workable tool. We belive that the notations and techniques of automata and formal 
languages theory are useful tools in proving properties about processes. This paper is an 
essay to do it. 

In a mare practical view, we think that CSP-automata could be used to model some real 
small processes. Of course we have the problem of the explosion of the number of states, 
but this will happen with any state based approach. The advantadges of CSP-automata 
respecting to other models are a careful and economical treatement of nondeterminism and 
di vergences. 

As CSP-automata can be a usefull tool, it is important to look at the computational 
complexity of the problems related to them. For example the equivalence problem in 
CSP-automata stated as: "verify if two nondeterministic CSP-automata give the same 
process" is PSPACE-complete. As proving equivalence is computationally too hard it 
would be necessary some alternative approach. An adecuate notion of bisimulation ( up and 
clown [Jos88, HeJ89]) matching with CSP-automata could be very useful. As bisimulation 
equivalence for CCS automata is a P-complete problem [Mil89, KaS90, BGS90], we have a 
strong feeling that bisimulation equivalence between CSP-automata will be a F-complete 

problem. 

Referen ces 

[BGS90] Balcazar, J .L., Gabarró, J., Sant ha, M.: Deciding Bisimilarity is P-complete, 
Report LSl-90-25. 

[Eil74] Eilenberg, S.: A utomata, Languages and Machines, vol A. Academic Press, 1974. 

[Hoa85] Hoare, C.A.R.: Communicating Sequential Processes. Prentice Rall, 1985. 

[HeJ89] He Jifeng.: Process Simulation and Refinement, Formal Aspects of Computing 1, 
229-241 (1989).

[Jos88] Josephs, M.B.: A State-Based Approach to Communicating Processes, Distributed 

Computing, 3, 9-18 (1988). 

13 



[Mil89] Milner, R.: Communication and Concurrency Prentice Hall, 1989. 

[KaS90] Kanellakis, P.C., Smolka, S.A.: CCS Expressions, Finite State Processes, and 
Three Problems of Equivalence, Information and Computation, 86, 43-68 (1990). 

14 


