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Abstract
TheTibetanPlateau (TP) is the largest andhighest uplandonEarth.Warming on theTP is faster than
that in surrounding areas. Evaluating our understanding of the causes behind these changes provides a
test of tools used for projections of future climate in the region. In this study,we analyse theobserved
changes in twelve extreme temperature indices and compare themwithmodel simulations basedon the
CoupledModel IntercomparisonProject Phase 5 (CMIP5). Anoptimalfingerprintingmethod is used to
performdetection and attribution analyses on the changes in absolute intensity, percentile-based
frequency,fixed threshold exceedances of temperature extremes anddiurnal temperature ranges in the
central and easternTP.The results show that during 1958–2017 theTPhas experienced increasing
intensity and frequencyofwarmextremes anddecreasing intensity and frequency of cold extremes,with
almost all these changes larger than those inChina andEastChina. The detection results and attribution
analyses show that the anthropogenic (ANT) signal canbe robustly detected in the trends for all extreme
indices on theTP, and thenatural (NAT) signal in some cases, too.The attributable contribution from
ANT is estimated to bemuch larger than that fromNAT formost indices. The study also indicates that
theCMIP5modelsmay underestimate themagnitude ofwarming in some temperature extremes,
especially the indices related to cold extremes. This shouldbe kept inmindwhen informing adaptation
decisions on theTPwithprojections based on the samemodels.

1. Introduction

The Tibetan Plateau (TP) is the largest and the highest
upland on Earth, with an average elevation of more
than 4000m above sea level. With the global warming,
the changes in mean temperature and extremes across
the globe showdifferent regional features (IPCC2013).
Rapid warming rates are often observed in mountai-
nous and high-latitude regions (Screen 2014, Pepin
et al 2015). In the past several decades, the TP has
experienced substantial warming (Liu and Chen 2000,
You et al 2008, Duan and Xiao 2015), and warming
persists during ‘so-called hiatus period’ (Duan and
Xiao 2015, You et al 2016). Rapid warming has exerted
important influence on the ecosystem in this region,

including rapid retreat of glaciers, terrestrial vegeta-
tion migration and decreases in the quality of the
landscape. The increased natural disasters associated
with warming have exacerbated the risk to people’s
lives and property on the TP (Cui et al 2014,
Committee on China’s National Assessment Report
onClimate Change 2015).

With substantial warming, increasing numbers of
weather and climate extremes have occurred on the TP
in recent decades. Very few studies about temperature
extremes on the TP were conducted before the 1990s
because of the lack of high-quality data. With the
increase in homogenized observational data, studies in
this area have begun to proliferate (Zhou et al 2016,
Duan et al 2018, You et al 2008, 2018). These studies
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show significant increasing/decreasing trends for a
series of extreme warm/cold temperature indices
defined by the Expert TeamonClimate ChangeDetec-
tion and Indices (ETCCDI) (Zhang et al 2011) on the
TP. The trends in the nighttime temperature extremes
are greater than those in the daytime temperature
extremes (Liu et al 2006, You et al 2008, Zhou et al
2016). The warming on the TP is larger than those in
East China for both mean temperature and extreme
temperature (Tang et al 2005, Zhang and Zhou 2008,
Duan andXiao 2015).

Detection and attribution analyses are used to
quantify the influence of external forcing on observed
changes in climatic variables. Studies have shown that
the influence of human activities on mean and
extreme temperatures can be detected at the global,
continental, and subcontinental scales (Christidis et al
2005, Stott, et al 2011, Zwiers et al 2011, Wen et al
2013, Christidis and Stott, 2016, Kim et al 2016,
Lu et al 2016, Yin et al 2017, Yin and Sun 2018).
Christidis and Stott (2016) detected anthropogenic
signals in the changes in 16 extreme temperature indi-
ces on the quasi-global scale and in Europe based on
HadEX2 observation and one global climate model
HadGEM2-ES. They found clear human influence on
different characteristics of extremes during 1960–2010
but they also found that the anthropogenic signal
could not be detected for frost days (FD), ice days (ID)
and diurnal temperature range (DTR) in Europe. No
significant trend for DTR appears in Europe although
DTR generally displays a decreasing trend at the global
scale (Thorne et al 2016). Recently, several studies have
indicated that changes in temperature extremes and
some extreme events in China can be attributed to
human-induced forcing (Zwiers et al 2011,Morak et al
2013, Sun et al 2014, Lu et al 2016, Yin et al 2017,
Sparrow et al 2018). Lu et al (2016) and Yin et al (2017)
showed that anthropogenic influence can be detected
in changes in the intensity and frequency of temper-
ature extremes in China. Sun et al (2014) indicated
that anthropogenic forcing increased the probability
of extreme summer heat in East China. Overall,
although the detection and attribution of regional cli-
mate change are more difficult than those at the global
scale because of the reduced signal-to-noise ratio at
regional scale (IPCC 2013), clear human influence has
been found on climate change in some countries.

On the TP region, understanding the reasons
behind the rapid changes in climate extremes is crucial
for reliable future projections, and sets an important
scientific basis for climate change policy making. To
the best of our knowledge, detection and attribution
studies to identify the role of human influence on
regional mountainous areas are still lacking. In this
study, we investigate the changes in temperature
extremes on the TP and compare themwith themodel
simulations from the CMIP5 experiments. We exam-
ine whether human influence has exerted a clear influ-
ence on the changes in a set of indices of temperature

extremes defined by the ETCCDI. We also compare
observational changes based on gridded data from
Chinese stations and from the HadEX2 dataset (Donat
et al 2013) so that the robustness of climate change on
the TP can be evaluated. The structure of the paper is
as follows. Section 2 shows the data and methods. The
main results are provided in section 3. The discussion
and conclusions are presented in section 4.

2.Data andmethods

2.1.Observational data
The study focuses on the central and eastern TP
because of the sparse station density on the western
TP. We call the area the TP region hereafter. The
observational data include daily maximum and mini-
mum temperatures from 157 stations (figure 1) on the
central and eastern TP from the China National
Meteorological InformationCenter (NMIC) (available
at http://data.cma.cn/). These data cover the period
from 1951 to 2017, and have been controlled for
quality and adjusted for homogeneity by Xu et al
(2013). We use only the data after 1958 because of
good quality and station density in this period.

Based on these daily data, twelve extreme temper-
ature indices (table 1) are calculated in each station fol-
lowing the ETCCDI definition (Zhang et al 2011) and
are termed as ChinaDEX in this study. The anomalies
of all the indices are calculated at each station relative
to the 1961–1990 mean and then averaged onto a
2.5°×3.75° latitude–longitude grid, which is con-
sistent with the grid resolution for HadEX2 developed
by Donat et al (2013) (https://climdex.org/gewocs.
html). The extreme indices include 4 absolute inten-
sity indices (TXx, TNx, TXn, and TNn), 4 percentile-
based frequency indices (TX90p, TN90p, TX10p, and
TN10p) and 3 fixed threshold exceedance indices (SU,
FD, and ID) and the DTR. Among these indices, the
absolute intensity indices represent the most extreme
events and the percentile-based indices reflect the
changes in themoderate extremes. Thefixed threshold
exceedances indices andDTRhave substantial impacts
on society, ecosystems and agriculture (Terando et al
2012, Cheng et al 2014). The ‘number of tropical
nights (TR)’ is excluded because night-time tempera-
tures hardly exceed 20 °C on the TP. The TR index
includes too many small or zero values and is not rea-
sonably covered for the TP region.

To test the robustness of different observational
data for estimating climate change on the TP, the
HadEX2 gridded extreme indices data during
1958–2010 are also used. There are 47 stations on the
TP for HadEX2 (figure 1), which is much less than the
ChinaDEX (157 stations). We present a comparison
between ChinaDEX and HadEX2 during 1958–2010
in figure 4. In the other parts of our study, we will use
ChinaDEX from 157 stations because the data have
better spatial and temporal coverage than HadEX2.
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The trends of all the extreme indices on the TP during
1958–2017 are calculated using a nonparametric
method (Sen 1968) and compared with those in the
whole of China and East China.

2.2.Model data
The CMIP5 model simulations are used to estimate
extreme temperature responses to external forcing
and the role of natural internal variability (Taylor et al
2012). Sillmann et al (2013a, 2013b) calculated the
ETCCDI indices based on daily data from the CMIP5
simulations. Here, we use the multi-model ensemble
mean of 18 models from 82 historical runs driven by
combined anthropogenic and natural forcing (ALL)
and 6 models from 25 historical simulations driven by
natural forcing only (NAT) (table 2). Because some
CMIP5 historical simulations end in 2005, the RCP85
simulations for the years 2006–2017 are used to extend
the data after 2005. The NAT simulations end in 2012

and there are no NAT simulations for subsequent
years. To detect the influence of anthropogenic (ANT)
forcing on recent climate change, we replicate the
NAT simulation from 2008 to 2012 for the period of
2013–2017. This method should be reasonable
because few volcanic eruptions in this period, and the
error introduced by having the wrong solar forcing
during 2013–2017 is expected to be small, too. Using
2005–2017 fromRCP85means that more than 20% of
the time period is considered to have noNAT.We thus
conduct a series of sensitivity tests to verify the
robustness of detection results. We also use preindus-
trial control (CTL) simulations with no external
forcing from 28 models to estimate the internal
variability, in which only 7 models are available for
DTR indices (table 2). All the models are interpolated
onto the same 2.5°×3.75° grid as the observations
and then masked with the gridded observed temper-
ature indices to mimic the availability of observational

Figure 1.Map of observation stations for theChinaDEX (blue circles) andHadEX2 datasets (black crosses) and gridded boxes (red
lines) on the Tibetan Plateau. Shaded areas indicate the topography (units:m). Black slashes indicate regions with anomalous values in
some indices of theHadEX2 dataset.

Table 1.Definitions of 12 temperature indices used in this study.

Index Descriptive name Definition Unit

TXx Hottest day The annualmaxima of dailymax temperature °C
TNx Warmest night The annualmaxima of dailymin temperature °C
TXn Coldest day The annualminima of dailymax temperature °C
TNn Coldest night The annualminima of dailymin temperature °C
TX90p Warmdays Percentage of days when dailymax temperature>90th percentile of the base period %

TN90p Warmnights Percentage of days when dailymin temperature>90th percentile of the base period %

TN10p Cool nights Percentage of days when dailymin temperature<10th percentile of the base period %

TX10p Cool days Percentage of days when dailymax temperature<10th percentile of the base period %

SU Summer days Annual countwhen dailymax temperature>25 °C Days

ID Ice days Annual countwhen dailymax temperature<0 °C Days

FD Frost days Annual countwhen dailymin temperature<0 °C Days

DTR Diurnal temperature range Mean difference between dailymax andmin temperature °C
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data in each grid. We compute the ensemble mean of
all available models after calculating the ensemble
means of all the runs from individual models. Then,
regional averages are calculated based on the
masked data.

2.3.Methods
We use an optimal fingerprinting method based on
generalized linear regression (Allen and Stott 2003,
Ribes and Terray 2013) to quantify the influence of
external forcings on observed climate change. The
method expresses the observed value change (Y) as a
function of the climate responses to the external
forcings (X), which is expressed as: Y=(X−v)
β+u. Here, u accounts for the regression residual
and reflects the effect of internal variability. The
scaling factor β is estimated using the total squares
method (Allen and Stott 2003, Ribes and Terray 2013).
v represents the noise in the signal that depends on the
model ensemble size because the multi-model average

may not be able to remove all vestiges of internal
variability. The residual consistency test (Ribes and
Terray 2013) is used to evaluate whether the model
simulated variability is inconsistent with the regres-
sion residuals. In total we extract the 285 chunks of
60 year long segments from half of the CTL simula-
tions and within-ensemble differences (i.e. the resi-
duals of the ensemble simulations after the ensemble
mean is removed) to estimate the scaling factor β, and
the 90% confidence interval. Scaling factors whose 5th
percentile is greater than zero imply a detectable signal
at the 5% significance level. Moreover, we consider
scaling factors with 90% ranges including unity to
indicate good agreement between observations and
model simulations.

Our detection analyses include single-signal and
two-signal analysis to detect the relative influences of
the different forcings on the observed changes. The
single-signal analysis yields a regression between
observations and multi-model mean responses of a
single factor (ALL, ANT, and NAT) to estimate whe-
ther the observed changes are agree with individual
external forcing or combined forcings effect. We esti-
mate anthropogenic forcing as the difference between
ALL and NAT responses from all available simula-
tions. In the two-signal analysis, we conduct a regres-
sion of the observations onto ALL and NAT responses
simultaneously, and then perform a linear transfor-
mation to estimate the relative contributions of ANT
and NAT signals to the observations and to determine
whether these two signals can be detected separately.

3. Results

3.1.Observed and simulated changes in temperature
extremes on the TP
Based on the ChinaDEX data, the observed trends of
twelve temperature extreme indices during 1958–2017
are illustrated in figure 2. The increasing warm
extremes and decreasing cold extremes are consistent
with global warming. The intensity (TXx and TNx)
and frequency (TX90p and TN90p) of the warm
extremes have increased and the corresponding
indices (TXn, TNn, TX10p and TN10p) for the cold
extremes have decreased. The changes in the intensity
of the coldest extremes (TXn and TNn) are greater
than those in the intensity of the warmest extremes
(TXx and TNx). For the fixed threshold exceedances
indices, FD and ID have been decreasing, and SU
increasing. TheDTRchanges on theTPhave obviously
decreased mainly due to the rapid increase in the
nighttime extremes. If one compares changes in the
daytime and nighttime extremes, changes in the night-
time frequencies (TN10p and TN90p) are larger than
those in the daytime frequencies (TX10p and TX90p),
indicating larger changes in the nighttime temper-
ature. Previous studies have shown similar changes for
these indices inChina (e.g. Dong et al 2018).

Table 2. List of CMIP5multi-model simulations used in this study.
Numbers represent the ALL andNAT simulation ensemble sizes
and the number of 60 year chunks for theCTL (preindustrial
control) simulations.

Model name ALL(18) NAT (6) CTL(28)
CTL for

DTR(7)

BCC-CSM1-1 3 8

BCC-CSM1-1-m 3 6 6

CanESM2 5 4 18

CCSM4 3 2

CESM1-BGC 8 8

CMCC-CESM 4 4

CMCC-CM 5 5

CMCC-CMS 8 8

CMCC-CM5 14

CNRM-CM5 10 6 14

CSIRO-Mk3-6-0 10 5 8

EC-EARTH

FGOALS-s2 3 8

GISS-E2-R 3

GFDL-CM3 13

GFDL-ESM2G 8

GFDL-ESM2M 8

HADCM3 10

HadGEM2-CC 4

HadGEM2-ES 3 4 9

IPSL-CM5A-LR 4 3 17

IPSL-CM5A-MR 3 5

IPSL-CM5B-LR 5

MIROC-ESM 3

MIROC5-

ESM-CHEM

4

MIROC5-ESM 10

MIROC4H 3 1

MIROC5 5 11 11

MPI-ESM-LR 3 17

MPI-ESM-MR 3 16

MPI-ESM-P 19

MRI-CGCM3 5 8

NorESM1-M 3 8

SUM (models) 82(18) 25(6) 252(28) 56(7)
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Figure 3 provides a comparison of trends in temp-
erature extremes between the TP and China as a whole
and East China (all of China that is east of 105°E).
Except for TXn and SU, the magnitudes of the linear
trends of all the other indices on the TP are larger than
those in China and in East China. This result indicates

that the warming of temperature extremes on the TP is
more than in the other regions. More intense, more
frequent warm extremes and less intense, less frequent
cold extremes have occurred. The FD and ID have
decreased more than in the other regions in China.
The possible reasons are related to the changes in

Figure 2.Geographical distribution of observed linear trends per decade in temperature extremes based onChinaDEXdata during
1958–2017 on the TP. The blue contours indicate the topographic elevations (units:m).

Figure 3. Linear trends in observed temperature extremes during 1958–2017 averaged over the Tibetan Plateau (TP: black squares), in
China as a whole (CN: red circles), and in East China (ECN: blue triangles). The units of the trends are °Cper decade for TXx, TNx,
TXn , TNn andDTR;%of days per decade for TX90p, TN90p, TX10p, andTN10p; days per year for SU, FD, and ID.

5

Environ. Res. Lett. 14 (2019) 124015



surface albedo feedback, surface radiation fluxes or
amounts of clouds above the TP (Rangwala et al 2013,
Pepin et al 2015), but the exact reason is still unclear.
Additionally, we find that there are larger differences
in SU, FD, and ID between the TP and other regions
than in the other indices. The daily maximum and
minimum temperaturesmore easily exceed 0 °C (fixed
threshold for FD and ID), while for SU, the daily max-
imum temperature hardly exceeds 25 °C in the center
of the TP. These variations may lead to large differ-
ences in the SU, FD, and ID indices.

We also compare the changes in temperature
extremes averaged on the TP from two observational
datasets ChinaDEX and HadEX2 (figure 4). Note that
HadEX2 covers only the period from 1958 to 2010.
Generally, these two datasets correspond well for fre-
quency indices, while the differences between the two
datasets are obvious for other indices. We find that
HadEX2 has some anomalous values in the south-
western part of the TP (black slash grid boxes in
figure 1).Whenwe include these grid boxes in regional
averages, the HadEX2 time series show large changes
in several indices, including intensity indices, SU and
FD. If we omit these data from our regional average,
the HadEX2 values show very good consistency with
ChinaDEX (figure 4). The southwestern part of the TP
has only 5 stations for HadEX2. We suspect that this
large difference is due to very sparse station density
and the related nonclimatic inhomogeneities in
HadEX2 (Dunn et al 2014). For SU and FD indices
there are some very high correlation among stations
and very low variances. Correlations are not calculated
if no data are present, so that the coverage can look dif-
ferent to other indices (Dunn et al 2014). These results

indicate that the estimates of climate changes on the
TP are affected by the data coverage in space and time
and that different datasets may provide very different
results. This possibility raises a caveat about the uncer-
tainty of different observational datasets in analysing
climate change in the data-sparse region.

The model simulated linear trends during
1958–2017 for all the indices are shown in figures 5
and 6 based on multi-model ensemble mean from the
ALL and NAT forcing experiments, respectively. For
ALL forcing experiments (figure 5), the model-simu-
lated trends reproduce the observed changes well. The
absolute intensity and frequency of warm extremes
have increased, while cold extremes have become less
intense and less frequent. However, the models gen-
erally underestimate the observed amplitudes of
trends (figure 2) for most indices, especially for cold
extremes. The model-simulated spatial patterns are
more uniform than the observations, indicating small
variability and slight regional differences from the
model-ensemble mean. On the other hand, the NAT
patterns (figure 6) show slightly increasing trends for
the warm extremes and decreasing trends for the cold
extremes, which is consistent with the observations
but with much smaller magnitude. It suggests a posi-
tive effect of NAT forcing on the changes in temper-
ature extremes in the region.

The 5 year mean series of observational and
model-simulated extreme temperature indices are
shown in figure 7. The model-simulated long-term
changes in these temperature extremes under ALL for-
cing are similar to the observations. For most of the
indices, however, the simulated changes in absolute
intensity, frequency and the fixed threshold

Figure 4.The changes in temperature extremes averaged on the TP during 1958–2010 from two original observational datasets based
onChinaDEX (black solid lines) andHadEX2 (red solid lines) and the changes withfive anomalous values removed from the
observational datasets ChinaDEX (black dashed lines) andHadEX2 (black dashed lines).
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Figure 5. Same asfigure 2 but for trends inmodel response to ALL forcings.Model trends are computed based on themulti-model
ensemblemean.

Figure 6. Same asfigure 2 but for trends inmodel response toNAT forcings.Model trends are computed based on themulti-model
ensemblemean.
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exceedance indices are smaller than the observations,
especially for the cold extremes, which are consistent
with figures 2, 5, 6. This underestimation by model
simulations may imply that the projected future chan-
ges in temperature extremes on the TP based on these
multi-model ensembles are underestimated. The 90%
ranges of ALL forcing runs (pink shading in figure 7)
almost fully cover the observational changes, suggest-
ing good performance of the models in simulating
these indices. The observations are more similar to the
simulated response to ANT forcing than that to NAT
forcing alone, but the NAT simulations show small
and positive contributions to the observed changes.

3.2.Detection results
We investigate the effects of external forcings on the
observed spatiotemporal evolution of temperature
extremes during 1958–2017 using an optimal finger-
printing method. Figure 8 shows scaling factors and
their 90% confidence intervals for ALL, ANT andNAT
forcings based on single-signal detection analyses. For
all indices, both ALL and ANT signals are robustly
detected on the TP. The confidence intervals of the
scaling factors are generally smaller than those of the
detection results in China (Lu et al 2016, Yin et al 2017,
Yin and Sun 2018). The residual consistency tests are
generally passed, suggesting a good consistency

Figure 7. Five-yearmean anomaly (relative to 1961–1990) time series of twelve extreme temperature indices fromChinaDEX (black
lines) andmulti-model ensembles on the TPunder ALL forcing (red lines) andNAT forcing (blue lines) during 1958–2017. Shading
shows the 5%–95% ranges of the individualmodel simulations.

Figure 8.Best estimates of the scaling factors and their 5%–95% confidence intervals from single-signal analyses from1958 to 2017 for
the TP. The black upward and downward triangles indicate that themodel simulations overestimate or underestimate the observed
variabilities, respectively, according to the residual consistency test.
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between observed and model-simulated variability,
and the models do not miss any important forcings
and/or responses to them. Without having analyses
on the response to greenhouse gas and other anthro-
pogenic forcing agents, in particular aerosols, in
isolation, we speculate that aerosol forcing might be
less important here than elsewhere so that the large
uncertainties associated with it are less relevant here, a
hypothesis that would need further research to
scrutinize.

For the intensity indices, the best estimates of scal-
ing factors are close to unity for warm extremes (TXx
and TNx), while they are greater than unity for cold
extremes (TXn and TNn). These results indicate a
good agreement between the observations and the
forced responses of the models for the intensity of
warm extremes and underestimation by model simu-
lations for the intensity of cold extremes. These results
are similar to the detection results of the intensity indi-
ces in other regions (Zwiers et al 2011, Kim et al 2016,
Yin et al 2017,Dong et al 2018).

For the frequency and fixed threshold indices,
both ALL and ANT signals can be clearly detected. The
best estimates of the scaling factors are very close to or
slightly larger than unity, indicating good agreement
between observations and models or underestimation
of the changes by the model simulations. The con-
fidence intervals for the frequency indices are very
small, indicating small uncertainties of the detection
results. The residual consistency tests are passed
except for TN10p, SU and DTR. For these three indi-
ces, the models underestimate the observed variability
for TN10p and overestimate the observed variability
for the SU and DTR, respectively. The smaller varia-
bility in the models implies that the models miss some
physical process responsible for these kinds of
extremes or they misinterpret some of the internal

variability as a forced response. The detection results
for ANT are similar to those for ALL but have larger
confidence intervals. The NAT signal is detected for
most extreme indices on the TP, although the 90%
confidence intervals for the scaling factor have larger
uncertainty ranges.

The scaling factors and their confidence intervals
based on two-signal regression analyses are shown in
figure 9. The ANT signal can be detected in all the indi-
ces while theNAT signal can be detected formost indi-
ces during 1958–2017. For the intensity indices, both
the ANT and NAT signals are detected separately for
warm extremes, but the NAT signal cannot be detec-
ted for cold extremes. This difference suggests a domi-
nant influence of ANT forcing on the cold extremes.
Similar to the single-signal results, the best estimates
of scaling factors for ANT forcing are close to unity for
the warm extremes while they are greater than unity
for the cold extremes. For all the frequency and fixed
threshold exceedances indices, the ANT and NAT sig-
nals are separately detected. The best estimates of the
scaling factors are generally close to or greater than
unity. The residual consistency tests are passed for
most indices except for TN10p and DTR, in which
model simulations have smaller variability for TN10p
and larger variability for DTR than the observations,
respectively. These results show good consistency with
the single-signal results and provide clear evidence of
human influence on the temperature extremes on
the TP.

The attributable contributions from different
external forcings to the observed trends are shown in
figure 10. The attributable trends are estimated as the
linear trends in the signal from model simulations
multiplied by the corresponding scaling factors. Dur-
ing 1958–2017, the observed changes in TXx, TNx,
TXn, and TNn are 1.6 °C, 1.7 °C, 1.8 °C, and 3.5 °C,

Figure 9.Best estimates of the scaling factors and their 5%–95% confidence intervals from two-signal analyses from1958 to 2017 for
the TP. The black upward and downward triangles indicate that themodel simulations overestimate or underestimate the observed
variabilities, respectively, according to the residual consistency test.
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respectively. The median values for the contribution
of ANT signal to these observed changes are 70%,
76%, 89%, and 95%, respectively. For the frequency
indices TX90p, TN90p TX10p and TN10p, the med-
ian values from ANT contributions are 87%, 88%,
62%, and 85%, respectively. The observed changes in
SU, FD, ID and DTR are 8.7 d, −26 d, −17 d and
−1 °C, respectively and the median values of the ANT
contribution explain 87%, 86%, 84% and 108% of
these changes, respectively. NAT contributions are less
than 15% for all the extreme indices except for TXx,
TNx, and TX10p, in which NAT explains 30%, 24%
and 38% of the changes, respectively. Note that these
numbers are a lower limit but not necessarily good
estimate of the contribution of natural forcing due to
our unrealistic assumption of natural forcing during
2013–2017 to be same as in the period before. Com-
pared with the results of previous studies across China
(Lu et al 2016, Yin et al 2017, Yin and Sun 2018), the
NAT influences on the TP are slightly larger than those
inChina.

To evaluate the robustness of the detection results,
we conduct a series of sensitivity tests (supplementary
figure S1 and S2 is available online at stacks.iop.org/
ERL/14/124015/mmedia). First, we test the sensitiv-
ity of detection and attribution results to the analysis
period, since we use RCP85 data to extend the model
simulations and replicate the 2013–2017 NAT results
with the 2008–2012 model simulations. We redo all
the analyses in different periods, including the periods
from 1958 to 2005 and 1958–2012. We find that for
both single- and two-signal analyses, the detection
results for ANT are similar but that the detection of the
NAT signal is affected by the studied time period for
some indices, including the intensity and frequency
of warm extremes, TN10p and fixed threshold

exceedance indices. However, for the two-signal
detection results during 1958–2012 from the same
model subset under ALL and NAT forcing, only NAT
is not detected anymore for the intensity of cold
extremes, TX90p, TN10p, and ID. This justifies the
robustness of our detection results. Second, we test the
sensitivity of our results to different model ensembles,
since we use all the available model runs for ALL and
NAT experiments, and the number of runs and mod-
els for ALL and NAT do not exactly correspond. We
redo all the analyses using the models that have the
same ALL and NAT experiments. The detection
results using signals from the same subset of models
are quite similar to the results from all available model
runs formost indices. However, we find that the detec-
tion for a few indices is affected by the choice of mod-
els and consequently the estimate of the naturally
forced signal, especially when the studied time period
is short. This outcome implies that our results are gen-
erally robust but affected by the caveats of using differ-
ing natural estimates for NAT than included in ALL,
and by having wrong NAT forcing from 2005
onwards. In a longer period with more signals, the
influences of ANT and NAT signals are more easily
detected than those in a shorter period. With the
improvement of data availability, including longer
observation as well asmodel simulations,more studies
are required to further scrutinize our results.

4.Discussion and conclusion

The rapid warming on the TP since the 1950s has
exerted important influence on the regional ecosys-
tem. Here, we investigate changes in temperature
extremes on the TP based on homogenized Chinese
station data, including the absolute intensity,

Figure 10.Attributable contributions and their 5%–95% confidence intervals for the temperature extreme indices on the TP. The
trends for observations are estimated by linear least squares regression. The attributable contributions for ALL are estimated based on
one-signal analyses, while those for ANTandNAT are based on two-signal analyses involving ANTandNAT.
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frequency of warm and cold extremes and fixed
threshold exceedance indices. We find that all these
extreme indices show clear warming features. The TP
region has experienced more intense and more
frequent warm extremes and less intense, less frequent
cold extremes since the late 1950s. All these changes in
the extremes on the TP are larger than those in the
other regions of China. We also compare the results
based on ChinaDEX and HadEX2 and find that the
changes in temperature extremes from the two
observational datasets are quite different for some
indices. This result presents an urgent need for high-
quality observational data in the data-sparse region.

Based on an optimal fingerprinting method, we
compare observed changes in these indices withmodel
simulations. To identify human influence on the
temperature extremes, we conduct single- and two-
signal detection analyses. Despite application to a
small-scale region with the highest terrain globally, the
models reproduce the observed changes quite well.
Models show good consistency with the observations
or underestimate the observed changes for some indi-
ces, especially cold extremes. The ALL and ANT sig-
nals are clearly detected in the changes in intensity,
frequency, and fixed threshold exceedance indices and
in the DTR. The natural signal can be detected for
most indices even without realistic forcing from 2005
to 2017 and thus indicates an influence of NAT forcing
on the temperature extremes, although much smaller
than ANT as shown by the respective attributable con-
tributions. These results provide clear evidence of
human influence on the temperature extremes in the
TP region. The underestimation of observed changed
by models for some indices indicates that the region
may experience more extreme events than the raw
projections based on thesemodels. However, to obtain
a better understanding of climate change on the TP,
more detailed research is still necessary, including ana-
lyses of contributions from individual anthropogenic
forcings such asGHGs, aerosols, and land use.
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