Parallel complexity
in the design and analysis
of concurrent systems

Carme Alvarez
José L. Balcdzar
Joaquim Gabarré

Miklos Santha

Report LSI-90-38

@ JUOODRIAN

[aRT J

Parallel complexity

in the design and analysis of concurrent systems

C. Alvarez* J.L. Balcazar* J. Gabarré* M. Santha™
Dep. de Llenguatges i Sistemes Informatics CNRS - LRI
Universitat Politécnica de Catalunya Université Paris-Sud
Pau Gargallo 5, 08028 Barcelona 91405 Orsay
Spain France

Keywords: Petri nets; partially commutative monoids; CCS; PRAM algorithms;
boolean circuits; P-completeness.

Abstract: We study the parallel complexity of three problems on concurrency: de-
cision of firing sequences for Petri nets, trace equivalence for partially commutative
monoids, and strong bisimilarity in finite transition systems. We show that the first two
problems can be efficiently parallelized, allowing logarithmic time Parallel RAM algo-
rithms and even constant time unbounded fan-in circuits with threshold gates. However,
lower bounds imply that they cannot be solved in constant time by a PRAM algorithm.
On the other hand, strong bisimilarity in finite labelled transition systems can be clas-
sified as P-complete; as a consequence, algorithms for automated analysis of finite state
systems based on bisimulation seem to be inherently sequential in the following sense:
the design of an efficient parallel algorithm to solve any of these problems will require
an exceedingly hard algorithmic breakthrough.

1. Introduction

Given the intrinsic difficulty of designing large software systems, it 1s natural that software
tools would be designed to help in performing this task. The possibility of formalizing both
specifications and implementations in the same, or in a closely related, formal language
yields the potential of automated analysis, allowing for early checking of correctness and
provably correct prototypes.

The design of correct concurrent programs is even more difficult than in the sequential case,
and their verification using formal systems may give rise to formidable computational
problems. For instance, the study of the correctness and liveness properties of mutual
exclusion algorithms for just two processes already requires resorting to computerized
analysis [27]; if more processes are considered, the state space soon becomes intractable.

* Research supported by the ESPRIT Il Basic Research Actions Program of the EC under
contract No. 3075 (project ALCOM).

* Research supported by the Programme MERCURE of the DCSTD of the Ministére Francais
des Affaires Etrangéres and the DGICYT of the Ministerio de Educacién y Ciencia de Espana.
This research was performed while visiting the Dep. de Llenguatges i Sistemes Informatics of the

Universitat Politécnica de Catalunya.

One reason to develop concurrent programs stems from the fact that important advantages
can be gained from the use of massive parallelism. In view of the large number of parallel
algorithms discovered in recent years (see [16] and (10]), it might be hoped that one such
application would be the study of concurrent systems, and that algorithms running on
highly parallel machines could perform automated analysis of large concurrent programs
substantially faster than sequential algorithms. Such a behaviour corresponds to a running
time roughly logarithmic in the size of the state space (assumed finite); and being able
to tackle problems of relevant size corresponds to algorithms that use a large but feasible
number of processors (cf. the definition of the class NC below).

One of the first models issued to study concurrent systems was the Petri net model. A
Petri net consists of two different kinds of objects: places and transitions. Places serve to
model pre and post conditions and transitions model events. A transition needs to satisfy
some conditions to be fired, and its firing changes the valuations on the places (see below
for exact definitions). The net evolves firing transitions sequentially and the behaviour of
the whole system is described by the set of all possible firing sequences.

For each fixed Petri net, we exhibit an NC algorithm to decide very efficiently in parallel
whether a given sequence of transitions is a firing sequence. We also discuss some lower
bounds on the parallel time necessary to solve this problem.

In a monoprocessor environment, a concurrent system is fully described by the set of all
sequential evolutions. A possible evolution of the system is described by a finite word
called trace. Let us consider with more attention the sequencing of two events z and y in
atracew =---zy---. Let w' = ...yz ... be the trace obtained from w by commuting the
order of the events z and y. We have two different possibilities:

¢ The events z, y are independent from each other. In this case the order of execution
is irrelevant and z, y commute. Then the traces w and w’ correspond to the same
parallel behaviour.

® The execution of z modifies the environment of y. Then these events are in conflict.
The trace w' represents a behaviour different from w.

A basic question is: given two traces, do they model the same concurrent behaviour? A way
to deal with this approach is to consider partially commutative monoids. This framework
has been fully developed by Mazurkiewicz [18]. A mathematical characterization of trace
equivalence was found in [8], and it can be used to find a fast sequential algorithm. Here
we prove the existence of an NC algorithm, and discuss also some lower bounds.

A capability that seems natural to expect from software tools for aiding the design of
concurrent systems is to be able to decide some form of equivalence of finite state systems.
Indeed, this problem plays a fundamental role in the study of concurrent systems, and has
been widely studied both from theoretical and practical points of view. Milner specifies
in [21] a complete set of axioms for proving equivalence of finite state agents. Kanellakis
and Smolka consider in [15] efficient sequential algorithms to solve this problem. On
the more practical side, the prototype named Concurrency Workbench, implemented in
Standard ML, has been used by Walker [27] for undertaking the automated analysis of
mutual exclusion algorithms via finite state systems, using the fact that the state space of
all these algorithms is finite.

Until now, the analysis of concurrent systems by means of bisimulation techniques has
been based on sequential algorithms. A natural question to ask is: do the automatic
bisimulation techniques admit fast parallel algorithms?

In this paper we give a strong evidence that unfortunately the answer to the above question
1s negative. More precisely, we prove that deciding bisimulation in finite transition systems
1s a P-complete problem. P-complete problems have efficient sequential algorithms but it
is widely believed that they do not admit fast parallel ones.

In fact, this concept plays a role analogous to the notion of NP-complete problems. These
are problems that can be solved by an exponentially slow exhaustive search, and they
inherently seem to require superpolynomial time algorithms. The NP-completeness of a
problem implies that success in designing a polynomial time sequential algorithm for it is

highly unlikely.

Analogously, P-complete problems are identified as inherently sequential problems: if there
are any problems in P that do not admit efficient parallel algorithms, then all P-complete
problems are among them. Conversely stated, if a parallel algorithm is found for a P-
complete problem which uses a feasible (e.g. polynomial) amount of hardware and runs in
polylogarithmic time, then all problems solvable in polynomial time have also such feasible
and very fast parallel algorithms. However, strong research in the area during several years
has failed to produce such an algorithm for any of the well studied P-complete problems.
Thus, the design of a parallel algorithm with these characteristics for a P-complete problem
would require a breakthrougn in Algorithmics. Actually the conjecture of many researchers
in the field is that such an algorithm does not exist at all. Surveys of P-complete problems
have appeared in [22] and [13].

2. Preliminaries

2.1 Sequential and parallel complezity classes. For the formal study of the possible existence
of parallel algorithms we will consider two main complexity classes: P and NC. We
mention also some interesting subclasses of NC. The class P models problems with efficient
sequential algorithms; the class NC models problems with fast parallel algorithms, using
a feasible number of processors. Each of these classes has many characterizations that
support this description.

o By definition, the class P contains the problems for which a polynomial time sequential
algorithm exists. This can be formalized by considering an abstract model of sequential
computation for which “time” is a well-defined notion. Polynomial time RAM algorithms
(a model quite close to a real computer [1]), polynomial time Turing machines ([1], [4]),
or even polynomial size uniform circuits (see below) are all suitable for this purpose, and
give equivalent definitions of the class P.

o The class NC formalizes the concept of efficiently parallelizable problems: it contains
those problems for which a parallel algorithm can be designed which runs in polyloga-
rithmic parallel time and uses a feasible (i.e. polynomial) amount of hardware. There are
many characterizations of this class. Consider for instance Parallel RAM (PRAM) ma-
chines, which are one of the basic abstract models of parallel computers [26]. NC can be

3

defined as the class of all the problems that can be solved in a PRAM within O(log* n)

time for constant k and using polynomially many processors.

For theoretical analysis sometimes unbounded fan-in boolean circuits are preferable [7]. A
boolean circuit is a directed, acyclic, labelled graph in which the nodes of indegree zero are
the inputs, the nodes of indegree 1 compute boolean negation, and the nodes of indegree 2
or more compute either boolean conjunction or disjunction of all their inputs, according
to their respective label. The nodes of outdegree zero are the output nodes. The size of
a circuit is the number of its nodes; the depth is the length of the longest path from an
input to an output. The nodes in a circuit are called also gates. Binary inputs and outputs
might be binary encodings of other objects assuming some simple coding scheme.

To use boolean circuits to solve problems, we have to select a different circuit for each
input length; but such a selection might be very hard to compute. Here we will explicitly
rule out those families of circuits for which this selection is indeed hard, and will restrict
ourselves to uniform families. A family of circuits is uniform if basic facts about the
connection of the gates can be answered in deterministic logarithmic time, or equivalently
can be expressed in an extended version of first order logic (see [6] for precise definitions).

It is well known that in many aspects PRAMs and uniform unbounded fan-in circuits are
equivalent [26], with bounds on number of processors corresponding to bounds on the size
of the circuit, and bounds on the PRAM time corresponding to bounds on the depth of the
circuit. Thus NC'is formed by the problems solvable by polylogarithmic depth, polynomial
size uniform circuits.

NC has some interesting subclasses. In particular, AC" contains the problems solvable by
unbounded fan-in uniform circuits of constant depth and polynomial size, or equivalently
solvable by a PRAM in constant time with a feasible (i.e. polynomial) number of processors;
and AC" contains the problems solved by unbounded fan-in uniform circuits of logarithmic
depth and polynomial size, which corresponds to logarithmic time in a PRAM with again a
feasible number of processors. AC" contains some problems with long history, for instance
the addition of two integer numbers.

Lying between AC" and AC! is the class TC", defined by uniform constant depth poly-
nomial size circuits which are allowed to use threshold gates. This class can be motivated
by the growing of a complexity theory of neural networks [23], and is important for tight
analysis of the complexity of certain problems; it also contains very natural and interesting
problems such as the multiplication of two integer numbers [7].

Since threshold gates can simulate AND and OR gates we have that AC" C TCY, but
these two classes do not coincide: Ajtai [2] and Furst, Saxe and Sipser [9] proved that the
inclusion was strict. This was shown by proving that the majority problem, coded as the
set MAJ = {w € (0+1)* | |w|; > |w|y}, cannot be solved by a constant depth polynomial
size circuit having only AND and OR gates. The proof does not require any uniformity
condition on the 4 C" circuits.

To compare and classify problems in P we use the constant depth reducibility [7]. A
function f is constant depth reducible to g, denoted here as f <., g, if there is a family
of circuits which compute f with polynomial size, constant depth, and oracle gates for g.
The cost and depth of an oracle gate is 1. It can be easily shown that AC", TC", AC?,

4

and AC are closed under this reducibility; eg,if g€ TC" and f <.4 g, then f € TCC.

A problem S is P-complete under <,4 reductions if S € P and every problem in P is
<ca-reducible to S. It can be shown that this reducibility is transitive, and therefore to
prove that a problem in P is P-complete, it is enough to prove that some other complete
problem in P is reducible to it. There are several standard P-complete problems which
are natural candidates for the reduction. One of these is the Circuit Value Problem CVP.
The input to this problem is pair formed by a circuit and an input to the circuit. The
problem consists of computing the output of the circuit on the given input. When suitable
additional hypotheses are assumed on the given circuit, we obtain variants of this problem
that still are P-complete. In order to prove our results we consider one of these variants:
the evaluation problem for monotone alternating circuits. Figure 1 gives us an example of
such a circuit. The following is known [13]:

Theorem 1: The Monotone Alternating Circuit Value Problem MACVP is P-complete.

Input: An encoding of a monotone alternating circuit ¢ with one output, together with
boolean input values z,,Z;,...,zn,Zn.

Output: The value of ¢ on these input values.

Let us end here our complexity-theorelic notions and go on to introduce the problems
whose complexity will be classified. The notations introduced here will be necessary for
later description of parallel algorithms.

2.2 Petri nets. The Petri net model was one of the first models introduced to describe
concurrent processes with distributed control [25]. Formally a Petri net is a tuple N =

(P,T,F,M,) where:

1. The set P = {py,...,p.} is called the set of places. During the evolution of the
net, a place p contains a number of tokens denoted as M(p) and called its mark-
ing. Such a marking models some local aspect of the system with global state

M = (M(py),... M(p.)).

2. The set of transitionsis T = {t;,...,t,}. Transitions model the events of N and every
sequential behaviour is represented by a word w € T*.

3. The flow function F : {(P x T)U(T x P)} — IN connects between them places and
transitions. The value of F fixes the precondition to be fulfilled in order to fire a
+ transition ¢ in a marking M. The firing rule is:

Vpe P: M(p) > F(p,t)

Additionally, F gives us the new marking M' reached after the firing'of ¢t in M,
denoted as M[t)M', and defined by:

Vpe P: M'(p) = M(p) - F(p,t) + F(t,p)

4. My : P — IN is the initial marking.

We denote by A(p,t) the variation on the number of tokens in a place p when ¢ is fired,
A(p,t) = F(t,p) — F(p,t). Then M'(p) = M(p) + A(p,t). The firing rule can be extended

5

from transitions to words w € T* as usual and the whole sequential behaviour of the net
N is described by the set of firing sequences which is:

Snv(My) ={weT*|IM : My[w)M}

Our first main result in the next section will classify the problem for Petri nets defined as
follows:

Problem 2: Fixed a Petri net N = (P,T,F, M,), the membership problem for firing
sequences on this net N, denoted as N-PETRI-FIRING is:

Input: we T*
Question: w € Sn(M,)?

2.3 Partially commutative monoids. Another way to model concurrent systems is with
concurrent alphabets and partially commutative monoids [18]. We call concurrent alphabet
a pair (X,~) where ¥ = {z,,...2,} is a finite alphabet denoting the set of events and
~ is a symmetric and irreflexive binary relation on ¥ called the commutation relation.
The complementary notion is also useful: the conflict relation is defined as ¥ x 2\ ~.
To describe equivalent behaviours in £* we introduce the congruence generated by the
commutation relations (i.e. if £ and y commute we consider the relation zy ~ yz) and we
denote as w ~ w' the equivalence given by this congruence. The quotient monoid ¥*/ ~
is called partially commutative monoid and its elements are called traces. If w and w' are
equivalent then they model two sequential evolutions corresponding to a unique parallel
behaviour. To study this equivalence we need the projection function over a subset A of ¥
denoted as IIy: £* —» A*. This function is defined as Mi(z)=zife € AandHa(z) = A
otherwise. The trace equivalence w ~ w' has been characterized in (8] in the following
way:

1. for every event z in ¥ we have iy (w) = ;) (w') and

2. for every pair (z,y) of different events in conflict we have Mz (w) =Mz (w').

In our main results we will consider the following problem:

Problem 3: Fixed a concurrent alphabet (X, ~), the trace equivalence problem, denoted
as (X,~)-TRACE-EQUIVALENCE, is
Input: A string w$w' where w,w' € £* and $ ¢ ¥.

Question: It is true that w ~ w'?

2.4 Finite transition systems. Concurrent systems can be analyzed also by means of
transition systems [17]. Recall that a finite labelled transition system (FLTS for short) is a
triple M = (Q,%,T), where Q is a finite set of states (or processes), ¥ is a finite alphabet
of actions and T'C Q x ¥ x Q is the set of transitions. A transition (¢,z,¢') € T has
label z and is denoted by ¢ - ¢’. Given two states p and g, the idea of having the same
behaviour is formalized by the notion of strong bisimulation [24] (see also [20]).

A relation § C Q x @ is a strong bisimulation if (p,q) € S implies, for all z € £, the
following bisimilarity conditions:

(i) whenever p -5 p', then for some ¢', ¢ —» ¢' and (p',q') € S,
(ii) whenever ¢ —=> ¢/, then for some p',p—— p and (p',q) € S.

The strong bisimilarity relation ~ is defined as the union of all strong bisimulations, that
is

~ = U{S | S is a strong bisimulation }

Notice that the strong bisimilarity relation is also a strong bisimulation.

Other relationships such as bisimulation and observational equivalence can be defined in
similar ways, using “invisible actions” [20]. Tt is not difficult to see that the decisional
problems for these notions are equivalent to the decision of strong bisimulations.

We will prove the P-completeness of the the following problem:

Problem 4: The problem STRONG-BISIMILARITY is
Input: An encoding of a finite transition system with two selected states p* and q*.

Question: Are p* and ¢* strongly bisimilar?
3. Main results

3.1 Petri net firing. Fixed a Petri net N = (P,T,F,M,) we would like to study the
complexity of N-PETRI-FIRING problem. We start with an intuitive massivelly parallel
algorithm able to solve this problem. After, we will consider some tight bounds.

Proposition 5: Given a Petri net N, the decision problem N-PETRI-FIRING belongs
to NC.

Proof. Given a Petri net N and a sequence of transitions w = z;...z;...z, it is easy to
prove that w is a firing sequence iff the following holds:

e To fire the transition z; the following property has to be satisfied:

Vpe P: My(p) 2 F(p,z1)

* To fire the transition z; (1 < i < n) it is necessary to fulfil two conditions. First
the prefix z;,...z;_; is a firing sequence. And second, all the places have to contain
enough tokens to enable z;. Both conditions can be expressed together as

Vi<i<n VYpe P:My(p)+ ZA(p,t) Jzy.ozicy|e > F(p, ;)
teT

These conditions can be easily verified in parallel. To do this we associate a processor to
every transition z; of the input string. The processor 7 will operate fundamentally with
transition z;. The NC program solving this problem is given in the program “N-Petri-
Firing”. E
To obtain a tight upper bound we can express the N-PETRI-FIRING problem in terms of
first order logic enlarged with majority quantifiers [3]. Considering Immerman’s work [14],

7

for 1 <7 < n do in parallel
for 1 <j<sdo

’
-
<

(* by prefix sum techniques processor i compute count;[j] *)
count;[j] := |z, .. LTy

end for;

for 1 <k<rdo
delta;[k] := count;[1] - Apr,t1) + ... 4 count;[s] - A(px,t,);

end for;
ifi=1
then enabled; := /\ (My(k] > F(pk,z:))
1<k<r
else enabled; := /\ (My[k] + delta;_, (k] > F(pk,z:))
1<k<?
end if;

end parallel for;

(* by recursive folding all the processors help to compute the result *)

N-Petri-Firing:= \ enabled,

1<i<n

Program. N-Petri-Firing

this formalism can be transformed into parallel programs running over PRAM machines
enlarged with threshold operations. In our case these programs have constant time. We
also give a lower bound by showing that N-PETRI-FIRING problem is equivalent to the
MAJ problem under constant depth reductions. Hence this problem cannot be solved
in constant time by a standard PRAM with a polynomial number of processors. For a
detailed proof of the following proposition see [3].

Proposition 8: The N-PETRI-FIRING problem belongs to TCY. Moreover, a lower

bound complexity is fixed by the following two assertions:
1. Fixed a Petri net N we have N-PETRI-FIRING< ., MAJ.
2. There exists a Petri net N such that MAJ <.d N-PETRI-FIRING
3.2 Trace equivalence. Fixed a concurrent alphabet (¥,~) we would like to study the

complexity of the (¥,~)-TRACE-EQUIVALENCE problem. As we have done above, first

we will propose an intuitive massively parallel algorithm to solve this problem, and second

8

we will consider some tight bounds.

Proposition 7: Given a concurrent alphabet (¥,~), the decision problem (X,~)-

TRACE-EQUIVALENCE belongs to NC.

Proof. Given w and w' it is easy to prove that w < w' iff the two conditions given by (8]
are satisfied. These conditions can be verified in parallel.

For the first condition, i.e., every letter = of the alphabet £ appears in w and in w' the
same number of times, we use masking and prefix sum techniques as we propose in the
program “Equal-Length”.

equal-length := TRUE;

for z € ¥ do
(* by masking and prefix sum techniques compute *)
by = g (w)l;
ly := | (w')];
equal-length := equal-length A (I; = ly);
end do

Program Equal-Length

And for the second one, the letters of every pair in conflict appear in w and in w’ following
the same order, is verified also using masking and prefix sum techniques and as many
processors as max{|w|, |w'|}. For every pair (z,y) in conflict, the processor i verifies that
the i*" letter of I, ,)(w) is equal to Iy, ,}(w'). The program “Equal-Conflicts” verifies
this condition. .
We can obtain a tight upper bound on the complexity of (%, ~)-TRACE-EQUIVALENCE
by expressing it in terms of first order logic enlarged with majority quantifiers. We also have
a lower bound of this problem. It can be seen that (X,~)-TRACE-EQUIVALENCE cannot
be solved by a PRAM in constant time because it is equivalent to the MAJ problem under
a constant depth reduction which increases the computation time only with a constant.
For a detailed proof of the following proposition see [3].

Proposition 8: The (£,~)-TRACE-EQUIVALENCE problem belongs to TCU. More-
over, a lower bound complexity is fixed by the following two assertions:

1. Fixed a concurrent alphabet (X,~) we have

(2,~)-TRACE-EQUIVALENCE < MAJ

2. There exists a concurrent alphabet (¥, ~) such that

MAJ < (¥,~)-TRACE-EQUIVALENCE

9

equal-conflicts := TRUE;
for every pair (z,y) in conflict do
(* by masking and prefix sum techniques compute *)
by = gy (w)ls k2 o= [T,) (w')];
if ky = k»
then
for 1 <17 < k; do in parallel
u := letter 1** of Iz yy(w);v := letter ith of Mgy (w');
test; := (u = v)
end parallel for;
(* by prefix sum techniques *)
equal-conflicts := equal-conflicts A /\ test;
1<i<k,
else
equal-conflicts := FALSE
end if

end for

Program Equal-Conflicts

.3 Bisimulations. In contrast with these problems allowing very fast and feasible parallel
algorithms we prove next that the STRONG-BISIMIL A RITY problem is P-complete

It is well known that strong bisimilarity in a finite labelled transition system (FLTS)
1s a polynomial time decidable property [20]. To see this, it suffices to construct ~ as
intersection of the sequence of relations =,,=,,..., which are defined by induction as
follows:
(i) Forevery (p,q) € Q x Q, p =y ¢,
(i) p =i41 g if for every z € %,

whenever p — p', then for some 7,9 — ¢ and p' =, ¢';

whenever ¢ — ¢', then for some p,p—p and p' = ¢
It is easy to see that these relations can be constructed in polynomial time. This is because
~ coincides with =, where k is the number of states in the finite transition system. More

efficient algorithms to solve this problem have been considered in [15]. The P completeness
of the STRONG-BISIMILARITY problem will follow from the following lemma. A more

detailed proof appears in [5].

Lemma 9: MACVP can be reduced to STRONG-BISIMILARITY.

10

Proof. We will transform an arbitrary instance of the circuit value problem for monotone
alternating circuits MACVP into an instance of STRONG-BISIMILARITY in three steps.

¢ We define the k-alternating pattern A,. Figure 2 shows A,. This is a circuit of height
k, where every level has two gates, one valuated to 0 and other valuated to 1. It is easy to
check then that in A; the following two conditions are satisfied:

- every OR gate has an input valuated to 0,
- every AND gate has an input valuated to 1.

® We couple the k-alternating pattern A, with the circuit C to get a new circuit C'.
Figure 3 shows the circuit C’ constructed from the example of Figure 1. The circuit C’
satisfies the following three properties:

- every OR gate has at least an input valuated to 0,
- every AND gate has at least an input valuated to 1,
- every gate of C' evaluates to the same value as the corresponding gate in Ay or C.

® We now transform the circuit C’ into a FLTS M over a one letter alphabet. M containsa
state corresponding to each gate of C'. These states are called ordinary states. In addition
M contains n + 1 auziliary states, associated with the n + 1 inputs of C' which evaluate
to 1 (the n inputs of C of value 1, and the constant 1 input of A;). We say that these
auxiliary states are on level 0. Figure 4 shows M in our example.

By induction it can be shown that the circuit C evaluates to 1 with the given input values
if and only if states p* and ¢* in M are strongly bisimilar. @

As a consequence of the precedent lemma we obtain our announced result.

Theorem 10: The STRONG-BISIMILARITY problem is P-complete.

Other results related to this one can be obtained by the same proof idea. The properties
named Observation Equivalence and Observation Congruence are defined in (19]. We can
state:

Theorem 11: The problem of deciding Observation Equivalence and the problem of
deciding Observation Congruence of two states in a LFTS are both P-complete.

4. Extensions and open questions

We have presented a quite precise classification of three problems on concurrency. These
were the decision of firing sequences for Petri nets, the trace equivalence for partially
commutative monoids, and the strong bisimulation decision problem for finite transition
systems. These classifications give us hints about the complexity of massively parallel
algorithms to solve them: the first two have such algorithms but however the third one
cannot have such an algorithm unless all problems in P do.

Now we want to complete the discussion by raising some questions. For the bisimulation
problem, our version of the statement requires the system to be part of the input. This is
necessary since, the system being finite, if we fix it then we obtain only a finite number of
possible pairs of states, and therefore the problem can be solved in constant time.

11

On the contrary, in our first two problems the devices (i.e. Petri nets and concurrent
alphabets) are independent of the input, and the proofs rely strongly of this fact. It is
interesting to see what happens when the description of the device is added as a part
of the input. For comparison, recall that context-free parsing can be done efficiently in
parallel [16]; however when a coding of the grammar is added as a part of the input the
complexity grows up substantially, becoming P-complete [11]. Let us briefly describe the
properties of our first two problems assuming that the devices are part of the input. No
proofs will be provided here.

® Let us consider first the problem of general trace equivalence for partially commutative
monoids. Inputs are a concurrent alphabet (¥, ~), and words w and w' in £*; the problem
is to decide whether w and w' are equivalent. Using more complex arguments, we can
prove that this problem is in TC", and thus has the same complexity as the problem for
fixed monoid; it therefore can be solved by fast parallel algorithms.

¢ In the same way we can consider a more general version of membership for Petri net
firing sequences, where the net is a part of the input. Here a problem arises. Our way of
computing the variation of tokens in each place due to a prefix of the trace relies heavily
on the fact that the net is fixed, and therefore the number of places and the number of
transitions are constants. Thus we can compute in constant time the quantities delta;[k]
as indicated in the program N-Petri-Firing. But if the net is part of the input, these
expressions are sums of nonconstant numbers, and we must resort to a multiple addition.
It is well known that this problem belongs to a non-uniform version of TC" [7]. Thus we
obtain that the problem belongs to non-uniform T'C". It seems hard to prove that this
problem is in uniform TC".

® Finally, let us present some additional considerations regarding the bisimulation problem.
Since it is so relevant to the design of concurrent systems, our negative P-completeness
result calls for new concepts of equivalence that might be of practical value, yet testable
by fast parallel algorithms. On the other hand, from the standpoint of a developer of a
concurrent system, another relevant issue is whether interaction with a software tool might
be more efficient than completely automatic equivalence testing. It is well known from the
study of NP problems that in many cases “verifying” is easier than “computing”. This is
also true in our case; indeed, the problem of whether a given relation is a bisimulation is
in NC. This opens a possible way to partially overcome the P-completeness obstacle. The
idea would be to design concurrent systems in an interactive way through a sequence of
stepwise refinements, e.g. in the line of [12], in such a way that at every step the designer
keeps direct intuition of how to transform the precedent bisimulation to obtain a new one.
He then can guess the result and verify it. Perhaps only in some rare cases the designer
will need to compute the whole bisimulation, and if this case is infrequent enough he would
accept such a long computational process.

References

(1] Aho, A., Hopcroft, J., Ullman, J.: The Design and Analysis of Computer Algorithms.
Addison-Wesley (1975).

2] Ajtai, M.: ¥i-formulae on finite structures. Ann. Pure Appl. Logic 24, 1-48 (1983).
J 1

12

(3] Alvarez, C., Gabarro, J.: The parallel complexity of two problems on concurrency.
Report LSI-89-22, Universitat Politécnica de Catalunya. Submitted for publication.

(4] Balcdzar, J.L., Diaz, J., Gabarré, J.: Structural Complezity I. Springer Verlag EATCS
Monographs in Theoretical Computer Science, v. 11 (1988).

[5] Balcazar, J.L., Gabarrd, J., Santha, M.: Deciding bisimilarity is P-complete. Report
LSI-90-25, Universitat Politécnica de Catalunya. Submitted for publication.

[6] Barrington, D.M., Immerman, N., Straubing, H.: On uniformity within NC!. In: Proc.
Third Structure in Complezity Theory Conference, 47-59 (1988).

[7] Chandra, A.K., Stockmeyer, L., Vishkin, U.: Constant depth reducibility. STAM J.
Comput. 13, 2, 423-439 (1984).

[8] Cori, R., Perrin, D.: Automates et commutations partielles. RAIRO Inf. Theor. 19,
21-31 (1985).

[9] Furst, M., Saxe, J.B., Sipser, M.: Parity, circuits and the polynomial time hierarchy.
Math. Syst. Theory 17, 13-27 (1984).

[10] Gibbons, A., Rytter, W.: Efficient Parallel Algorithms. Cambridge University Press
(1988).

[11] Goldschlager, L.: e-Productions in context-free grammars. Acta Informatica 16, 303—
308 (1981).

[12] He Jifeng: Process Simulation and Refinement. Formal Aspects of Computing 1, 229-
241 (1989).

()

(14] Immerman, N.: Expressibility and parallel complexity. SIAM J. Comput. 18, 3, 625-
638 (1989).

(15] Kanellakis, P.C., Smolka, S. A.: CCS expressions, finite state processes, and three
problems of equivalence. Information and Computation 86, 202-241 (1990).

[16] Karp, R., Ramachandran, V.: A Survey of Parallel Algorithms for Shared Memory
Machines. In: Handbook of Theoretical Computer Science, North-Holland (1990).

[17] Keller, R.M.: Formal Verification of Parallel Programs. Comm. ACM, 19, 7, 371-384
(1976).

[18] Mazurkiewicz, A: Basic notions of trace theory. Springer Verlag Lecture Notes in
Computer Science 354, 285-363 (1989).

[19] Milner, R.: 4 Calculus of Communicating Systems. Springer Verlag Lecture Notes in
Computer Science 92 (1980).

(20] Milner, R.: Communication and Concurrency. Prentice Hall (1989).
[21] Milner, R.: A Complete Axiomatization for Observation Congruence of Finite-State

Behaviours. Information and Computation.

13

[22] Miyano, S., Shiraishi, S., Shoudat, T.: A list of P-complete problems. Technical Report
RIFIS-TR-CS-17, Kyushu University 33, 1989.

(23] Parberry, I.: A primer on the complexity theory of neural networks. In: Formal tech-
niques in artificial intelligence, R.B. Banerji (editor), North-Holland (1990).

[24] Park, D.: Concurrency and Automata on Infinite Sequences. Springer Verlag Lecture
Notes in Computer Science 104, 168-183 (1981).

[25] Peterson, J.L.: Petri net theory and the modeling of systems. Prentice-Hall (1981).

[26] Stockmeyer, L., Vishkin, U.: Simulation of parallel random access machines by circuits.
SIAM J. Comput. 13, 2, 409-422 (1984).

[27] Walker, D.J.: Automated Analysis of Mutual Exclusion Algorithms using CCS. Formal
Aspects of Computing, 1, 273-292 (1989).

14

Fig. 1 A monotone alternating boolean circuit C

0-Output 1-Qutput

Fig. 2 The 4-alternating pattern 4,

15

oupling of C and Ay into C'

3 The ¢

@ @ Level 5

v A4 v
Ordinay
States
C) Level 4
~ W
<> Level 3
Level 2
Level 1
L 4 7 N4
O O O
Auxiliary
States
M

Fig. 4 The transition system M corresponding to C'

17

