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Abstract
Nowadays, with the improvement of the hardware devices and its processing capabil-

ities as well as the big data field, a new promising stage in the Artificial Intelligence

is born. Hence, a lot of useful applications involving AI are being developed which

enable automatizing activities, patterns and voice recognition, pattern and image

classification. . . Taking all this into consideration, this thesis intended to develop an

incident detector and classifier using data collected by the SimRa App. This App

records the rides from cyclists using the accelerometer sensor of the smartphone where

it runs. First, the dataset will be overviewed to get an insight of how many useful

data is available. Then a data extraction and a subsequent signal enhancement, with

filtering and other signal processing techniques like ICA, will be performed in order

to improve the quality of the signal that will feed the end classifier. Afterwards,

a data adaptation and the developing of several classifiers will be done in order to

obtain a reliable incident detector and a satisfactory incident classifier. Finally, an

evaluation of the full algorithm processing time will be held as a means to know the

viability of the deployment in the SimRa smartphone App.
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Chapter 1

Introduction

1.1. Motivation
The SimRa project [1] aims to provide an overview of the bicycle traffic as well as

the near miss incidents during the inner-city rides. The collected data will be used

and analysed so as to improve city planning and help city councils so as to act in

such a way to avoid ‘black spots’ in the city in order to make it more secure for the

cyclists.

1.2. Problem Statement
There are 3 different problems that must be faced in this thesis which will solve the

incident detection and classification issue, currently not being precisely considered in

the SimRa project.

1. The main problem is the classification of the different type of incidents defined

by the project. It is required to isolate the different signal characteristics,

which will have noise components, sometimes difficult to filter, for each of the

incidents’ types. Fulfilling this point will improve the usability as well as the

performance of the incidents’ classification task.

2. Another big issue that the thesis aims to fix is the precision of the existing la-

beled data. When users manually label the incidents, it is reasonable to assume

that the location of the user generated incident marker is not very accurate.

Thus, a solution must be found so as not to take erroneous accelerometer sig-

nals.
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1.3 Goals

3. The incident detection algorithm implemented in SimRa does not distinguish

between different types of cyclists and their different ways of driving, which can

create false positives, hence classification between type of users and a threshold

between them should be defined.

Solving the topics listed above will be a significant improvement for the autonomous

incident detection and classification which will (1) allow users to label less data than

before due to the enhanced accuracy and the lower error rate and (2) obtain more

accurate data in order to calculate results with a higher precision in the analysis.

1.3. Goals
The main goals of the project, as stated before, are:

1. Improve the actual incident detection algorithm. The succeed in this point will

help improving the dataset, making it more reliable and valuable. Then its

data will be more accurate in terms of the classification between incident / no

incident detection.

2. Once the improvement in the incident detection algorithm is done, different

classification algorithms will be developed in order to evaluate the results when

trying to classify between the different types of incidents defined in the SimRa

project.
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Chapter 2

SimRa Project background

2.1. Project overview
One of the main aims in big cities nowadays is to reduce traffic emissions and try to

change its population shifts, based in private vehicles, to a more sustainable trans-

portation methods such as bicycles. Although introducing the bike as a reliable

transport in which people feel secure seems to be an easy thing, it requires a good

city planning that considers the safety and an overall incidents overview in order

to rethink the traffic in some city spots and avoid as much as incidents as possible.

Nevertheless, the global overview of all the incidents occurred in a city is difficult to

discern due to the fact that in the official statistics only the crashes are pointed out

but not the near miss incident which in fact, are important as well in order to know

which spots are insecure and where are they.

2.2. Goals of the project
SimRa’s goals are to collect data from cyclists using an iOS and Android App (avail-

able in both applications stores) in order to target two problems: 1) collect the near

crashes that nowadays are being omitted, in order to reflect them in the official statis-

tics, and 2) identify the main bike routes of the cities in order to be able to plan

better the general city traffic taking into account the bikes.

2.3. State of the art on incident detection
Currently, SimRa App is equipped with an automated incident detection that tries to

reliable identify and detect the incident without any trained data. Several assump-
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2.3 State of the art on incident detection

tions were made and the algorithm based the incident detection in sudden acceler-

ation peaks. In order to do so and filter poor road conditions, the algorithm group

the acceleration values in windows of three seconds, then identify the maximum and

minimum value and calculate the difference. Afterwards, it assumes as incidents the

two highest variations for each of the accelerometer axis (X, Y and Z). This detection

scheme works rather well for cyclists with a ‘relaxed’ style but not for cyclists with

more ‘rapid’ cycling style.
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Chapter 3

Dataset overview and data extrac-

tion
The first stage of the project, in order to finally achieve the main goal, is to generate

some kind of reports that could present a summary of the the SimRa’s available

dataset available in a GitHub Repository[2]. That reports can be of great help due

to the fact that a big amount of data is needed in order to feed and train deep learning

classifiers such as the one will be used later on in this work. This will allow a clear

overview of the available data, and determine the usefulness of the labeled data. In

this stage, a Java Application has been developed to extract all the information and

summed it all up in 2 Excel files described later.

3.1. Objectives
The goals of this stage are listed below:

• Extract the available dataset of SimRa

• Compact the data

• Summarize the useful labeled data

• Obtain the useful data in an organized way

• Deliver the data to the next process in the project in a concrete format.

3.2. Tasks
So as to achieve the goal of this stage several tasks were defined:

• Java Application development
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3.2 Tasks

In order to organize the data and extract the relevant information from it, a

Java Application was developed using NetBeans 8.2 IDE. The source code is

available on GitHub [3]. The main workflow of this application it’s depicted

below, which is very simple due to the functionality of the program.

Figure 3.1: ExtractData Application Workflow

• Output excels formatting

The aim of the ExtractData program is to generate two Excel files that sum

up all the available data in the dataset of SimRa. There are two different files

which are:

– Incidents File

– Detailed Incidents File

Incidents File

The incidents file shows all the recorded incidents and describe the type and other

characteristics of them. In this file we have the following parameters available:

• Filename: Filename where incident is found

• Key: Incident number in the file

• Latitude: Latitude coordinates

7



Chapter 3 Dataset overview and data extraction

• Longitude: Longitude coordinates

• Timestamp: Time reference

• Bike: Bike type

• ChildCheckBox: Child during the ride?

• TrailerCheckBox: Trailer during the ride?

• pLoc: Phone Location

• Incident: Incident Type

• i1-i9: Participants involved in the incident

• Scary: Was the incident scary?

Figure 3.2: Incident Excel File screenshot

Detailed Incidents File

The detailed incidents file shows the different incidents. There are 8 worksheets,

one for each type of incident, and inside there are all the incidents which can be dis-

tinguished by the ‘Key’ value. In this file we have the following parameters available:

• DS_Name: Filename where incident is found

• Key: Incident number in the file

• Type: Incident type (redundant)

8



3.3 Results

• Latitude: Latitude coordinates

• Longitude: Longitude coordinates

• Acc_X: Accelerometer X values

• Acc_Y: Accelerometer Y values

• Acc_Z: Accelerometer Z values

• Timestamp: Time reference

• Acc_68: Radius of 68% of confidence.

• Gyr_A: Gyroscope A values

• Gyr_B: Gyroscope B values

• Gyr_C: Gyroscope C values

3.3. Results
Once the data extraction was done, 65.958 labeled incidents were found in the dataset.

The results showed clearly that most of the incidents detected by the previous al-

gorithm, concretely 59.377 out of 65.958 (90%), were false positives that is, useless

incidents. The remaining 10% of the dataset could be divided into true positives

and false negatives. The true positives, a total of 3.143 (5%), are incidents that are

detected by the algorithm and classified by the user between type 1 and type 8. The

false negatives, a total of 3.438 (5%), are incidents that haven’t been detected by the

algorithm but the users tagged them manually.

This manually tagged incidents face one problem which is the accuracy of the tag

placed by the user. This accuracy will be evaluated in section 7.3 once the classifier

is built but is briefly explained below.

The test taking 2 different datasets aimed to clarify if adding the false negative in-

cidents (also known as user tagged incidents) to the useful dataset (the true positives)

improve or not the overall evaluation metrics when performing the classification. The

result was that using both types of incidents, user tagged and automatically tagged

incidents, decrease the results of the classifier so, it can be finally conclude that the
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Chapter 3 Dataset overview and data extraction

useful dataset that will be used in order to develop the final steps of the project will

be the true positives dataset, that is a 5% of the hole dataset and corresponds to

3.143 incidents.

Figure 3.3: Available dataset overview classification

In addition, in the following figure can be seen the different types of incidents and

the percentage they have among the others in the useful 5% of the dataset.

Figure 3.4: True positives dataset overview – Incident types
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Chapter 4

Accelerometer data enhancement
In this stage of the project several tests and trials have been performed with the

aim of knowing the quality of the data recorded by the SimRa App. However, the

evaluation of the signal quality was not the only goal set in this stage. Here, a

frecuencial analysis will be performed as well as the application of several signal

processing procedures. After the frecuencial analysis is done, several filter designs

will be made (low, high and band pass filters) in order to analyze the response of the

dataset signals when applying these filters. Afterwards, the independent component

analysis technique will be applied.

With all these tests and techniques, a trial to enhance the signals from the dataset

is done, in order to improve the input signals before the classification task.

All the Matlab code used to perform this tests and trials is available in a GitHub

Repository [4]

4.1. Evaluation of the accelerometer data
In this stage, 2 different tests have been performed: The No movement test and the

3-axis test.

4.1.1 No Movement test

In this test, a recording of a 5 seconds ride with SimRa App was done. During these

5 seconds the Smartphone was quiet on a table.

The goal of this test was to see the raw data of a ride and evaluate its quality
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Chapter 4 Accelerometer data enhancement

in a representation of the data using Matlab. As we can see in figure 4, where the 3

axis accelerometer signals are represented, the recorded signal take values within a

range of 6·10-3 m/s2.

Figure 4.1: 3-Axes accelerometer signals in the No movement test

4.1.2 3-Axes test

In this test, 3 recordings of 5 seconds rides with SimRa App were done. In each of

these recordings, one of the accelerometer axes was tested moving the smartphone

according to that axis.

The scope of this test was to see the raw data of a movement and evaluate its

quality in a representation of the data using Matlab. In figures 4.2, 4.3 and 4.4, it

can be seen the evolution of the 3-Axes accelerometer values for each of the recordings

depending on the axis variation.

Figure 4.2: 3-Axes accelerometer signals in X-Axis variation test
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4.2 Frecuencial analysis

Figure 4.3: 3-Axes accelerometer signals in Y-Axis variation test

Figure 4.4: 3-Axes accelerometer signals in Z-Axis variation test

4.2. Frecuencial analysis
In this stage, N signals for each of the incident type were extracted from the dataset

and adapted to be processed by Matlab. In the figures 4.5 and 4.6 can be seen the

raw representation of one signal for each type of incident and the associated Fourier

transform for the 3-axes accelerometer values.

Figure 4.5: Raw signals representation (1 signal per incident type)
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Chapter 4 Accelerometer data enhancement

Figure 4.6: Fourier transform representation of signals of figure 4.5

In the representation of the Fourier transform can be seen the frequency compo-

nents of the different type of signals for the X, Y and Z axis of the accelerometer. It

can be observed that the main frequency components are in the lower bands. This

observation permit to see that high pass filter won’t be useful and will end up fil-

tering nearly the hole signal. In the filter section 4.3 a test will be done in order to

illustrate this.

14



4.3 Filter designs

4.3. Filter designs
In this stage, some signal filtering was applied to the dataset signals in order to

make an analysis about the impact of each of the 4 designed filters. Based on [5], an

analysis with different filters was done and the 4 filters used in this experiment are

described below:

4.3.1 High pass filter

The first filter was designed in order to delete the part of the spectrum below 0.5 Hz.

This decision was made considering figure 4.6 where it can be observed that most of

the energy signal is below 0.5 Hz. The result of this filter will be the nearly complete

deletion of the signal. Consequently, this filter is not useful for the data used in this

project.

The designed filter was a Finite Impulse Response Digital Filter, with a length of

191 samples. The design method used to obtain the filter was the Kaiser window

and the design specifications were the following:

• Sample Rate: 10 Hz

• Passband edge: 0.5 Hz

• Passband Ripple: 0.5 dB

• Stopband edge: 0.25 Hz

• Stopband attenuation: 70 dB

In figure 4.7, the resulting Magnitude response and the Phase response of the

designed filter can be observed.
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Chapter 4 Accelerometer data enhancement

Figure 4.7: Magnitude and Phase response of the designed High Pass Filter

4.3.2 Band pass filter

The second filter was designed in order to delete the part of the spectrum below 0.5

Hz and above 3 Hz. This filter, a priori was useless due to the spectrum of the differ-

ent signals showed in figure 4.6 . This is just a test in order to show that band pass

filters in the concrete case of our project are not useful at all and that the output of

this filter will be some signals that will end up being useless for our next project steps.

The designed filter was a Finite Impulse Response Digital Filter, with a length of

21 samples. The design method used to obtain the filter was hamming window and

the design specifications were the following:

• Sample Rate: 10 Hz

• Filter order: 20

• First Cutoff frequency: 0.5 Hz

• Second Cutoff frequency: 3 Hz

In figure 4.8, the resulting Magnitude response and the Phase response of the

designed filter can be observed.
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4.3 Filter designs

Figure 4.8: Magnitude and Phase response of the designed Band Pass Filter

4.3.3 Low pass filter 1

The third filter was designed in order to delete the part of the spectrum above 4 Hz.

This decision was made considering the figure 4.6 where it can be observed that most

of the energy signal is in the lower bands.

The designed filter was a Finite Impulse Response Digital Filter, with a length of 21

samples. The design method used to obtain the filter was the Kaiser window and the

design specifications were the following:

• Sample Rate: 10 Hz

• Filter order: 20

• Cutoff frequency: 4 Hz

In figure 4.9, the resulting Magnitude response and the Phase response of the

designed filter can be observed.
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Chapter 4 Accelerometer data enhancement

Figure 4.9: Magnitude and Phase response of the designed Low Pass Filter 1

4.3.4 Low pass filter 2

The fourth filter was designed in order to delete the part of the spectrum above 2.5

Hz. This filter is just a variation in order to observe the differences between the

previous low pass filter with cutoff frequency of 4 Hz.

The designed filter was a Finite Impulse Response Digital Filter, with a length of 21

samples. The design method used to obtain the filter was the Kaiser window and the

design specifications were the following:

• Sample Rate: 10 Hz

• Filter order: 20

• Cutoff frequency: 2.5 Hz

In figure 4.10, the resulting Magnitude response and the Phase response of the

designed filter can be observed.
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4.4 Independent component analysis

Figure 4.10: Magnitude and Phase response of the designed Low Pass Filter 2

4.4. Independent component analysis
In this stage, the Independent Component Analysis was performed. The aim of this

procedure is decomposing mixed signals into independent sub-parts as described in

[6]. In the case of this project, the real meaning of decomposing mixed signals is

trying to separate the useful signal that should contain the incident itself, from the

mixed signal with the noise of pedalling and the ride.

4.4.1 Theory

ICA analysis is based on assuming that there are m observations x which are linear

mixtures of n independent components s as showed in (4.3).

x = (x1, ..., xm)T (4.1)

s = (s1, ..., sn)T (4.2)

xi = ai,1 · s1 + ... + ai,n · sn (4.3)

Each of this component is formed by a sum of mixture coefficients ai,k and the

original source signals sk that could be represented as in (4.4)
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Chapter 4 Accelerometer data enhancement

x =
n∑

k=1
ak · sk = A · s (4.4)

where

ak = (a1,k, ..., am,k)T , (4.5a)

A = (a1, ..., an) (4.5b)

Defined equation (4.4), the algorithm tries to estimate both parameters A, the

matrix of mixture coefficients, and s, the n original source signals The estimation

of these two parameters is done by recursively calculate the w vectors in order to

maximize the non-gaussianity, given a cost function, of the equation (4.6).

sk = wT · x (4.6)

Finally, the original sources signals can be recovered applying (4.7), that is invert-

ing the matrix of mixture coefficients A and multiplying it by the observed signals

x:

s = W · x (4.7)

where

W = A−1 (4.8a)

4.4.2 Adaptation to project scope

In order to use this technique, a second signal for every dataset signal was needed

in order to apply ICA. Then, with this second signal there will be 1) an incident

signal plus a normal ride signal, coming from the dataset, and 2) a test signal that

supposed to simulate a normal ride signal without incident. Therefore, a ‘test’ signal

was recorded in an experimental bike ride of 10 seconds. This bike ride was done

20



4.4 Independent component analysis

under carefully conditions, riding in a straight way and in a good condition pavement

street.

A schema of the intended experiment is depicted in figure 4.11

Figure 4.11: ICA Analysis test procedure overview

4.4.3 Tests

Using the available Matlab Package [7], an adaptation code to use it was developed

and several tests were performed. These tests were developed in order to obtain

signals, as previously depicted, with only the useful incident signal information. In

this section, some examples of the performed tests in every signal of the dataset are

visualised.

For instance, in figure 4.12, it can be observed that the resulting output signals

of ICA seem that could have been properly decomposed. On the contrary, in figure

4.13, the resulting signal coming from the decomposition seem that the ICA analysis

is not useful for this case.

Figure 4.12: ICA Analysis resulting signals (Applied to signal of incident type 3)
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Chapter 4 Accelerometer data enhancement

Figure 4.13: ICA Analysis resulting signals (Applied to signal of incident type 2)

4.5. Decision parameters
In this stage, and after having performed all the previous steps in data enhancement

for the accelerometer data, some parameters have to be defined in order to set the

inputs for the classification algorithm that will be afterwards explained in chapter 6.

Before developing the program that will adapt the dataset and transform it to

the desired format, which is later explained in Adapt Dataset section, some previous

studies were made in Matlab. These studies were made in order to have some visual

overview of the data and how these parameters behave depending on the incident

type.

After making the tests in Matlab environment and having performed some research

on which parameters have bigger influence when trying to classify data based on

accelerometer signals ([5], [8] and [9]) the final parameters where set. The final

parameters were the following ones:

• Speed

• Mean of accelerometer values in X, Y and Z axes

• Standard deviation of accelerometer values in X, Y and Z axes

• Signal Magnitude Area (SMA)

SMA =
1
i

(
i∑

u=1
|xu|+

i∑
u=1
|yu|+

i∑
u=1
|zu|) (4.9)
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4.5 Decision parameters

• Mean of Signal Vector Magnitude (SVM)

SV M =
1
N

N∑
i=1

√
xi

2 + yi
2 + zi

2 (4.10)

• Entropy of accelerometer values in X,Y and Z

• Phone Location

• Bike type

Below can be found some examples of the final plots obtained in Matlab that show

some of these decision parameters. Each of the circles show the value of the calculate

magnitude for the specific ride. Moreover, these circles have the color of the incident

type they pertain and the line plotted for each of the incident types show the mean

value of the magnitude for the specific incident type.

Figure 4.14: Matlab plot for parameters Mean, Variance and Standard Deviation of
Accelerometer X Axis and incidents with phone location = 0 (Pocket)

Figure 4.15: Matlab plot for decision parameter SMA and incidents with the phone
location = 2 (Jacket pocket)
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Chapter 5

Adapt Database
In this stage, a Java application available in a GitHub Repository [10], was built in

order to transform the SimRa dataset with the accelerometer signals and metadata

from the involved incident into a set of variables that could be used as inputs of the

Neural Network that will be used to classify the different type of incidents. The main

workflow of the program is to extract the rides of the dataset that have incidents

associated with them. After obtaining all the rides, the program transforms the ride

into N-Windowed Rides and for each of these windowed rides (with windows of 6

seconds by default) it obtains the decision parameters explained in the previous sec-

tion. So, 1 Ride becomes N windowed rides, and for one windowed ride, 14 decision

parameters are extract.

In the following figure, the main workflow of the application can be observed.

Figure 5.1: Adapt Database workflow
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Chapter 6

Machine learning applied to accelerom-

eter data

6.1. Related work
Smartphone accelerometers are widely used in Artificial Intelligence applications.

However, the most common goals are focused on Human Activity Recognition, also

known as HAR detectors where some examples can be found in [9], [11], [12], [13],

[14] . . . These HAR detectors are mainly build using accelerometer data as input

data and they are implemented using different techniques depending on the final

goal. The most common implementations are based on Artificial Neural Networks

with structure of Multi-Layer Perceptrons but there are others implemented using

Recurrent Neural Networks such as Long-Short Term Memory (LSTM) [12] or Con-

volutional Neural Networks (CNN) [15]. Just as an insight of different scope current

researches using this type of technologies, there are some focused on road damages

[16] and others focused on accident (but not incident) detection [17].

6.2. Deep Learning - Artificial neural net-

work

6.2.1 Introduction to Deep Learning

Deep Learning is a subset of Machine Learning based on Artificial Neural Networks

(ANN) that tries to imitate the biological neural networks that constitute brains.
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Chapter 6 Machine learning applied to accelerometer data

These systems are characterised by its learning ability that can be done by different

approaches: supervised, unsupervised or mixed learning. Moreover, unlike Machine

Learning algorithms that need expertise in order to extract the features that will be

used by the classification algorithm, Deep Learning includes this feature extraction

inside the algorithm itself, allowing to omit the expertise in the concrete problem.

These algorithms are also characterised by the problem that its implementation wants

to solve for instance, there are classification, regression, clustering, among others

techniques.

The approach that this project will focus and use will be the supervised learning

and the goal of this project is to classify the near-miss incidents into the different

types of incidents defined by the SimRa project. Therefore, classification algorithms

have to be considered and concretely, a Multi-Layer Perceptron will be implemented.

6.2.2 Multi-Layer Perceptron

A Multi-Layer Perceptron or MLP is a type of Deep Learning algorithm. It is used

for classification purposes and the learning is done by supervised methods. This

classification algorithm is composed of 3 layers: these are the input, the hidden and

output layer. The input layer is where the primary features of the data needed by the

Neural Network are introduced. These features are characteristics of the data we want

to classify. In this project these features are described in section 4.5. Depending on

the chosen features, the performance of the network will vary due to the importance

of the inputs while learning the characteristics to perform the classification. The

hidden layer can be in fact more than one layer. Depending on the problem it is

faced, more or less layers will be needed. More layers mean more computational

complexity as well as, generally, better performance of the classification algorithm.

The output layer is the final layer of the network and it has the number of nodes

equal to the number of types that is needed to classify. Each layer is formed by

neurons (also known as Perceptrons) whose function is to perform a weighted sum of

the inputs, add a bias term to the result, and finally pass the value to a non-linear
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6.2 Deep Learning - Artificial neural network

activation function.

Figure 6.1: Perceptron Scheme

The number of hidden layers as well as the number of neutrons of each of the layers

is determined empirically. There is no theory on how many neutrons does each layer

needs and how many hidden layers are necessary to solve a specific problem.

Figure 6.2: Multi-Layer Perceptron Scheme

Once the structure of the different layers is defined, also known as model, there

are two important stages to be defined when working with these types of algorithms:

the training stage and the test or evaluation stage.
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The training stage is when the coefficients of each perceptron are updated and

optimized. This procedure will use the training data to improve the model’s ability

to predict. This will be achieved using the back propagation algorithm.

The test or evaluation stage is done once the training stage is finished. In this

stage the results about accuracy, precision, recall, among other, are calculated but

the model is not modified anymore.

6.2.3 Hyperparameters of a Multi-Layer Perceptron

The hyperparameters of an MLP Neural Network are those parameters that are

need to be set before the training phase starts. These parameters affect directly to

the overall performance of the Neural Network. However, there are no theoretical

definitions on how these parameters have to be set up and the tuning of them is made

through trial and error or optimization procedures that mainly run simulations of

the final performance of the network when setting the parameters to different values.

These optimization procedures are for instance, Grid Search, Random Search, among

others.

The most commonly tuned hyperparameters in an MLP Neural Network are:

• Learning Rate

• Number of Epochs

• Batch Size

• Number of layers

• Number of neutrons per layer

6.2.4 Evaluation Metrics for a Neural Network

Once the training has been done, some evaluation metrics have to be set in order

to overview the performance of the designed and trained model. These evaluation

metrics are calculated from the confusion matrix that is the result of the test phase

(after the training phase).
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6.2 Deep Learning - Artificial neural network

Confusion Matrix

The confusion matrix shows how the classification has been made. Knowing how

the inputs should have been classified it depicts the real classification made by the

algorithm. Usually the matrix has the input classes as rows, and the output classes

as the columns. A binary classification confusion matrix is depicted afterwards in

order to set an example and clarify the concept of a confusion matrix:

0 1
A B 0=0
C D 1=1

A: Number of samples of type 0 that have been classified as type 0
B: Number of samples of type 0 that have been classified as type 1
C: Number of samples of type 1 that have been classified as type 0
D: Number of samples of type 1 that have been classified as type 1

Once the concept of confusion matrix is clear, the metrics itself are defined. In

this project, as well as the great majority of classification projects solved with Deep

Learning, 4 metrics are set in order to know the performance of the model. These

evaluation metrics are the following:

• Accuracy

• Precision

• Recall

• F1 Score

Accuracy

The accuracy is the ratio of good predictions to total predictions:

a b

c d

→ Accuracy =
a + d

a + b + c + d
(6.1)

29



Chapter 6 Machine learning applied to accelerometer data

Example:

10 1

2 7

→ Accuracy =
10 + 7

10 + 1 + 2 + 7
= 0.85 (6.2)

Precision

The precision is the mean of the ratio of good predictions to total positive predictions

for each of the classes:

a b

c d

→ P recision =
a

a+c
+ d

b+d

2
(6.3)

Example:

10 1

2 7

→ P recision =
10

10+2 + 7
1+7

2
= 0.8542 (6.4)

Recall

The recall is the mean of the ratio of good predictions to total positive and negative

predictions for each of the classes:

a b

c d

→ Recall =
a

a+b
+ d

c+d

2
(6.5)

Example:

10 1

2 7

→ Recall =
10

10+1 + 7
2+7

2
= 0.8434 (6.6)
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F1 Score

The F1 Score is the weighted average of Precision and Recall:

F 1Score =
2 · P recision ·Recall

P recision + Recall
(6.7)

6.3. Development
In the following sections the technical development of the final Neural network al-

gorithm is explained. Additionally, all the developments can be found in GitHub

repositories detailed in following sections.

6.3.1 DeepLearning4J libraries

In order to develop the Neural Network based on the Multi-Layer Perceptron previ-

ously described, some libraries have to be used. The election of the tools was based

on the fact that, all this project pretends to be executed and deployed in a Smart-

phone app. Taking this into account, the libraries developed by DeepLearning4J

[18] (or DL4J) was chosen. This set of libraries allow an easy implementation of the

Multi-Layer perceptron algorithm, multiple extra features, like Optimization or Data

transformation, and an easy integration with a Smartphone App.

6.3.2 Dataset transformation

In order to feed the Neural network described later in 3.5.4.3. some transformation

of the dataset has to be done. These adaptations will be performed by the DataVec

library available in the DL4J, concretely with the Schema and TransformProcess

classes. This dataset transformation allows to, among other things, remove input

variables coming from the adapted dataset, in order to do some performance tests

depending on the inputs, and encode categorical variables such as Bike Type and
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Phone Location using One-Hot encoding, which is recommendable when working

with Neural Networks. This dataset transformation will generate a total amount of

28 inputs maximum. This number is obtained from the 12 decimal inputs (1 speed,

3 accelerometer means, 3 accelerometer standard deviation, 1 SMA, 1 SVM mean

and 3 accelerometer entropies) plus the ‘Bike Type’ input that will generate 7 and

the ‘Phone location’ that will generate 5 (due to One-Hot encoding).

6.3.3 Neural Network based on Multi-Layer Per-

ceptron

As stated in previous chapters, a Deep Learning algorithm is going to be developed

in order to solve the classification problem that faces this project. Concretely, an

Artificial Neural Network (ANN) configured as a Multi-Layer Perceptron (MLP) is

going to be programmed. The neural network development is done using different

approaches:

• The first approach splits the programming of the neural network into two stages:
the first is the model definition and optimisation to choose the hyperparameters,
and the second is the training and the testing of the Neural Network model
obtained from the previous stage.

• The second approach is using raw definition of the model with the training and
testing phase in the same program.

Approach 1: Model definition with optimization

- Stage I: Model Definition and Optimization (using Arbiter)

Using the Arbiter Library, a Neural Network architecture with the possibility to

run an optimization process was built. The configuration of the model that will be

afterwards optimized is the following:

• Learning Rate = 0.1

• Input layer of 28 inputs
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• 5 Hidden layers (the neurons in each layer will be determined by the optimisa-
tion procedure)

• Output layer of 9 outputs (3 in case of ternary classification and 2 in case of
binary classification)

• Input Layer and Hidden Layers will use a Hyperbolic Tangent activation func-
tion

• Output Layer will use a SoftMax activation function

• Loss function will be calculated using a negative log likelihood function

• Additionally, a L2 regularisation method is used to improve overfitting issues.

With this model structure, an optimisation procedure using Random Search gen-

erator will be performed. However, due to the lack of simulation environment, some

stopping conditions have to be set in order not to overload the CPU of the computer

where the optimisation procedure take place. The conditions set were: 10 different

candidates generation or maximum running time of 120 minutes. Also, in order to

perform a fair optimisation procedure while running different tests with different

datasets, a maximum of 1000 iterations where set. This will be accomplished by

defining the number of epochs as a function of total number of batches of the dataset

and the batch size.

Number of epochs =
number of iterations

d total batches
batch size

e
=

100
d total batches

batch size
e

(6.8)

This optimisation procedure will end up generating a JSON file that will contain

the model configuration after the optimised parameters are found. This file will be

loaded in the next phase in order to train and test it. The optimisation procedure

development can be found in this GitHub Repository [19].

- Stage II: Training and testing
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After the previous phase, a new program is defined. In it, a data transformation

is done to the dataset. Afterwards, a data normalisation is performed using a class

called NormalizerStandardize() that will, as it name says, normalise the input data

to have 0 mean and a variance equal to 1. This normalisation process is important

to prevent some input data, that its values are higher than others (for instance speed

vs standard deviation of accelerometer readings), have more weight once the internal

coefficients are being updated. With this procedure we ensure that all inputs have

the same weight in the system. Finally, the model configuration obtained in a JSON

file is loaded and the training phase is started.

The principal characteristics of the training phase are the following:

• Splitting dataset: 70% of the dataset used for training – 30% used for testing.

• Number of epochs: 2000.

• Batch size: variable depending on the test

The training ant testing development can be found in this GitHub Repository [20].

Approach 2: Raw definition of the model

Due to the CPU requirements of the optimisation procedure, a manual definition of

the model is done. This approach can be found in this GitHub Repository [21] and

has the following configuration:

• Learning Rate = 0.1

• Input layer of 28 inputs and output layer of 1 output

• 5 Hidden layers (2000 neurons/layer)

• Input Layer and Hidden Layers will use a Rectified Linear Unit (ReLU) acti-
vation function

• Output Layer will use a Sigmoid activation function

• Loss function will be calculated using a Cross Entropy function for a Binary
Classification
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• Additionally, a L2 regularisation method is used to improve overfitting issues.

Additionally, in a branch called earlystopping in the same repository, a version of

the same neural network adding an early stopping mechanism can be found.
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Tests and results

7.1. Batch size in optimization stage test
A Neural Network is composed by several hyperparameters that must be tuned in

order to obtain good performance. One of these parameters is the batch size that

defines the number of samples that will be propagated through the network before

updating the coefficients inside it (one forward/backward pass). Another one is the

number of epochs that are used to train the Network. This define the number of

times that the hole dataset will be used. One epoch will be one forward pass and

one backward pass of all the examples in the dataset.

For instance, if the dataset that contains 1000 samples, the batch size is defined to

32 and the number of epochs is defined to 2000, then in order to obtain the total

number of iterations the following calculations are done:

• Epoch: Number of iterations needed to complete a single dataset train:

epoch = d
Dataset size

Batch size
e = d

1000
32
e = d31, 25e = 32 (7.1)

• Number of total iterations

i = epoch · number of epochs = 64000 (7.2)

Several tests in the optimisation stage were performed in order to determine the

batch size that will fit optimally the NN and the results were that a batch size equal

to the dataset size should be used.

The results are the following:
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7.2 Normal classifier (9-Class)

Table 7.1: Accuracy as a Batch size and numer of epochs function

Batch size Number of epochs Result (accuracy)
2410 1000 0.887
512 200 0.864
256 100 0.796
64 28 0.741
32 14 0.668

Note that the total number of iterations remains constant to make a fair compar-

ison.

Generally, this configuration (Batch size = Dataset size) is used with small datasets

which is the case. But, the disadvantage of using this batch size is the generalisation

capabilities that the algorithm learns. As this generalisation capabilities are required

for the application, both batch size equals to dataset size and 512 will be used in

following tests.

7.2. Normal classifier (9-Class)
The first test done was the classification of the hole dataset into the 9 different classes

(No incident and Incident between 1 to 8).

Below the evaluation metrics of the test can be observed:

Table 7.2: Evaluation metrics for test in 7.2

Evaluation metrics
Accuracy 0.6747
Precision 0.3954
Recall 0.3916

F1 Score 0.3933
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7.3. Normal classifier omitting incident types

1, 5 & 8
Due to poor results in the previous test (9-Class classifier), a second set of tests

omitting incidents that theoretically are difficult to detect using accelerometer signals

is done. These incidents are Close pass (1), Tailgating (5) and Other (8). In this set

of tests, two different parameters change: the batch size and the inclusion/exclusion

of user tagged incidents. This user tagged incidents is made in order to demonstrate

that user incidents decrease the results of the overall classifier.

7.3.1 Avoiding user tagged incidents

- Batch size: Dataset size

Table 7.3: Confusion matrix in % for test 7.3.1 with batch size equals to dataset size

Predicted

C
on

fu
si
on

M
at
ri
x
(%

)

0 1 2 3 4 5 6 7 8

T
rue

class

98.62 0.00 0.55 0.00 0.00 0.00 0.00 0.83 0.00 0

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1

7.69 0.00 21.15 15.38 19.23 0.00 0.00 36.54 0.00 2

5.80 0.00 7.25 24.64 21.74 0.00 0.00 40.58 0.00 3

4.17 0.00 5.56 23.61 27.78 0.00 4.17 34.72 0.00 4

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5

0.00 0.00 18.18 18.18 0.00 0.00 9.09 54.55 0.00 6

1.69 0.00 15.25 12.43 14.12 0.00 2.82 53.67 0.00 7

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8

The evaluation metrics and a breakdown by class of the precision and the recall

can be observed in the following tables:
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7.3 Normal classifier omitting incident types 1, 5 & 8

Table 7.4: Evaluation metrics and breakdown for table 7.3

Evaluation metrics
Accuracy 0.6747
Precision 0.3954
Recall 0.3916

F1 Score 0.3933

Class Precision Recall
0 0.9624 0.9862
2 0.2157 0.2115
3 0.2576 0.2464
4 0.2857 0.2778
6 0.1111 0.0910
7 0.5398 0.5460

- Batch size: 512

Table 7.5: Confusion matrix in % for test 7.3.1 with batch size equals to 512

Predicted

C
on

fu
si
on

M
at
ri
x
(%

)

0 1 2 3 4 5 6 7 8

T
rue

class

100,00 0.00 0,00 0,00 0,00 0.00 0,00 0,00 0.00 0

0,00 0.00 0,00 0,00 0,00 0.00 0,00 0,00 0.00 1

8,70 0.00 21,74 17,39 4,35 0.00 17,39 30,43 0.00 2

0,00 0.00 11,11 55,56 16,67 0.00 0,00 16,67 0.00 3

0,00 0.00 0,00 66,67 0,00 0.00 0,00 33,33 0.00 4

0,00 0.00 0,00 0,00 0,00 0.00 0,00 0,00 0.00 5

25,00 0.00 50,00 0,00 0,00 0.00 25,00 0,00 0.00 6

15,00 0.00 0,00 30,00 25,00 0.00 5,00 25,00 0.00 7

0,00 0.00 0,00 0,00 0,00 0.00 0,00 0,00 0.00 8

The evaluation metrics and a breakdown by class of the precision and the recall

can be observed in the following tables:
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Table 7.6: Evaluation metrics and breakdown for table 7.5

Evaluation metrics
Accuracy 0.6753
Precision 0.3943
Recall 0.3788

F1 Score 0.3707

Class Precision Recall
0 0.9326 1.0000
2 0.5556 0.2174
3 0.4167 0.5556
4 0.0000 0.0000
6 0.1667 0.2500
7 0.2941 0.2500

7.3.2 Including user tagged incidents

- Batch size: Dataset size

Table 7.7: Confusion matrix in % for test 7.3.2 with batch size equals to dataset size

Predicted

C
on

fu
si
on

M
at
ri
x
(%

)

0 1 2 3 4 5 6 7 8

T
rue

class

96,53 0.00 0,00 0,69 0,35 0.00 0,00 2,43 0.00 0

0,00 0.00 0,00 0,00 0,00 0.00 0,00 0,00 0.00 1

3,80 0.00 10,13 20,25 15,19 0.00 3,80 46,84 0.00 2

3,31 0.00 8,29 37,57 16,57 0.00 2,21 32,04 0.00 3

1,79 0.00 4,46 30,36 32,14 0.00 1,79 29,46 0.00 4

0,00 0.00 0,00 0,00 0,00 0.00 0,00 0,00 0.00 5

5,88 0.00 5,88 23,53 17,65 0.00 11,76 35,29 0.00 6

3,09 0.00 13,06 17,53 19,59 0.00 2,75 43,99 0.00 7

0,00 0.00 0,00 0,00 0,00 0.00 0,00 0,00 0.00 8

The evaluation metrics can be observed in table 7.8
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7.3 Normal classifier omitting incident types 1, 5 & 8

Table 7.8: Evaluation metrics for table 7.7

Evaluation metrics
Accuracy 0.5333
Precision 0.3748
Recall 0.3821

F1 Score 0.3775

- Batch size: 512

Table 7.9: Confusion matrix in % for test 7.3.2 with batch size equals to 512

Predicted

C
on

fu
si
on

M
at
ri
x
(%

)

0 1 2 3 4 5 6 7 8

T
rue

class

85,45 0.00 9,09 0,00 0,00 0.00 0,00 5,45 0.00 0

0,00 0.00 0,00 0,00 0,00 0.00 0,00 0,00 0.00 1

5,26 0.00 15,79 5,26 31,58 0.00 10,53 31,58 0.00 2

11,54 0.00 19,23 38,46 0,00 0.00 0,00 30,77 0.00 3

6,67 0.00 6,67 13,33 6,67 0.00 0,00 66,67 0.00 4

0,00 0.00 0,00 0,00 0,00 0.00 0,00 0,00 0.00 5

14,29 0.00 14,29 14,29 0,00 0.00 28,57 28,57 0.00 6

6,25 0.00 18,75 12,50 15,63 0.00 18,75 28,13 0.00 7

0,00 0.00 0,00 0,00 0,00 0.00 0,00 0,00 0.00 8

The evaluation metrics can be observed in table 7.10.
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Table 7.10: Evaluation metrics for table 7.9

Evaluation metrics
Accuracy 0.4675
Precision 0.3455
Recall 0.3384

F1 Score 0.3376

From the 2 first tests in 7.3.1 and looking at the precision and recall metrics split

by incident types in the first test: it can be seen that incident type 0 has good rate

of detection, and both precision and recall rates are low for incident types 4 and

6. Moreover, it can be observed that batch size in the first test is not affecting the

overall evaluation metrics but in the second test, the batch size equals to the dataset

size is performing better than the batch size equals to 512.

From the 2 lasts tests in 7.3.2 including user tagged incidents, it can be clearly

seen that using only the no-user-tagged incidents, even if there is less data to train

the network, the performance is better.

7.4. Normal classifier with OS separation

(avoiding incidents 1, 5, & 8)
This test was made in order to visualise differences between the data coming from dif-

ferent OS, iOS and Android. The goal was to observe if the quality of data recorded by

different smartphones was affecting the final classification. In these tests, confusion

matrix is omitted due to the lack of information that adds and only the evaluation

metrics are represented.

- Batch size: Dataset size
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Table 7.11: Evaluation metrics for for test 7.4 with batch size equals to dataset size

iOS

Evaluation metrics
Accuracy 0.5815
Precision 0.3526
Recall 0.3525

F1 Score 0.3488

Class Precision Recall
0 0.9231 0.9600
2 0.3333 0.2105
3 0.3333 0.3077
4 0.0000 0.0000
6 0.0770 0.1250
7 0.4490 0.5116

Android

Evaluation metrics
Accuracy 0.6684
Precision 0.4105
Recall 0.3920

F1 Score 0.3974

Class Precision Recall
0 0.9544 0.9963
2 0.1579 0.2500
3 0.2041 0.1587
4 0.2632 0.2381
6 0.3333 0.2000
7 0.5504 0.5591

- Batch size: 512

Table 7.12: Evaluation metrics for for test 7.4 with batch size equals to dataset size

iOS

Evaluation metrics
Accuracy 0.6688
Precision 0.3898
Recall 0.3721

F1 Score 0.3764

Class Precision Recall
0 0.9655 0.9767
2 0.2000 0.2857
3 0.4211 0.4211
4 0.1250 0.1111
6 0.3333 0.2000
7 0.2941 0.2381
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Android

Evaluation metrics
Accuracy 0.6883
Precision 0.4216
Recall 0.4683

F1 Score 0.4643

Class Precision Recall
0 0.9222 0.9881
2 0.2308 0.2727
3 0.2400 0.4615
4 0.5000 0.2692
6 0.0000 0.0000
7 0.6364 0.3500

From these 4 tests where the dataset is split depending on the mobile phone used,

we can see the importance of the Batch size but also of the amount data. We can

see different important improvements and drawbacks depending on where we look at:

1) Due to the amount of data used (less than the first 2 tests, because we split the

hole data in iOS data or Android data) it could be noticed a deterioration of all the

evaluation metrics, 2) it could be observed that with the batch size of 512 there is

an improvement for all the evaluation metrics, in the best cases up to 8% and worse

cases up to 1.11%, 3) same happens with the incident types 4 and 6 that have very

low precision and recall rates.

7.5. Normal classifier omitting incident types

1, 4, 5 & 8
In this test and as a conclusion from the precision and recall breakdown evaluation

metrics results coming from the two first tests, another iteration in the normal clas-

sifier is made omitting incident types Close pass (1), Someone approaching head on

(4), Tailgating (5) and Other (8).
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7.6 Normal classifier changing window length

Table 7.13: Evaluation metrics for test 7.5

- Batch size: Dataset size - Batch size: 512

Evaluation Metrics
Accuracy 0.6660
Precision 0.5219
Recall 0.5168

F1 Score 0.5157

Evaluation Metrics
Accuracy 0.5714
Precision 0.4070
Recall 0.4319

F1 Score 0.4129

7.6. Normal classifier changing window length
In this test, a change in the windowing parameters is done. When the ride is win-

dowed in order to extract the parameters, as explained in ‘Adapt Dataset’ chapter,

a 6 seconds window is set. However, in this test, the window length was set to 3

seconds in order to observe how this change affects the overall performance.

Table 7.14: Evaluation metrics for test 7.6

- Batch size: Dataset size - Batch size: 512

Evaluation Metrics
Accuracy 0.5532
Precision 0.4091
Recall 0.4114

F1 Score 0.4081

Evaluation Metrics
Accuracy 0.5519
Precision 0.3680
Recall 0.3602

F1 Score 0.3532

With this test we can see that using a shorter window is decreasing the overall

performance of the classifier from an accuracy of 67% to 55% and from a F1 score of

37% to 35% in the worst case.
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7.7. Ternary classifier
This set of tests aimed to obtain a precise view of how each type of incident was

detected individually. The goal of the ternary classifier was to detect between no

incident, incident and incident type X. There is a total of 8 tests and in order to

simplify the results, only the ones with the batch size equal to the dataset size are

showed.

In the following tables it can be observed the performance of the algorithm for each

of the incident’s types. In each type test the confusion matrix as well as the general

metrics and a breakdown of the precision and recall for the class 2 is showed. From

these results, a clarification has to be done: High values in accuracy displayed in tests

done for incident types 5 and 6 are caused by a lack of data of type 2. That produces

high values in the evaluation metrics because this table reflects a mean value between

all classes. In fact, it can be clearly seen that these 2 incident types are bad detected

because of the breakdown in precision and recall. Finally, a summary of the results

among all the incident types tests is presented below. In the table it can be observed

the precision and recall metrics from the breakdown of class 2 for each of the tests

as well as the mean between them.

Table 7.15: Confusion Matrix, Evaluation Metrics and breakdown for class 2 for each
of the incident Types

Type 1

Predicted

0 1 2

C
.M

.
(%

) 98.24 1.76 0.00 0

T
rue

class

1.67 81.38 16.95 1

3.45 66.38 30.17 2

Class Precision Recall
2 0.3017 0.3017

Evaluation Metrics
Accuracy 0.8302
Precision 0.6987
Recall 0.6993

F1 Score 0.6990
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7.7 Ternary classifier

Type 2

Predicted

0 1 2

C
.M

.
(%

) 99,05 0,95 0,00 0

T
rue

class

4,11 92,15 3,74 1

3,28 83,61 13,11 2

Class Precision Recall
2 0.2857 0.1311

Evaluation Metrics
Accuracy 0.9107
Precision 0.7132
Recall 0.6810

F1 Score 0.6874

Type 3

Predicted

0 1 2

C
.M

.
(%

) 98,99 0,80 0,20 0

T
rue

class

1,88 86,68 11,44 1

5,97 76,12 17,91 2

Class Precision Recall
2 0.1622 0.1791

Evaluation Metrics
Accuracy 0.8806
Precision 0.6760
Recall 0.6786

F1 Score 0.6771

Type 4

Predicted

0 1 2

C
.M

.
(%

) 99,02 0,78 0,20 0

T
rue

class

2,64 90,00 7,36 1

3,17 88,89 7,94 2

Class Precision Recall
2 0.1111 0.0794

Evaluation Metrics
Accuracy 0.8950
Precision 0.6563
Recall 0.6565

F1 Score 0.6555
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Type 5

Predicted

0 1 2

C
.M

.
(%

) 98,35 1,65 0,00 0

T
rue

class

2,36 96,28 1,35 1

0,00 87,50 12,50 2

Class Precision Recall
2 0.2000 0.1250

Evaluation Metrics
Accuracy 0.9610
Precision 0.7120
Recall 0.6905

F1 Score 0.6983

Type 6

Predicted

0 1 2

C
.M

.
(%

) 98,38 1,62 0,00 0

T
rue

class

3,21 96,28 0,51 1

15,38 84,62 0,00 2

Class Precision Recall
2 0.0000 0.0000

Evaluation Metrics
Accuracy 0.9621
Precision 0.6430
Recall 0.6489

F1 Score 0.6459

Type 7

Predicted

0 1 2

C
.M

.
(%

) 97,82 1,45 0,73 0

T
rue

class

2,33 73,43 24,24 1

2,40 67,66 29,94 2

Class Precision Recall
2 0.3185 0.2994

Evaluation Metrics
Accuracy 0.7621
Precision 0.6703
Recall 0.6706

F1 Score 0.6703
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Type 8

Predicted

0 1 2

C
.M

.
(%

) 99,80 0,20 0,00 0

T
rue

class

5,13 84,19 10,68 1

3,03 75,76 21,21 2

Class Precision Recall
2 0.2877 0.2121

Evaluation Metrics
Accuracy 0.8547
Precision 0.6923
Recall 0.6840

F1 Score 0.6860

Table 7.16: Summary table: precision and recall breakdown for each of the 8 types
tests

Type test 1 2 3 4 5 6 7 8
Precision class 2 0.3017 0.2857 0.1622 0.1111 0.2 0 0.3185 0.2877

Recall class 2 0,3017 0,1311 0,1791 0,0794 0,125 0 0,2994 0,2121
Mean class 2 0,3017 0,2084 0,17065 0,09525 0,1625 0 0,30895 0,2499

7.8. Binary classifier
The final test was to build a binary classifier in order to classify between incident

and no incident. This classifier is useful in order to improve the incident detection

algorithm that is already implemented in SimRa app.

- Batch size: dataset size

Table 7.17: Confusion Matrix and Evaluation Metrics for test in 7.8 and for batch
size equal to dataset size

Predicted

C
.M

.
(%

) 0 1

T
rue

class

98.82 1.18 0

4.00 96.00 1

Evaluation Metrics
Accuracy 0.9743
Precision 0.9875
Recall 0.9600

F1 Score 0.9735
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- Batch size: 512

Table 7.18: Confusion Matrix and Evaluation Metrics for test in 7.8 and for batch
size equal to 512

Predicted

C
.M

.
(%

) 0 1

T
rue

class

98.82 1.18 0

5.80 94.20 1

Evaluation Metrics
Accuracy 0.9675
Precision 0.9848
Recall 0.9420

F1 Score 0.9630

When using a binary classifier, the algorithm performs pretty good. And results

using the batch size equals to the dataset are slightly better which shows us that

trying to perform basic classifications there is no need to use lower batch sizes that

impact in the convergence of the gradient that provokes a diminution of the overall

performance.
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Integration with SimRa App
In this order to integrate the developed classifier, 2 programs have to be made. These

two programs are needed in order to preprocess the ride data coming from SimRa

App and to post process the data once the neural network has classified all the ride

windows.

- Pre process - AdaptRide

The pre process stage take place once the ride is finished and the file with the ac-

celerometer recorded data is generated. Afterwards, the AdaptRide program, avail-

able in a GitHub Repository [22], take this data and outputs a CSV file with the

data that will be used by the trained Neural Network to find the incidents that may

have been occurred during the ride. The main flow of AdaptRide is the same as the

AdaptDatabase but some minor differences are described below:

• A new feature to avoid the first and last seconds of the ride is available. This is
added in order to omit possible false positives that may occur during the start
and end of the ride.

• The output incident type associate to each of the windows is set as 0 for all of
the windows. That is because the program doesn’t know which is the associate
incident type for any of the windows due to the fact that the incidents must be
found by the neural network.

- Post process: SimRaNN Test

The post process stage take place once the AdaptRide program has generated

the output CSV file that contains all the ride data in a good format to use it as

input of the neural network. Afterwards, the SimRa Test program, available in a

GitHub Repository [23], takes this data and classify each of the windows of the ride
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Chapter 8 Integration with SimRa App

as incident or not. This is made using a pre trained neural network. The output

of this program will be the window numbers that has been estimated by the neural

network as probable incidents.

This program has some tune parameters that are described below:

• Filter: The neural network associate to each of the ride windows a probability
value. With this parameter the threshold probability to consider an incident is
set.

• MaxIncidents: This parameter is used to fix a maximum number of positives
that the neural network will output.
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Evaluation of the elapsed times
In order to assess the viability of the overall procedure and classifying algorithm as

well as integrate this project in the smartphone app, some tests regarding processing

times have been performed. All this test has been performed under the following

hardware devices:
• Processor: 3,1 GHz Dual-Core Intel Core i7

• RAM Memory: 16 GB 1867 MHz DDR3

9.1. Optimizing Network Hyperparame-

ters
The first one is regarding the optimization procedure. Although this stage is an

optional procedure that only tries to find better parameters when defining the archi-

tecture of the Neural Network, an analysis of the elapsed time is done. The test is

done under the following characteristics:
• Iterations per candidate: 1.000

• Evaluated Candidates: 10

• Dataset size: 2.521 entries

The total elapsed time: 0h 46min 32sec 202ms

Note: A proposal for this procedure is to run it in a cloud server and upgrade the

number of evaluate candidates to search for a possible better parameter, as the final

output generated for the program is a folder with 4 files containing the final score

obtained, the model configuration (in JSON), the iterations done and the model itself

(in a binary file).
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9.2. Training Network
The second test is regarding the training of the Neural Network. As well as the

previous test, this stage is a procedure that has to be run only once and it can be run

in a computer instead of in a smartphone. Unlike the first procedure, this one has

to be run mandatorily. The test is done using the code in [21] under the following

characteristics:

• Batch size: 512

• Iterations to the dataset: 5.000

• Dataset size: 3.352 entries

The total elapsed time: 38min 34sec 145ms

9.3. Ride evaluation and incident classifi-

cation
The final test is regarding the ride windowing and classification using the neural

network. This procedure is the one that must be done in the app when the ride ends

because will be the SimRa App the one who will perform these operations. The test

is done with a ride that lasts for around 25 min. The duration of the two procedures

separately are shown below:

• Windowing ride: 655 ms

• Classifying the windowed ride: 2 sec 646ms
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Future considerations
Once ended this project, some considerations have shown up. These different tests

could be interesting in order to evaluate a possible improvement in the actual inci-

dent detection algorithm and from this point more analysis can be done.

- Searching the incident in a near position when the user manually tagged it.

In order to properly use the user tagged incidents and don’t decrease the overall

performance of the classifier, the following approach could be tried: Assuming that

user tagged incidents deteriorate the performance because they are not precisely lo-

cated, it can be concluded that the signals that define the incident that the user has

reported are in fact signals coming from before or after the real incident instant. In

order to avoid this misplacement of the incident, an algorithm based on the binary

classifier could be developed in order to search the real incident signals in a time

frame around the marker of the user. Once this search is done, the incident marker

can be set in a more precise location and its usage could improve the training of the

algorithm instead of deteriorate it.

- Splitting incident number 7

When we try to classify incident number 7, which corresponds to ‘Dodging an

obstacle’ a sub classification could be done. The reason is that a distinction between

two different types of dodging could be done: fast dodging and slow dodging. A fast

dodging could be in fact an emergency maneuver because someone crossed our way.

A slow dodging could be for instance going around a bus stop. These two types of

dodging could have very different statistics and signals. Both are interesting because
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Chapter 10 Future considerations

a fast dodging is important regarding the detection of near miss incidents and slow

dodging is important when planning a bikeway. A variation in the window length

used to window the ride, once this is finished, could influence the detection of one

or the other. Depending the final scope of the Neural network the window could be

adapt to detect one type or the other.
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